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ABSTRACT. In this Paper we improve upon results on the almost sure ap-
proximation of the empirical process of weakly dependent random vectors,
recently obtained by Berkes and Philipp (1977) and Philipp and Pinzur (1980).

For strongly mixing sequences we improve the bounds on the mixing rates, and
for absolutely regular sequences we improve the error term. We also extend
these results to random vectors which are functions of the given sequence.

1. Introduction and statement of results

Let $\{\xi., n\geqq 1\}$ be a strictly stationary sequence of random vectors with values
in $R^{e}$ and let $\mathscr{M}_{a}^{b}$ denote the a-field generated by $\{\xi_{n}, a\leqq n\leqq b\}$ . The sequence is
called absolutely regular if for some $\beta(n)\downarrow 0$

(1.1) $E$
$\sup_{\infty,Ae\vee\cdot l_{k+\hslash}}|P(A|_{\vee}\prime_{1^{k}})-P(A)|\leqq\beta(n)$

for all $k,$ $n\geqq 1$ . Th sequence $\{\xi_{n}, n\geqq 1\}$ is said to satisfy a strong mixing $\infty ndition$

if for some $\rho(n)\downarrow 0$

(1.2) $|P(AB)-P(A)P(B)|\leqq\rho(n)$

for all $A\in\sim \mathscr{M}_{k+}^{\infty},,,$ $B\in \mathscr{M}_{1}^{k}$ and all $k,$ $n\geqq 1$ . Since (1.2) is equivalent with

$\sup_{Aex_{k+n}^{\infty}}E|P(A|\mathscr{M}_{1}^{k})-P(A)|\leqq\rho^{*}(n)$

with $\rho(n)\leqq\rho^{*}(n)\leqq 2\rho(n)$ we see that every absolutely regular sequence satisfies a
strong mixing condition. The converse is not true; there are examples of strongly
mixing sequences that are not absolutely regular. The well-known $\phi\cdot mixing$

$\infty ndition$ which is still more restrictive than (1.1) will not be needed in this $pa\mu r$ .
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Let $f$ be a measurable mapping from the space of infinite sequences of vectors

in $R^{e}$ into $R^{q}$ . Define

(1.3) $\eta_{n}=f(\xi_{n}, \xi_{n+1}, \cdots)$ $n\geqq 1$

and let

$\eta_{nm}=E(\eta_{n}|\mathscr{M}_{n}^{n+m})$ $n\geqq 1,$ $m\geqq 0$ .
We shall assume that $\eta_{n}$ can be closely approximated by $\eta_{nm}$ in the form

(1.4) $E|\eta_{n}-\eta_{nm}|\leqq\psi(m)$ $n\geqq 1,$ $m\geqq 0-$.
Let $F$ denote the common distribution function of $\eta_{n}$ . The empirical process of
$\{\eta_{n}, n\geqq 1\}$ is defined as

$R(s, t)=\sum_{n\leqq t}(1\{\eta_{n}\leqq s\}-F(s))$ , $s\in R^{q}$ , $t\geqq 0$ .
(For two points $u=(u_{1}, \cdots, u_{q})$ and $v=(v_{1}, \cdots, v_{q})$ in $R^{e}$ , we write $u\leqq v$ to mean
that $u_{i}\leqq v_{\ell}$ for all $1\leqq i\leqq q.$ )

In recent papers Berkes and Philipp (1977) and Philipp and Pinzur (1980)

proved approximation theorems for $R(s, t)$ by a Kiefer process $K(s, t)$ with various
degrees of accuracy. The formal definition of a Kiefer process is given in these
papers, but it also can be viewed as a $C(R^{q})$-valued Brownian motion with covariance
structure given below. The purpose of this note is to improve upon these results
by improving the bounds on the mixing rates and the error terms in some of them.

Write

(1.5) $g_{n}(s)=1\{\eta_{n}\leqq s\}-F(s)$ , $s\in R^{q}$ .
Then the two series defining the covariance function

(1.6) $\Gamma(s, s^{\prime})=E\{g_{1}(s)g_{1}(s^{\prime})\}+\sum_{\iota\geq 2}E\{g_{1}(s)g_{n}(s^{\prime})\}$

$+\sum_{n\geq 2}E\{g_{n}(s)g_{1}(s^{\prime})\}$

converge absolutely.

Theorem 1. Let $\{\xi_{n}, n\geqq 1\}$ be a strictly stationary, absolutely regular sequence

of randm vectors with values in $R^{q}$ and common continuous distribution function
F. Supp0se that the mixing rate $\beta(n)$ satisfies1
(1.7) $\beta(n)\ll n^{-(1+\theta)q-2}$

$\ovalbox{\tt\small REJECT} 1$For two sequences of real numbers $(x_{n})$ and $(y_{n}),$ $x_{n}\langle\langle y_{n}$ means there existsa constant
$c\geqq 0$ such that $|x_{n}|\leqq c|y_{n}|$ for all $n$ .
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for some $\theta>0$ . Then the series in (1.6) (with $\eta_{n}$ replaced by $\xi_{n}$ in (1.5)) converge
absolutely. Moreover, without changing its distribution we can redefine the
empirical process $\{R(s, t), s\in R^{q}, t\geqq 0\}$ of $\{\xi_{n}, n\geqq 1\}$ on a richer probability space
on which there exists a Kiefer process $\{K(s, t), s\in R^{q}, t\geqq 0\}$ with covariancefunction
$E(K(s, t)K(s^{\prime}, t^{\prime}))=\Gamma(s, s^{\prime})$ min $(t, t^{\prime})$ such that with probabiljty 1
(1.8)

$\sup_{t\leqq}\sup_{eRq}|R(s, t)-K(s, t)|\ll T^{(1/2)-\lambda}$

where $\lambda>0$ only depends on $q$ and $\theta$ .
For the analogous result on the empirical process of $\{\eta_{n}, n\geqq 1\}$ we have to put

restrictions on the common distribution function $F$ of $\eta_{n}$ .
Theorem 2. Let $\{\xi_{n}, n\geqq 1\}$ be a strictly stationary, absolutely regular sequence

of random vectors with values in $R^{\iota}$ . Suppose that the random vectors $\eta_{n}\in R^{q}$ are
defined by (1.3) and satisfy (1.4) with
(1.9) $\psi(m)\ll m^{-(8+\delta)}$

for some $\delta>0$ . Suppose that the mixing rate $\beta(n)$ of the sequence $\{\xi_{n}, n\geqq 1\}$ in (1.1)

satisfies (1.7). Assume further that all the marginals $F.(1\leqq p\leqq q)$ of the common
distribution function $F$ of $\eta_{n}$ concentrate on $[0,1]$ and satisfy a Lipschjtz condition
of the form
(1.10) $|F_{p}(x)-F_{p}(y)|\leqq C\cdot|x-y|$ $x,$ $y\in[0,1]$ .
Here $C=C_{F}$ is a constant. Then the conclutions of Theorem 1 remain valid for
the empirical pr0cess $\{R(s, t), s\in[0,1]^{q}, t\geqq 0\}$ of $\{\eta_{n}, n\geqq 1\}$ .

For strongly mixing random variables we obtain similar results.

Theorem 3. Let $\{\eta_{n}, n\geqq 1\}$ be a strictly stationary sequence of random vectors
in $R^{q}$ with common, but arbitrary distribution function and satisfying a strong
mixing condition with mixing rate

$\rho(n)\ll n^{-(1+\theta)q-2}$ .
Then the conclusions of Theorem 1 remain valid with the error term in (1.8)
replaced by $T^{1/2}(\log T)^{-\lambda}$ .

Similarly a result analogous to Theorem 2 can be formulated and proved for
strongly mixing sequences. Recently, Yoshihara (1979) proved that the mixing
rate in Theorem 1 of Berkes and Philipp (1977) could be relaxed to $\rho(n)\ll n^{-\theta-\prime}$ .
However, there appears to be a misprint in his paper since one term in the
exponential bound in Lemma 2 is exp ( $-A^{2}C_{0^{2}}l^{\rho}\log\log N\overline{)}$ when it must be
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exp ( $-A^{2}C_{0^{2}}l^{-\rho}$ log log $N$) to make the proofs of his Lemmas 3 and 4 work.

2. Sketch of proofs

Since the time the papers [3] and [111 were written several of their ingredients
were improved. We now employ these improvements and add a few new ideas.

2.1 As has been shown in sections 4 and 5 of [111 there is no loss of
generality to assume that all the marginals of the common distribution function
$F$ in Theorem 1 have uniform distribution over $[0,1]$ . In fact, by the continuity
of $F$, we can show that the sequence of random vectors $\{\eta_{n}, n\geqq 1\}$ in $R^{q}$ constructed
in section 5 of [111 whose components are uniformly distributed over $[0,1]$ such
that2 $(\xi_{n}, n\geqq 1)=(F^{-1}\eta_{n}, n\geqq 1)$ in distribution satisfies an absolutely regular con-
dition (1.1) with the rate in (1.7). Now, under the new assumption, $Threm1$
(case of uniform marginals) is a part of Theorem 2 where $C_{F}=1$ and $\phi(m)=0$

for all $m$ . Hence, we prove $Threm2$ first. We basically follow the $prf$ of
Theorem 1 of [31 $\cdot$ We assume without loss of generality that $\theta\leqq 1/3$ . Define

$t_{k}=[k^{21/e\theta+72q/\alpha\theta}]$

where

(2.1) $\epsilon=\frac{3+\theta}{3(2+\theta)}$

$\alpha=\frac{\theta}{8(2+\theta)(4+3q)}$

$r_{k}=[\frac{4}{\alpha}$ log $k/\log 2]$

and
$d_{k}=2^{qr_{k}}$ .

In the $prf$ of Proposition 1 of [111 we replace the aPplication of Yurinskii’s
(1977) $threm$ by the following partial generalization of Dehling (1980).

$\ovalbox{\tt\small REJECT} 2$Fora nondecreasing function $G$ on $R$ , define the inverse $G^{-1}$ of $G$ on the smallest
interval containing the range of $G$ by

$G^{\rightarrow 1}(y)=\inf\{x:G(x)\geqq y\}$ .
Let $F_{p}(1\leqq p\leqq q)$ be the marginals of F. Define a mapping

$F^{-1}$ ; $[0,1]^{q}\rightarrow R^{q}$

by
$F^{-1}\langle u_{1},$

$\cdots,$ $u_{q}$) $=(F_{1}^{-1}(u_{1}), \cdots, F_{q^{-1}}(u_{q}))$ , $u=(u_{1}, \cdots, u_{q})\in[0,1]^{q}$ .
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Theorem A. Let $\{x_{n}, n\geqq 1\}$ be a weakly stationary, absolutely regular sequence
of random variables with values in $R^{d}$, centered at exPectations and with $(2+\delta)\cdot\ell h$

moments uniformly bounded by $\rho_{2+\delta}$ , where $0<\delta\leqq 1$ . Suppose that the mixing rate
$\beta(n)$ satisfies
(2.2) $\beta(k)\ll k^{-(1+e)(1+2/\delta)}$

for some $0<\epsilon\leqq 1$ . Then the two series defining the covariance function $T$ of the
sequence $\{x_{n}, n\geqq 1\}$ defined by

$T(f, g)=E\{f(x_{1})g(x_{1})\}+\sum_{\sim\geqq 2}E\{f(x_{1})g(x_{n})\}+\sum_{\sim\geq 2}E\{f(x_{n})g(x_{1})\}$

converge absolutely. Moreover, there exist constants $\lambda>0$ and $C$ dePending only
on $\epsilon,$

$\delta$ and the constant imPlied $by\ll in$ (2.2) such that the Proholov distance

$\pi(\mathcal{L}(n^{-1/2}\sum_{jS\sim}x_{j});N(O, T))\leqq Cn^{-\lambda}d^{1/2}(1+\rho_{2+\delta}^{1/\epsilon})$ .
Here, for any random variable $X,$ $\mathcal{L}(X)$ stands for the distribution of $X$.

For the $prf$ of the oscillation estimates in section 3.3 of [3] we replace the
application of the classical exponential bound Lemma 2 of [11] by the following
one.

Proposition 1. Let $\{\xi_{n}, n\geqq 1\}$ and $\{\eta_{n}, n\geqq 1\}$ be as in Theorem 2. Using the
same ordering of elements in $R^{q}$ as in [11] we put

$x_{n}=x_{n}(s, s^{\prime})=g_{n}(s^{\prime})-g_{n}(s)$

by (1.5) and

$D_{n}=D_{n}(s, s^{\prime})=F(s^{\prime})-F(s)$

for $s<s^{\prime}$ in $[0,1]^{q}$ . Then there exist constants $A\geqq 1$ and $C\geqq 1$ dePending only on
$q,$

$\theta$ and the constant $imPlied$ $by\ll in$ (1.9) such that

(2.3) $P\{|\sum_{n=H+1}^{H+2^{N}}x_{n}|>ARD^{a}2^{(1/2)ff}(\log N)^{1/2}\}$

$\leqq C$($\exp(-8RD^{-\alpha}$ log $N)+R^{-2}2^{(-1/2)qN(1+(1/2)\theta)}$ )

for all $H\geqq 0,$ $N,$ $R\geqq 1$ and all $s,$ $s^{\prime}\in[0,1]^{q}$ with $s<s^{\prime}$ . Here $a$ is defined in (2.1).

The $prf$ of Proposition 1 is a modification of the $prf$ of Proposition3.3:1
of [10]. We will give a sketch in section 3.

In section 3.3 of [11] it was shown that if the $t_{k}’ s$ have polynomial growth,
then Lemmas 3 and 4 of [11] continue to hold. Note that in their $prfs$ the
lengths of all the sums are $\infty wers$ of 2. Hence for the $prf$ of $Threm2$ it
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remains to check the details of section 3.5 of [11]. We replace the application of
$Threm$ A by a stronger variant, due to Dehling and Philipp (1980). This variant
can be simply formulated as follows. If in Theorem A of [111 the condition
corresponding to the $\phi$-mixing condition is replaced $by^{3}$

$E\sup_{ceL_{k}}|P(C|L_{j})-P(C)|\leqq\beta_{k}j<k$

then the $\infty nclusion$ of $Threm$ A remains valid with $\phi_{k}$ replaced by $\beta_{k^{1/2}}$ . There
are no more changes necessary. This concludes the proof of $Threm2$ .

2.2 The proof of $Threm1$ can be proved using Theorem 2 by the techni-
que employing in section 4 of [11].

2.3 The $prf$ of $Threm3$ is the same as the $prf$ of $Threm2$ of [11]
except that we apply Proposition 1 of the present paper instead of Proposition 1
of [111 $\cdot$ We also aPply Proposition 2.1 of [9] to obtain a similar result as in
Proposition 4.1 of [3].

3. Sketch of proof of Proposition 1.

Except for a few minor changes the $prf$ of Proposition 1 is almost identical
with the $prf$ of Proposition 3.3.1 in [10]. We can assume without loss of
generality that $H=0$ . We note that

$E(\sum_{neN}x_{n})^{2}=N\sigma^{2}+0(D^{\iota/2})$

where

$\sigma^{2}=Ex_{1^{2}}+2\sum_{=2}^{\infty}E(x_{1}x_{n})\ll D^{s/4}$ .
The main observation being that for fixed $m$ the random variables $\eta_{nm}$ also are
absolutely regular. The details can be worked out in the same way as in [3] and
[11]. However, Lemma 3.2.1 in [10] has to be replaced by the following one. The
proof is the same.

Lemma 1. Let $X$ and $Y$ be random vectors in $[0,1]^{q}$ with $ E|X-Y|\leqq\epsilon$ . SuPpose
that the marginals $F_{p}$ of the distrition of $X$ satisfy a Lipschitz condition (1.10).

Then for all $te[0,1]^{q}$

$E|1\{X\leqq t\}-1\{Y\leqq t\}|\leqq 2(C_{p}+1)\epsilon^{1/2}$ .
8 For a family of $\sigma\cdot fields\{L_{\lambda}: \lambda e\Lambda\}$ of a given space, we write $\lambda\in\Lambda\vee L_{\lambda}$ for the smallest

$\sigma\cdot field$ of the space containing the set $\bigcup_{\lambda e\Lambda}L_{\lambda}$ .
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Thus for the $prf$ of Proposition 1 we can assume $D\geqq 2^{-(2+\theta)qN}$ since otherwise
we apply Chebyshev’s inequality. As on p. 329 of [10] we define blocks $H_{j}$ and
$I_{j}$ inductively, each of length $2^{\iota}$ where

$t=[(2\alpha(2+\theta)q+1+\frac{2+\theta}{4}q)N/((1+\theta)q+2)]+1$ ,

and the random variables $y_{j}$ and $z_{j}$ are also defined in the same fashion where
here we put

$m=[\{\max(2^{(2\alpha(2+\theta)q+1+(2+\theta/4)q)N}, 2^{t}D^{-1/2},2^{((1+\theta)q+2/2)\iota})\}^{2/(8+\delta)}]+1$ .
We replace $R^{-}N^{-1.1}$ in Lemma 3.3.1 of [10] by $R^{-2}2^{-(1/2)(1+(\theta/2))qN}$ . We use the
estimate $\Vert v_{j}\Vert_{2}\ll 2^{-(2+\theta/2)q*}$ instead of the estimate of $\Vert v_{j}\Vert$ in Lemma 3.3.4. Thus
$R^{-}N^{-\theta/2}$ in Lemma 3.3.5 is changed to $R^{-2}2^{-(1/2)(1+(\theta/2))qN}$ . We define $k=2^{N--1}$

and replace Lemma 3.3.3 by

$\sum_{j\leq k}Ey_{J^{2}}\ll D^{S\alpha}2^{N}$ .
Hence Lemma 3.3.6 becomes
(3.1)

$P\{\sum_{\dot{g}\leq k}E(y_{j^{2}}|\mathcal{L}_{j-1})\geqq 2RBD^{\alpha}2^{N}\}\ll R^{-2}2^{-(1/2)(1+(\theta/2))qN}$ .
Finally we prove the analogue of Lemma 3.3.7 of [10], that is we prove

(3.2)
$ P\{|\sum_{\dot{g}\leq k}y_{j}|\geqq 8RBD^{a}2^{N/2}(1ogN)^{1/2}\}\ll\exp$ ( $-8RD^{-\alpha}$ log $N$)

$+R^{-2}2^{-(1/2)(1+(\theta/2))qN}$ .
Here we define

$U_{n}=\sum_{\dot{J}\leq}y_{j}$ , $n\leqq k$

$=U_{k}$ , $n>k$

$U_{0}=0$

$S_{n^{2}}=\sum_{j\leq}E(y_{J^{2}}|\mathcal{L}_{j-1})$ , $n\leqq k$

$=S_{k}^{2}$ , $n>k$ .
We $ch\infty seC=C_{q}>1$ so that

$8(\log N)^{\iota/2}\leqq C2^{\alpha(2+\theta)qN}$ , $N\geqq 1$ .
Then we take $B$ in (3.1) so large that $B\geqq C^{2}$ . We put

$\lambda=\frac{2}{C}D^{-2\alpha}(\log N)^{1/2}2^{-N/2}$ ,

$K=4RBD^{3\alpha}2^{N}$ ,
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$c=\frac{1}{\lambda}$ ,

and
$T_{n}=\exp(\lambda U_{n}-\lambda^{2}S_{n^{2}})$ , $n\geqq 1$

$T_{0}=1$ .
We finish the $prf$ of (3.2) as on p. 332 of [10].

The $prf$ of relation (2.3) can now be completed in the same way as on $p$ .
332-333 of [10].
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