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1. Introduction

Recently, a number of authors investigated the following problem. Let
$(a_{n})_{N}el^{1}$ and $\Phi$ be a function, analytic in an open region containing the set
$A(z):=\{\sum_{\approx 0}^{\infty}a_{n}z^{n}||z|\leqq 1\}$ . Then the equation $\Phi(A(z))=B(z):=\sum_{\leftarrow 0}^{\infty}b_{n}z^{n},$ $|z|\leqq 1$ defines a
sequence $(b_{n})_{N}\in l^{1}$ . In many applications, the question arises how one can relate
asymptotic properties of $(a_{n})_{N}$ and $(b_{n})_{N}$, given the behaviour of $\Phi$ .

In tackling this problem, there are two possible poinS of view: either
asymptotic inequalities $\langle 0$ or $0$ results) or asymptotic equivalence $(\sim resulS)$ . As
usual, for any two sequences $x_{n}$ and $y_{n},$ $x_{n}\sim y_{n}$ means $\lim_{n\rightarrow\infty}(x_{n}/y_{n})=1$ , if not stated
explicitely. The present $pa\varphi r$ aims at bringing together the most important
existing results, most of them published independently, generalise them in a
natural way and discuss some applications scattered throughout the literature.

2. Review of results

2.1 $O$ and o-results
For some $\Phi$ and $(a_{n})_{N}$, let $(b_{n})_{N}$ be defined as in the introduction. The purpose

of this section is to unify the known sufficient conditions on the sequence $\alpha=(\alpha_{n})_{N}$

of positive reals such that $Threm$ A below holds:

Theorem A. If $|a_{n}|=O(\alpha_{n})(n\rightarrow\infty)$ , then $|b_{n}|=O(\alpha_{n})(n\rightarrow\infty)$ .
(i) Rogozin [20], [21] and Borovkov [2], [3, Appendix 3] take $\alpha_{n}=n^{-l}L(n)$

where $\beta>1$ and $L$ is some slowly varying function (s.v.), i.e. $L$ is a positive
Lebesgue measurable function such that $L(tx)\sim L(t)(t\rightarrow\infty)$ for all $x>0$ . See [7]..

[22] for more details. The standard way for proving Theorem A is by showing
that the set $R(\alpha)$ of all $p$ sequences $(x.)_{N}$ for which $|x_{n}|=O(\alpha_{n})$ forms a Banach
algebra with respect to convolution. The maximal ideal space for $R(\alpha)$ can be
represented as follows: for each $x=(x_{n})_{N}\in R(\alpha)$ , the associated maximal ideals
$n\alpha\Re nd$ to $\sum_{=0}^{\infty}x_{n}t^{*},$ $|t|\leqq 1$ and Theorem A follows.

(ii) In a similar way, Rogozin [21] shows that Theorem A remains valid for
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sequences $\alpha$ such that

$\sup_{n\geqq 1k}\sup_{\geqq l2}\alpha_{k}/\alpha_{n}<\infty$ .
(iii) In [17] Gr\"ubel complements (ii) by proving Theorem A for sequences $\alpha$

such that $\alpha$ is nonincreasing, log $\alpha_{n}=o(n)(n\rightarrow\infty)$ and either

1 $n-n$

(2.1a)
$\lim_{\rightarrow\infty}\sup_{n\geqq 2\alpha_{m}k=}-\sum\alpha_{k}\alpha_{m-k}=0$

or
1’(2.1b) $\sup-\sum\alpha_{k}\alpha_{m-k}<\infty$ .

$\hslash\geq 0\alpha_{m}k=0$

(iv) Finally, it is not difficult to see that Theorem A remains valid when
$O(\alpha_{n})$ is replaced by $o(\alpha_{n})$ .
2.2 Asymltotic equivalence

Below, we list a number of sufficient conditions on the sequence $a=(a_{n})_{N}$ to
ensure that

(2.2) $b_{n}\sim a_{n}\Phi^{\prime}(A(1))$ $(n\rightarrow\infty)$ ,

which turns out to be the natural asymptotic relationship.
(i) Borovkov [3, Appendix 3] defines the set $\mathcal{B}$ as those $l^{1}$ sequences $(x_{n})_{N}$

for which $x_{n+1}\sim x_{n}(n\rightarrow\infty)$ and for which there exist positive numbers $A,$ $B(A\leqq B)$

such that

$0<An^{-a}L(n)\leqq|x_{n}|\leqq Bn^{-\alpha}L(n)$

for all $n\geqq 1$ and some $\alpha>1,$ $L$ s.v.. Then if $a\in \mathcal{B},$ $(2.2)$ holds.
(ii) Later, Eggermont and Luxemburg [81, $[91, [18]$ defined a set $\backslash X$ of se-

quences as follows. An li sequence $(x_{n})_{N}\in\ovalbox{\tt\small REJECT}$ if there exists some continuous and
positive function $L$ on the positive reals such that $x_{n}\sim cL(n)(n\rightarrow\infty)$ for some $ceR$

and such that

$\lim_{\rightarrow\infty}\frac{L(x+t)}{L(x)}=1$ for all $teR$

$\max_{x<t\leqq 2x}\frac{L(t)}{L(2x)}\leqq\lambda_{L}<\infty$ for all $x>0$ .
Again (2.2) holds if a $e.Y$.

(iii) To our opinion, the most natural setting for the the problem was given
in a Paper by Chover, Ney and Wainger [51. They introduced the class $S$ of
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subexponential sequences, taken to be probability measures for convenience. A
probability measure $p=(p_{n})_{N}$ belongs to $S$ if $p_{n+1}\sim p_{n}(n\rightarrow\infty)$ and if

(2.3) $\lim_{\rightarrow\infty}\frac{p_{n}^{(2)}}{p_{n}}=2$ .
Here and in the sequel $P^{(k)}$ denotes the $k^{tb}$ convolution of $P$ with itself. The
name subexponential follows from the trivial property that for $pes$ always
$\lim_{\rightarrow\infty}e^{n}p_{n}=\infty$ , for all $\epsilon>0$ . Related properties of $S$ can be found in [5], [61, [101

and [11].

The main theorem in [5] is that (2.2) still holds for $a\in S$. Note however
that compared to (2.1b), the stronger assumption (2.3) gives the stronger result
(2.2).

(iv) A closer examination of the proof of [5, Theorem 1] yields the following
theorem, generalising the asymptotic results stated above.

Theorem C. SuPpose $a=(a_{n})_{N}$ belongs to the class $\ovalbox{\tt\small REJECT}$ of sequences satisfying
$a\in l^{1}$ ,

(a)
$\lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_{n}}=1$ ;

(b) $\lim_{m\infty}\frac{a_{n}^{(2)}}{a_{n}}=2\sum_{=0}^{\infty}a_{n}=2A(1)$ ;

(c) $\sup_{\geq 0}\frac{|a_{n}|^{(2)}}{|a_{n}|}<\infty$ .
Then if $\Phi$ is analytic on an open region containing $\{A(z)||z|\leqq 1\}$ , there exists a
sequence $(b_{n})_{N}\in l^{1}$ such that $B(z)=\Phi(A(z)),$ $|z|\leqq 1$ and such that

$b_{n}\sim a_{n}\Phi^{\prime}(A(1))$ $(n\rightarrow\infty)$ .
It is obvious that $X,$ $\mathcal{B}$ , and $S$ are subsets of $\ovalbox{\tt\small REJECT}$

Some typical examples in ‘E%‘ are
(a) $a_{n}\sim e^{\alpha}(n\rightarrow\infty),$ $0<\alpha<1$ ;
(b) $a_{n}\sim\exp(-n(\log n)^{-l})(n\rightarrow\infty),$ $\beta>0$ :
(c) all positive sequences satisfying (2.1) and $a_{+1}\sim a$. $(n\rightarrow\infty)$ .
A final extension which is natural is formulated in the next theorem.

Theorem D. A sequence $a=(a_{n})_{N}$ belongs to $\ovalbox{\tt\small REJECT}(r)$ (with $r\geqq 1$) if a $el^{1}$ and

(a) $\lim_{l\rightarrow\infty}\frac{a_{n+1}}{a_{n}}=r^{-1}$ ;
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(b) $\lim\underline{a_{n}^{(2)}}=2A(r)$ ;
$\alpha\rightarrow\infty a_{n}$

(c) $\sup_{n\geq 0}\frac{|a_{n}|^{(2)}}{|a_{n}|}<\infty$ .

If $\Phi$ is analytic on an $oPen$ region containing $\{A(z)||z|\leqq r\}$ then there exists a
sequence $(b_{k})_{N}$ in $l^{1}$ such that $B(z)=\Phi(A(z)),$ $|z|\leqq r$ and

$b.\sim a.\Phi^{\prime}(A(r))$ $(n\rightarrow\infty)$ .
The $prf$ of Theorem $D$ follows from Theorem $C$ upon taking $a_{n}^{\prime}=r^{n}a_{n}$ .

In some way, these extensions are best possible, however we shall not go into
further detail on this, the interested reader is referred to [101.

3. Applications.

The classes of regularly varying and subexponential sequences have been used
in various problems in probability theory, for instance:

-renewal $thry$ : Rogozin $[20, 21]$ , $Greenwood-Omey-Teugels[16]$ , Gr\"ubel

[17], Frenk [15]

-queueing theory: Borovkov [3]

-fluctuation theory of random walks: Embrechts–Hawkes [10, Theorem 3],

$Greenwd-Omey-Teugels[16]$

-discrete infinite divisibility: Embrechts–Hawkes [10, Theorem 1]

-network theory: Brown–Pollett [4, Lemma 5].

3.1 Discrete infinite divisible $(i.d.)$ probability measures.
In [10], the authors examine the relation between the asymptotic behaviour of

an i.d. probability measure $p=(p_{n})_{N}$ and that of its L\’evy measure $\alpha=(\alpha_{n})_{N_{0}}$ , i.e.
the measure such that

$\sum_{=0}^{\infty}p_{n}z^{n}=\exp\{-\lambda(1-\sum_{=1}^{\infty}\alpha_{n}z^{n})\}$ .
The following theorem holds:

Theorem 3.1 [10]. The following three conditions are equivalent:

(i) $p\in S$;
(ii) $\alpha\in S$;

(iii) $p_{n}\sim\lambda\alpha_{n}(n\rightarrow\infty)$ and $p_{n+1}\sim p_{n}(n\rightarrow\infty)$ .
Going from (i) to (ii) one has $\Phi\langle z$) $=e^{-\lambda(1-*)}$ hence $\Phi$ is an entire function and

therefore Theorem $C$ is relevant. We refer the reader to the above mentioned
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paper for further details and related references.

3.2 Renewal theory

In this paragraph we shall aPply the results of paragraph 2.2 to renewal $th\infty ry$ .
Let $X$ be a random variable concentrated on the nonnegative integers, and let
$p_{n}=P\{X=n\},$ $n\geqq 0$ . We suppose that the distribution of $X$ is aperiodic, i.e.
gcd $\{n|P_{n}>0\}=1$ . Further assume $X$ has a positive, finite mean $\mu$ . The renewal
squence $(u_{n})_{N}$ associated with $(p_{n})_{N}$ can be defined as

$u_{n}=\sum_{k=0}^{\infty}p_{n}^{(k)}$ , $n\geqq 0$

where $(p_{n}^{(0)})_{N}$ denotes unit mass at $0$ . The classical renewal $threm$ states that
(see [14])

(3.1) $\lim_{l\rightarrow\infty}u_{*}=\frac{1}{\mu}$

Over the recent years, a lot of papers have been written on the speed of $\infty nver-$

gence in (3.1). See for instance Stone–Wainger [24], Gr\"ubel [171, Frenk [15] and
many others. For instance, Gr\"ubel [17, p. 118] states that for $\gamma>0$,

$ E(X^{1+f})<\infty\Leftrightarrow\sum_{=\iota}n^{f}|u_{n}-u_{n-1}|<\infty\infty$ ,

hence both imply

$\sum_{=\iota}^{\infty}n^{\gamma-1}|u_{n}-\frac{1}{\mu}|<\infty$ .
The $thry$ of paragraph 2.2 enables us to get $asymP_{\infty}^{t_{O}ti_{C}}$ estimates $involving\sim$

rather than $0$ or $O$ estimates. For this, let $r_{n}=(1/\mu)$
$\sum_{k=+1}$

$p_{k}$ the associated equili-
brium measure. As always $C(z)$ denotes the generating function of a complex
sequence $(c_{n})_{N}$. Since $\mu=\sum np_{n}$ is finite,

$\lim_{\uparrow 1}R(z)=\lim_{z\uparrow 1}\frac{1-P(z)}{\mu(1-z)}=1$ .
Also for $|z|\leqq 1$ and $z\neq 1,1-P(z)\neq 0$ and $R(1)=1\neq 0$ . By Wiener’s theorem [3, $p$ .
258] it follows that for $|z|\leqq 1$ ,

(3.2) $\frac{1}{R(z)}=\sum_{=0}^{\infty}\lambda_{\hslash}z^{n}$ with $\sum_{l=0}^{\infty}|\lambda_{n}|<\infty$ .

(At this point we essentially needed $\mu<\infty$). Hence $\sum\lambda_{n}=1$ . Furthermore, since
$U(z)=(1-flz))^{-1}$ , it is clear that
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$\frac{1}{R(z)}=\mu(1-z)U(z)$

$=\mu(1+\sum_{=1}^{\infty}(u_{n}-u_{n-1})z^{*)}$ .

So

(3.3) $\lambda_{n}=\mu(u_{n}-u_{n-1})$ , $n\geqq 1$ ,

(3.4) $u_{n}-\frac{1}{\mu}=-\frac{1}{\mu}\sum_{k=’+1}^{\infty}\lambda_{k}$ , $n\geqq 0$ .
Using these identities, we can prove the following result.

Theorem 3.2. The three following statements are equivalent as $ n\rightarrow\infty$ :

(i) $r_{n}^{(2)}\sim 2r_{n}$ ;

(ii) $(u_{n-1}-u_{n})_{N}\in\ovalbox{\tt\small REJECT}$ ;

$u_{n-1}-u_{n}\sim r_{n}\underline{1}$ and $r_{n+1}\sim r_{n}$ .
$\mu$

Either of them $imPlies$

(iv) $u_{n}-\frac{1}{\mu}\sim\frac{1}{\mu}\sum_{k=n+1}^{\infty}r_{k}$ .

Proof.

Part 1: (i) implies (iii) and (iv). Since $(r_{n})_{N}$ is monotone, we certainly have
lim $infr_{n-1}/r_{n}\geqq 1$ . From this, (i) and [10, Lemma 2] it follows that $reS$. Hence
using Theorem $C$ in (3.2) with $\Phi(z)=z^{-1}$ it follows that

(3.5) $ r.\sim-\lambda$. $(n\rightarrow\infty)$ .
Using (3.3) and (3.4), (iii) and (iv) follow from (3.5).

Part 2: (iii) implies(i).

For $N>0$ fixed we can write

$r_{n}^{(2)}=(\sum_{k=0}^{N}+\sum_{k=N+1})r_{n-k}r_{k}\equiv I_{1}+I_{2}$ .

Use $r_{n+1}\sim r_{n}(n\rightarrow\infty)$ and dominated convergence to see that

(3.6) $\lim^{\underline{I_{1}}}=N\Sigma r_{k}$ .
$\rightarrow\infty r_{n}$ $k=0$

To handle $I_{2}$ , first observe that (3.2) implies that
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(3.7) $\sum_{k=0}^{n}\lambda_{k}r_{n-k}=0$ , $n\geqq 1$ .
Using (3.5) we have that for $\epsilon>0$ and $N\geqq N_{0}(\epsilon)$ ,

$-(1-\epsilon)\sum_{k=N+1}\lambda_{k}r_{n-k}\leqq I_{2}\leqq-(1+\epsilon)\sum_{k=N+1}\lambda_{k}r_{n-k}$ .
Hence by (3.7)

$(1-\epsilon)\sum_{k=0}^{N}\lambda_{k}r_{n-k}\leqq I_{2}\leqq(1+\epsilon)\sum_{k=0}^{N}\lambda_{k}r_{n-k}$ .
Again using $r_{n+1}\sim r_{n}$ and dominated convergence, we obtain:

(3.8) $(1-\epsilon)\sum_{k=0}^{N}\lambda_{k}\leqq\lim_{t\rightarrow}\inf_{\infty}\frac{I_{2}}{r_{n}}\leqq\lim_{n=}\sup_{\infty}\frac{I_{2}}{r_{n}}\leqq 11+\epsilon)\sum_{k=0}^{N}\lambda_{k}$ .

Now combine (3.6) and (3.8). First let $ N\rightarrow\infty$ and then $\epsilon\downarrow 0$ to obtain (i).

Part 3: (i) implies (ii).

Since (i) implies (iii) and $(r_{n})_{N}\in S$, it follows that $v_{n}\equiv u_{n}-u_{n-1}$ satisfies $v_{n+1}\sim v_{n}$

$(n\rightarrow\infty)$ and that $v_{n}$ is positive for $n$ large. To prove (ii), it therefore remains to
show that

(3.9) $v_{n}^{(2)}\sim(2\sum_{k=0}^{\infty}v_{k})v_{n}$ $(n\rightarrow\infty)$ .

To this end, for some $N$ large enough, we write

$v_{n}^{(2)}=(2\sum_{k=0}^{N}+\sum_{k=N+1}^{-N-1})v_{n-k}v_{k}\equiv I_{1}+I_{2}$ .

Using $v_{+1}\sim v$. $(n\rightarrow\infty)$ and dominated convergence it follows that:

(3.10) $\lim_{n\rightarrow\infty}\frac{I_{1}}{v_{n}}=2\sum_{k=0}^{N}v_{k}$ .

To handle $I_{2}$ , use (iii) to see that for $\epsilon>0$ and $N\geqq N_{0}(\epsilon)$ ,

$\frac{1}{\mu^{2}}(1-\epsilon)\sum_{k=N}^{n-N}:_{1}^{1}r_{n-k}r_{k}\leqq I_{2}\leqq\frac{1}{\mu^{2}}(1+\epsilon)\sum_{k=N+1}^{n-N-1}r_{n-k}r_{k}$ .

Now taking (i) into account, we have:

$\lim_{n\rightarrow\infty}\frac{\sum_{k=N+1}^{\prime-N-1}r_{n-k}r_{k}}{r_{n}}=2\sum_{k=N+1}^{\infty}r_{k}$ .

Hence
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(3.11) $\frac{1}{\mu^{2}}(1-\epsilon)2\sum_{k=N+1}^{\infty}r_{k}\leqq\lim_{\rightarrow}\inf_{\infty}\frac{I_{2}}{r_{n}}$

$\leqq\lim_{l\rightarrow}\sup_{\infty}\frac{I_{l}}{r_{n}}5\frac{1}{\mu^{2}}(1+\epsilon)2\sum_{k=N+1}^{\infty}r_{k}$

Now $mbine(3.10)$ and (3.11). Let first $ N\rightarrow\infty$ and then $\epsilon\downarrow 0$, hence (3.9) holds.

Part 4: (ii) implies (i).

Use Theorem $D$ to see that (ii) implies (iii). The arguments used in Part 3 now
also apply to prove (i).

Remarks.

a) For arbitrary $r\geqq 1$ , the above theorem can be reformulated as follow\S .
Equivalent are, as $ n\rightarrow\infty$

(i) $(r_{n})_{N}e\ovalbox{\tt\small REJECT}(r)$ ;

(ii) $u_{n-1}-u_{n}\sim\frac{1}{\mu R^{2}(r)}r_{n}$

Either of them implies

and $r_{n+1}\sim_{\gamma}\perp r_{n}$ .

$u_{n}-\sim\underline{1}\underline{1}$ $\Sigma^{\infty}$

$r_{k}$ .
$\mu$ $\mu R^{2}(r)k=n+1$

Hence our theorem provides estimates for $u_{n-1}-u_{n}$ and $u_{n}-(1/\mu)$ directly in terms
of the tail of the underlying probabllity measure.

b) Theorem 3.2 should be compared with [24, Theorem 11 and [17, p. 30].

Indeed, in [24] it is proved that, for $\infty me0<\rho<1$ :

$E$($X$ exp $X^{\rho}$) $<\infty\Rightarrow u_{n}-\frac{1}{\mu}=o(\exp(-n^{\rho}))$ .

This result was improved, using Banach algebra methods in [17] to:

$p\{X>n\}=o(n^{-1}\exp(-n^{\rho}))\Rightarrow u_{n}-\frac{1}{\mu}=o$($n^{-\rho}$ exp $(-n^{\rho})$).

If we strengthen the above $nditions$ to say $p\{X=n\}\sim cn^{-\ell}$ exp $(-n^{\rho})$ where $\beta>2$

and $0<\rho<1$ then it follows from Theorem 3.2. that

$u_{n}-\frac{1}{\mu}\sim c^{\prime}n^{-\rho+1-\ell}\exp(-n^{\rho})$ $(n\rightarrow\infty)$ .

This situation is typical.
Theorem 3.2 also complements well known results of Rogorin [20], Stone [23],
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Ney [19] and Frenk [15, Theorem 3.1.6. and 3.1.7., see also Remark p. 134].

There remains the question to what extent a converse of Theorem 3.2 (i) implies
(iv) holds. To this end, we need an extra definition.

Given a slowly varying function $L$ , a sequence of (eventually) positive reals
$(a_{n})_{N}$ belongs to $\Pi(L)$ if the function $a(x)=a_{[\cdot]}$ satisfies for $x>0$,

$\lim_{t\rightarrow\infty}\frac{a(tx)-a(t)}{L\langle t)}=\log x$ .
Regularly varying and $\Pi$-varying sequences have shown to be useful in all sorts
of asymptotic problems. Relevant references are Bojanic-Seneta [1] and de Haan
[7]. The following theorem has partly been proved in [16, Lemma 4.1] and Frenk
[15, Theorems 1.7 and 3.3.6.].

Theorem 3.3. For any $\alpha\geqq 1$ , and any slowly varyingfunction $L$, the following
statements are equivalent $(n\rightarrow\infty)$ :

(i) $r_{n}\sim n^{-\alpha}L(n)$ ;

$u_{n+1}-u_{n}\sim\frac{1}{\mu}n^{-\alpha}L(n)$ ;

a) if $\alpha>1$ , $u_{n}-\sim\neg^{1-\alpha}L(n)\underline{1}1$ ;
$\mu$ $\mu(\alpha-1)$

b) if $\alpha=1$ , $(u_{n}-\frac{1}{\mu})_{N}e\Pi(L)$ .

Proof. $(i)\Rightarrow(ii)\Rightarrow(iii)$ follows easily from Theorem 3.1. as every regularly
varying sequence is subexponential. It therefore only remain\S to show that (iil)
implies (i). The $prf$ for $1<\alpha<2$ follows from a more general result in [111:

There we study the asymptotic behaviour of sequences $(c_{n})_{N},$ $(b.)_{N}$ which are
related by

$c_{n}=\sum_{k=0}^{n}u_{k}b_{n-k}$ .

Since $\sum_{k=0}(u_{k}-1/\mu)=\sum_{k=0}u_{n-k}\sum_{\alpha\cdot=k}^{\infty}r_{m},$ [ $11$ , Coroilary 2] applies. If $\alpha=1$ , or $a=2$, the
proof can be found in Frenk [15]. Finally, whenever $\alpha>2$, it follows from (iii)

and (3.4) that $\lambda_{n}=o(n^{1-\alpha}L(n)),$ $(n\rightarrow\infty)$ . Moreover, from (3.2) and $Threm$ A it
follows that

(3.12) $r_{n}=o(n^{1-a}L(n))$ , $ n\rightarrow\infty$ .
Use generating functions to prove that
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(3.13) $\sum_{n\Rightarrow’+1}^{\infty}r_{m}=\mu\sum_{n=0}(u_{n-m}-\frac{1}{\mu})r_{m}$ .

It is not difficult to prove from (iii), (3.12) and (3.13) that

$\sum_{\prime\hslash=n+1}^{\infty}r_{m}\sim\frac{n^{1-\alpha}L(n)}{\alpha-1}$ , $ n\rightarrow\infty$ .
Since $(r_{n})_{N}$ is monotone, (i) follows.
This result should be compared with the following corollary to Theorem $A$ :

for all $\alpha>1$ ,

$u_{n+1}-u_{n}=o(n^{-a}L(n))\Leftrightarrow r_{n}=o(n^{-a}L(n))$

and
$|u_{n+1}-u_{n}|=O(n^{-\alpha}L(n))\Leftrightarrow r_{n}=O(n^{-\alpha}L(n))$ .

See also [17, Korollar 1.22].

3.3 Harmonic renewal measures
Suppose $(p_{n})_{N}$ is a probability measure, its generating function $P(z)$ can always

be written as
(3.14) $1-P(z)=\exp(-G(z))$ , $|z|\leqq 1$

where $G(z)$ is the generating function of a sequence $(g_{n})_{N}$ defined by

(3.15) $g_{n}=\sum_{n=1}^{\infty}\frac{1}{m}l_{n}^{(m)}$ $(n\geqq 1)$ .

Functions of the form $\sum_{n*=0}^{\infty}a_{m}l_{n}^{(m)}$ are called generalized renewal sequences. If
$a_{m}=1$ for all $m\geqq 0$ we have $g_{n}=u_{n}$ , the renewal sequence. If $a_{0}=0$ and $a_{m}=m^{-1}$

for $m\geqq 1$ we get the harmonic renewal sequence (3.15).

Lemma 3.2. For any Probability measure $(p_{n})_{N}$ with finite mean $\mu$,

$\sum_{n=1}^{\infty}(\frac{1}{m}g_{m})=\log\mu$ .
Proof. From (3.14) it follows that

$\lim_{l\uparrow 1}\sum_{=1}^{\infty}(\frac{1}{n}g_{n})s^{n}=\log\mu$ .

Since $1-ng_{n}=1-\sum_{n=1}mP_{m}u_{n-m}$ it is easy to prove that $\lim_{l\rightarrow\infty}(1-ng_{n})=0$ . Hence
aPplying the Tauberian theorem for generating functions (Feller [14, p. 473]), the
lemma is proved.
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In the sequel, we are concerned with the problem of linking the asymptotic

behaviour of $(p_{n})_{N}$ to that of $(1/n-g_{n})_{N},$ . We shall assume that $\mu>1$ .
From (3.14) it follows that

(3.16) $R(z)=\exp(-\lambda(1-Q(z))$

were $r=(r_{n})_{N}$ is as before, $\lambda=\log\mu$ and $q=(q_{n})_{N_{0}}=((1/\lambda)(1/n-g_{n}))_{N_{0}}$ . Note that if $r$

is i.d. we can identify its L\’evy measure with the measure $q$ . In this case, the
relevant theorem on the asymptotic behaviour of these two measures was stated
in section 3.1. When $r$ is not necessarily i.d. the result remains valid in the
following form.

Theorem 3.3. The following statements are equivalent

(i) $reS$ ;

(ii) $\frac{1}{n}g_{n}\sim r_{n}$ and $r_{n+1}\sim r_{n}$ as $ n\rightarrow\infty$ .

Proof. The proof goes along the same lines as that of Theorem 1 in [10].

Note that (ii) implies that $(1/n)-g_{n}$ is positive for $n$ large.

The soecial case where $(q_{n})_{N_{0}}$ is regularly varying was treated in [16], where
also applications to random walk theory are discussed. See also [11, Theorem 31
for the random walk analogue of theorem 3.3 above.
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Note Added in Proof. Some recent interesting work on diserete renewal
theory is given in R. Gr\"ubel, Functions of discrete probability measures: Rates of
convergence in the renewal theorem, Z. Wahrscheinlichkeitstheorie verw. Gebiete
64, U1-357, (1983).
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