YOKOHAMA MATHEMATICAL JOURNAL VOL. 32, 1984

FUNCTIONS OF POWER SERIES

By

P. EMBRECHTS and E. OMEY

(Received November 28, 1983)

1. Introduction

Recently, a number of authors investigated the following problem. Let $(a_n)_N \in l^1$ and Φ be a function, analytic in an open region containing the set $A(z) := \{\sum_{n=0}^{\infty} a_n z^n \mid |z| \leq 1\}$. Then the equation $\Phi(A(z)) = B(z) := \sum_{n=0}^{\infty} b_n z^n$, $|z| \leq 1$ defines a sequence $(b_n)_N \in l^1$. In many applications, the question arises how one can relate asymptotic properties of $(a_n)_N$ and $(b_n)_N$, given the behaviour of Φ .

In tackling this problem, there are two possible points of view: either asymptotic inequalities (*o* or *O* results) or asymptotic equivalence (~results). As usual, for any two sequences x_n and y_n , $x_n \sim y_n$ means $\lim_{n \to \infty} (x_n/y_n) = 1$, if not stated explicitly. The present paper aims at bringing together the most important existing results, most of them published independently, generalise them in a natural way and discuss some applications scattered throughout the literature.

2. Review of results

2.1 O and o-results

For some Φ and $(a_n)_N$, let $(b_n)_N$ be defined as in the introduction. The purpose of this section is to unify the known sufficient conditions on the sequence $\alpha = (\alpha_n)_N$ of positive reals such that Theorem A below holds:

Theorem A. If $|a_n| = O(\alpha_n)$ $(n \to \infty)$, then $|b_n| = O(\alpha_n)$ $(n \to \infty)$.

(i) Rogozin [20], [21] and Borovkov [2], [3, Appendix 3] take $\alpha_n = n^{-\beta}L(n)$ where $\beta > 1$ and L is some slowly varying function (s.v.), i.e. L is a positive Lebesgue measurable function such that $L(tx) \sim L(t)$ $(t \to \infty)$ for all x > 0. See [7]. [22] for more details. The standard way for proving Theorem A is by showing that the set $R(\alpha)$ of all l^1 sequences $(x_n)_N$ for which $|x_n| = O(\alpha_n)$ forms a Banach algebra with respect to convolution. The maximal ideal space for $R(\alpha)$ can be represented as follows: for each $x = (x_n)_N \in R(\alpha)$, the associated maximal ideals correspond to $\sum_{n=0}^{\infty} x_n t^n$, $|t| \leq 1$ and Theorem A follows.

(ii) In a similar way, Rogozin [21] shows that Theorem A remains valid for

sequences α such that

$$\sup_{n\geq 1}\sup_{k\geq n/2}\alpha_k/\alpha_n<\infty.$$

(iii) In [17] Grübel complements (ii) by proving Theorem A for sequences α such that α is nonincreasing, $\log \alpha_n = o(n)$ $(n \to \infty)$ and either

(2.1a)
$$\lim_{n\to\infty}\sup_{m\geq 2n}\frac{1}{\alpha_m}\sum_{k=n}^{m-n}\alpha_k\alpha_{m-k}=0$$

or

(2.1b)
$$\sup_{m\geq 0}\frac{1}{\alpha_m}\sum_{k=0}^m\alpha_k\alpha_{m-k}<\infty.$$

(iv) Finally, it is not difficult to see that Theorem A remains valid when $O(\alpha_n)$ is replaced by $o(\alpha_n)$.

2.2 Asymptotic equivalence

Below, we list a number of sufficient conditions on the sequence $a=(a_n)_N$ to ensure that

$$(2.2) b_n \sim a_n \Phi'(A(1)) \quad (n \to \infty) ,$$

which turns out to be the natural asymptotic relationship.

(i) Borovkov [3, Appendix 3] defines the set \mathscr{B} as those l^1 sequences $(x_n)_N$ for which $x_{n+1} \sim x_n$ $(n \to \infty)$ and for which there exist positive numbers A, $B(A \le B)$ such that

$$0 < An^{-\alpha}L(n) \leq |x_n| \leq Bn^{-\alpha}L(n)$$

for all $n \ge 1$ and some $\alpha > 1$, L s.v.. Then if $a \in \mathcal{R}$, (2.2) holds.

(ii) Later, Eggermont and Luxemburg [8], [9], [18] defined a set \mathscr{S} of sequences as follows. An l^1 sequence $(x_n)_N \in \mathscr{S}$ if there exists some continuous and positive function L on the positive reals such that $x_n \sim cL(n)$ $(n \to \infty)$ for some $c \in \mathbb{R}$ and such that

$$\lim_{x \to \infty} \frac{L(x+t)}{L(x)} = 1 \quad \text{for all } t \in \mathbb{R}$$
$$\max_{x < t \le 2x} \frac{L(t)}{L(2x)} \le \lambda_L < \infty \quad \text{for all } x > 0.$$

Again (2.2) holds if $a \in \mathscr{A}$.

(iii) To our opinion, the most natural setting for the the problem was given in a paper by Chover, Ney and Wainger [5]. They introduced the class \mathcal{S} of

subexponential sequences, taken to be probability measures for convenience. A probability measure $p = (p_n)_N$ belongs to \mathscr{S} if $p_{n+1} \sim p_n$ $(n \rightarrow \infty)$ and if

(2.3)
$$\lim_{n\to\infty}\frac{p_n^{(2)}}{p_n}=2.$$

Here and in the sequel $p^{(k)}$ denotes the k^{th} convolution of p with itself. The name subexponential follows from the trivial property that for $p \in \mathcal{S}$ always $\lim_{n \to \infty} e^{\epsilon n} p_n = \infty$, for all $\varepsilon > 0$. Related properties of \mathcal{S} can be found in [5], [6], [10] and [11].

The main theorem in [5] is that (2.2) still holds for $a \in \mathcal{S}$. Note however that compared to (2.1b), the stronger assumption (2.3) gives the stronger result (2.2).

(iv) A closer examination of the proof of [5, Theorem 1] yields the following theorem, generalising the asymptotic results stated above.

Theorem C. Suppose $a = (a_n)_N$ belongs to the class \mathcal{H} of sequences satisfying $a \in l^1$,

(a)
$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1;$$

$$\lim_{n\to\infty}\frac{a_n^{(2)}}{a_n}=2\sum_{n=0}^{\infty}a_n=2A(1)$$

(c) $\sup_{n\geq 0}\frac{|a_n|^{(2)}}{|a_n|}<\infty.$

Then if Φ is analytic on an open region containing $\{A(z) \mid |z| \leq 1\}$, there exists a sequence $(b_n)_N \in l^1$ such that $B(z) = \Phi(A(z))$, $|z| \leq 1$ and such that

 $b_n \sim a_n \Phi'(A(1)) \quad (n \rightarrow \infty)$.

It is obvious that \mathcal{A} , \mathcal{B} , and \mathcal{S} are subsets of \mathcal{H} .

Some typical examples in \mathcal{H} are

(a)
$$a_n \sim e^{n^{\alpha}} (n \rightarrow \infty), \ 0 < \alpha < 1;$$

(b)

(b) $a_n \sim \exp(-n(\log n)^{-\beta}) \quad (n \rightarrow \infty), \quad \beta > 0;$

(c) all positive sequences satisfying (2.1) and $a_{n+1} \sim a_n \ (n \rightarrow \infty)$.

A final extension which is natural is formulated in the next theorem.

Theorem D. A sequence $a = (a_n)_N$ belongs to $\mathcal{H}(r)$ (with $r \ge 1$) if $a \in l^1$ and

(a)
$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=r^{-1}$$

(b)

$$\lim_{n\to\infty}\frac{a_n^{(2)}}{a_n}=2A(r);$$

(c)

If Φ is analytic on an open region containing $\{A(z) \mid |z| \leq r\}$ then there exists a sequence $(b_k)_N$ in l^1 such that $B(z) = \Phi(A(z))$, $|z| \leq r$ and

 $\sup_{n\geq 0}\frac{|a_n|^{(2)}}{|a_n|}<\infty.$

 $b_n \sim a_n \Phi'(A(r)) \quad (n \rightarrow \infty)$.

The proof of Theorem D follows from Theorem C upon taking $a_n'=r^na_n$. In some way, these extensions are best possible, however we shall not go into further detail on this, the interested reader is referred to [10].

3. Applications.

The classes of regularly varying and subexponential sequences have been used in various problems in probability theory, for instance:

-renewal theory: Rogozin [20, 21], Greenwood-Omey-Teugels [16], Grübel [17], Frenk [15]

-queueing theory: Borovkov [3]

-fluctuation theory of random walks: Embrechts-Hawkes [10, Theorem 3], Greenwood-Omey-Teugels [16]

-discrete infinite divisibility: Embrechts-Hawkes [10, Theorem 1]

-network theory: Brown-Pollett [4, Lemma 5].

3.1 Discrete infinite divisible (i.d.) probability measures.

In [10], the authors examine the relation between the asymptotic behaviour of an i.d. probability measure $p=(p_n)_N$ and that of its Lévy measure $\alpha=(\alpha_n)_{N_0}$, i.e. the measure such that

$$\sum_{n=0}^{\infty} p_n z^n = \exp\left\{-\lambda(1-\sum_{n=1}^{\infty} \alpha_n z^n)\right\}.$$

The following theorem holds:

Theorem 3.1 [10]. The following three conditions are equivalent:

(i) $p \in \mathcal{S}$;

(ii) $\alpha \in \mathscr{S}$;

(iii) $p_n \sim \lambda \alpha_n \quad (n \to \infty) \quad and \quad p_{n+1} \sim p_n \quad (n \to \infty).$

Going from (i) to (ii) one has $\Phi(z) = e^{-\lambda(1-z)}$ hence Φ is an entire function and therefore Theorem C is relevant. We refer the reader to the above mentioned

paper for further details and related references.

3.2 Renewal theory

In this paragraph we shall apply the results of paragraph 2.2 to renewal theory. Let X be a random variable concentrated on the nonnegative integers, and let $p_n = P\{X=n\}$, $n \ge 0$. We suppose that the distribution of X is aperiodic, i.e. $gcd \{n \mid p_n > 0\} = 1$. Further assume X has a positive, finite mean μ . The renewal squence $(u_n)_N$ associated with $(p_n)_N$ can be defined as

$$u_n = \sum_{k=0}^{\infty} p_n^{(k)}$$
, $n \ge 0$

where $(p_n^{(0)})_N$ denotes unit mass at 0. The classical renewal theorem states that (see [14])

$$\lim_{n \to \infty} u_n = \frac{1}{\mu}$$

Over the recent years, a lot of papers have been written on the speed of convergence in (3.1). See for instance Stone—Wainger [24], Grübel [17], Frenk [15] and many others. For instance, Grübel [17, p. 118] states that for $\gamma > 0$,

$$E(X^{1+r}) < \infty \Leftrightarrow \sum_{n=1}^{\infty} n^r |u_n - u_{n-1}| < \infty$$
,

hence both imply

$$\sum_{n=1}^{\infty} n^{r-1} \left| u_n - \frac{1}{\mu} \right| < \infty .$$

The theory of paragraph 2.2 enables us to get asymptotic estimates involving ~ rather than o or O estimates. For this, let $r_n = (1/\mu) \sum_{k=n+1}^{\infty} p_k$ the associated equilibrium measure. As always C(z) denotes the generating function of a complex sequence $(c_n)_N$. Since $\mu = \sum n p_n$ is finite,

$$\lim_{z \neq 1} R(z) = \lim_{z \neq 1} \frac{1 - P(z)}{\mu(1 - z)} = 1.$$

Also for $|z| \leq 1$ and $z \neq 1$, $1-P(z) \neq 0$ and $R(1)=1 \neq 0$. By Wiener's theorem [3, p. 258] it follows that for $|z| \leq 1$,

(3.2)
$$\frac{1}{R(z)} = \sum_{n=0}^{\infty} \lambda_n z^n \quad \text{with} \quad \sum_{n=0}^{\infty} |\lambda_n| < \infty \; .$$

(At this point we essentially needed $\mu < \infty$). Hence $\sum \lambda_n = 1$. Furthermore, since $U(z) = (1 - P(z))^{-1}$, it is clear that

$$\frac{1}{R(z)} = \mu(1-z)U(z) \\ = \mu\left(1 + \sum_{n=1}^{\infty} (u_n - u_{n-1})z^n\right).$$

So

$$\lambda_n = \mu(u_n - u_{n-1}), \quad n \ge 1,$$

(3.4)
$$u_n - \frac{1}{\mu} = -\frac{1}{\mu} \sum_{k=n+1}^{\infty} \lambda_k, \quad n \ge 0.$$

Using these identities, we can prove the following result.

Theorem 3.2. The three following statements are equivalent as $n \rightarrow \infty$:

(i)
$$r_n^{(2)} \sim 2r_n$$
;

(ii)
$$(u_{n-1}-u_n)_N \in \mathscr{H}$$
;

(iii)
$$u_{n-1} - u_n \sim \frac{1}{\mu} r_n \text{ and } r_{n+1} \sim r_n$$
.

Either of them implies

(iv)
$$u_n - \frac{1}{\mu} \sim \frac{1}{\mu} \sum_{k=n+1}^{\infty} r_k.$$

Proof.

Part 1: (i) implies (iii) and (iv). Since $(r_n)_N$ is monotone, we certainly have $\liminf_{n\to\infty} r_{n-1}/r_n \ge 1$. From this, (i) and [10, Lemma 2] it follows that $r \in \mathscr{S}$. Hence using Theorem C in (3.2) with $\Phi(z) = z^{-1}$ it follows that

$$(3.5) r_n \sim -\lambda_n \quad (n \to \infty) .$$

Using (3.3) and (3.4), (iii) and (iv) follow from (3.5).

Part 2: (iii) implies (i).

For N>0 fixed we can write

$$r_n^{(2)} = \left(\sum_{k=0}^N + \sum_{k=N+1}^n \right) r_{n-k} r_k \equiv I_1 + I_2$$
.

Use $r_{n+1} \sim r_n$ $(n \rightarrow \infty)$ and dominated convergence to see that

$$\lim_{n\to\infty}\frac{I_1}{r_n} = \sum_{k=0}^N r_k$$

To handle I_2 , first observe that (3.2) implies that

$$(3.7) \qquad \qquad \sum_{k=0}^{n} \lambda_k r_{n-k} = 0 , \quad n \ge 1$$

Using (3.5) we have that for $\varepsilon > 0$ and $N \ge N_0(\varepsilon)$,

$$-(1-\varepsilon)\sum_{k=N+1}^n\lambda_kr_{n-k}\leq I_2\leq -(1+\varepsilon)\sum_{k=N+1}^n\lambda_kr_{n-k}.$$

Hence by (3.7)

$$(1-\varepsilon)\sum_{k=0}^N \lambda_k r_{n-k} \leq I_2 \leq (1+\varepsilon)\sum_{k=0}^N \lambda_k r_{n-k}.$$

Again using $r_{n+1} \sim r_n$ and dominated convergence, we obtain:

(3.8)
$$(1-\varepsilon)\sum_{k=0}^{N}\lambda_{k} \leq \liminf_{n \to \infty} \frac{I_{2}}{r_{n}} \leq \limsup_{n = \infty} \frac{I_{2}}{r_{n}} \leq (1+\varepsilon)\sum_{k=0}^{N}\lambda_{k}$$

Now combine (3.6) and (3.8). First let $N \rightarrow \infty$ and then $\varepsilon \downarrow 0$ to obtain (i).

Part 3: (i) implies (ii).

Since (i) implies (iii) and $(r_n)_N \in \mathcal{S}$, it follows that $v_n \equiv u_n - u_{n-1}$ satisfies $v_{n+1} \sim v_n$ $(n \rightarrow \infty)$ and that v_n is positive for *n* large. To prove (ii), it therefore remains to show that

(3.9)
$$v_n^{(2)} \sim \left(2 \sum_{k=0}^{\infty} v_k\right) v_n \quad (n \to \infty) .$$

To this end, for some N large enough, we write

$$v_n^{(2)} = \left(2\sum_{k=0}^N + \sum_{k=N+1}^{n-N-1}\right)v_{n-k}v_k \equiv I_1 + I_2$$
.

Using $v_{n+1} \sim v_n$ $(n \rightarrow \infty)$ and dominated convergence it follows that:

(3.10)
$$\lim_{n\to\infty}\frac{I_1}{v_n}=2\sum_{k=0}^N v_k.$$

To handle I_2 , use (iii) to see that for $\varepsilon > 0$ and $N \ge N_0(\varepsilon)$,

$$\frac{1}{\mu^2}(1-\varepsilon)\sum_{k=N+1}^{n-N-1}r_{n-k}r_k \leq I_2 \leq \frac{1}{\mu^2}(1+\varepsilon)\sum_{k=N+1}^{n-N-1}r_{n-k}r_k.$$

Now taking (i) into account, we have:

$$\lim_{n\to\infty}\frac{\sum\limits_{k=N+1}^{n-N-1}r_{n-k}r_{k}}{r_{n}}=2\sum\limits_{k=N+1}^{\infty}r_{k}.$$

Hence

(3.11)
$$\frac{1}{\mu^2}(1-\varepsilon)2\sum_{k=N+1}^{\infty}r_k \leq \liminf_{n\to\infty}\frac{I_2}{r_n}$$
$$\leq \limsup_{n\to\infty}\frac{I_2}{r_n}\leq \frac{1}{\mu^2}(1+\varepsilon)2\sum_{k=N+1}^{\infty}r_k$$

Now combine (3.10) and (3.11). Let first $N \rightarrow \infty$ and then $\varepsilon \downarrow 0$, hence (3.9) holds.

Part 4: (ii) implies (i).

Use Theorem D to see that (ii) implies (iii). The arguments used in Part 3 now also apply to prove (i).

Remarks.

a) For arbitrary $r \ge 1$, the above theorem can be reformulated as follows. Equivalent are, as $n \to \infty$

(i)
$$(r_n)_N \in \mathscr{H}(r)$$
;

(ii)
$$u_{n-1}-u_n \sim \frac{1}{\mu R^2(r)} r_n$$
 and $r_{n+1} \sim \frac{1}{r} r_n$.

Either of them implies

(iii)
$$u_n - \frac{1}{\mu} \sim \frac{1}{\mu R^2(r)} \sum_{k=n+1}^{\infty} r_k .$$

Hence our theorem provides estimates for $u_{n-1}-u_n$ and $u_n-(1/\mu)$ directly in terms of the tail of the underlying probability measure.

b) Theorem 3.2 should be compared with [24, Theorem 1] and [17, p. 30]. Indeed, in [24] it is proved that, for some $0 < \rho < 1$:

$$E(X \exp X^{\rho}) < \infty \implies u_n - \frac{1}{\mu} = o \left(\exp \left(-n^{\rho} \right) \right) \,.$$

This result was improved, using Banach algebra methods in [17] to:

$$p{X>n}=o(n^{-1}\exp(-n^{\rho})) \Rightarrow u_n-\frac{1}{\mu}=o(n^{-\rho}\exp(-n^{\rho})).$$

If we strengthen the above conditions to say $p\{X=n\}\sim cn^{-\beta}\exp(-n^{\rho})$ where $\beta>2$ and $o<\rho<1$ then it follows from Theorem 3.2. that

$$u_n - \frac{1}{\mu} \sim c' n^{-\rho+1-\beta} \exp\left(-n^{\rho}\right) \quad (n \to \infty) \; .$$

This situation is typical.

Theorem 3.2 also complements well known results of Rogozin [20], Stone [23],

Ney [19] and Frenk [15, Theorem 3.1.6. and 3.1.7., see also Remark p. 134].

There remains the question to what extent a converse of Theorem 3.2 (i) implies (iv) holds. To this end, we need an extra definition.

Given a slowly varying function L, a sequence of (eventually) positive reals $(a_n)_N$ belongs to $\Pi(L)$ if the function $a(x)=a_{[x]}$ satisfies for x>0,

$$\lim_{t\to\infty}\frac{a(tx)-a(t)}{L(t)}=\log x.$$

Regularly varying and Π -varying sequences have shown to be useful in all sorts of asymptotic problems. Relevant references are Bojanic-Seneta [1] and de Haan [7]. The following theorem has partly been proved in [16, Lemma 4.1] and Frenk [15, Theorems 1.7 and 3.3.6.].

Theorem 3.3. For any $\alpha \ge 1$, and any slowly varying function L, the following statements are equivalent $(n \rightarrow \infty)$:

(i)
$$r_n \sim n^{-\alpha} L(n)$$
;

(ii)
$$u_{n+1} - u_n \sim \frac{1}{\mu} n^{-\alpha} L(n)$$
;

(iii)

a) if
$$\alpha > 1$$
, $u_n - \frac{1}{\mu} \sim \frac{1}{\mu(\alpha - 1)} n^{1-\alpha} L(n)$;

b) if
$$\alpha = 1$$
, $\left(u_n - \frac{1}{\mu}\right)_N \in \Pi(L)$.

Proof. (i) \Rightarrow (ii) \Rightarrow (iii) follows easily from Theorem 3.1. as every regularly varying sequence is subexponential. It therefore only remains to show that (iii) implies (i). The proof for $1 < \alpha < 2$ follows from a more general result in [11]. There we study the asymptotic behaviour of sequences $(c_n)_N$, $(b_n)_N$ which are related by

$$c_n = \sum_{k=0}^n u_k b_{n-k} .$$

Since $\sum_{k=0}^{n} (u_k - 1/\mu) = \sum_{k=0}^{n} u_{n-k} \sum_{m=k}^{\infty} r_m$, [11, Corollary 2] applies. If $\alpha = 1$, or $\alpha = 2$, the proof can be found in Frenk [15]. Finally, whenever $\alpha > 2$, it follows from (iii) and (3.4) that $\lambda_n = o(n^{1-\alpha}L(n))$, $(n \to \infty)$. Moreover, from (3.2) and Theorem A it follows that

$$r_n = o(n^{1-\alpha}L(n)), \quad n \to \infty.$$

Use generating functions to prove that

(3.13)
$$\sum_{m=n+1}^{\infty} r_m = \mu \sum_{m=0}^{n} \left(u_{n-m} - \frac{1}{\mu} \right) r_m .$$

It is not difficult to prove from (iii), (3.12) and (3.13) that

$$\sum_{m=n+1}^{\infty} r_m \sim \frac{n^{1-\alpha}L(n)}{\alpha-1}, \quad n \to \infty.$$

Since
$$(r_n)_N$$
 is monotone, (i) follows.

This result should be compared with the following corollary to Theorem A: for all $\alpha > 1$,

$$u_{n+1} - u_n = o(n^{-\alpha}L(n)) \Leftrightarrow r_n = o(n^{-\alpha}L(n))$$

and

$$|u_{n+1}-u_n|=O(n^{-\alpha}L(n)) \Leftrightarrow r_n=O(n^{-\alpha}L(n))$$
.

See also [17, Korollar 1.22].

3.3 Harmonic renewal measures

Suppose $(p_n)_N$ is a probability measure, its generating function P(z) can always be written as

$$(3.14) 1-P(z) = \exp(-G(z)), |z| \le 1$$

where G(z) is the generating function of a sequence $(g_n)_N$ defined by

(3.15)
$$g_n = \sum_{m=1}^{\infty} \frac{1}{m} p_n^{(m)} \quad (n \ge 1) .$$

Functions of the form $\sum_{m=0}^{\infty} a_m p_n^{(m)}$ are called generalized renewal sequences. If $a_m=1$ for all $m \ge 0$ we have $g_n=u_n$, the renewal sequence. If $a_0=0$ and $a_m=m^{-1}$ for $m\ge 1$ we get the harmonic renewal sequence (3.15).

Lemma 3.2. For any probability measure $(p_n)_N$ with finite mean μ ,

$$\sum_{m=1}^{\infty} \left(\frac{1}{m} - g_m \right) = \log \mu .$$

Proof. From (3.14) it follows that

$$\lim_{n \uparrow 1} \sum_{n=1}^{\infty} \left(\frac{1}{n} - g_n \right) s^n = \log \mu .$$

Since $1-ng_n=1-\sum_{m=1}^n mp_m u_{n-m}$ it is easy to prove that $\lim_{n\to\infty} (1-ng_n)=0$. Hence applying the Tauberian theorem for generating functions (Feller [14, p. 473]), the lemma is proved.

In the sequel, we are concerned with the problem of linking the asymptotic behaviour of $(p_n)_N$ to that of $(1/n-g_n)_{N_0}$. We shall assume that $\mu > 1$.

From (3.14) it follows that

$$(3.16) R(z) = \exp\left(-\lambda(1-Q(z))\right)$$

were $r = (r_n)_N$ is as before, $\lambda = \log \mu$ and $q = (q_n)_{N_0} = ((1/\lambda)(1/n - g_n))_{N_0}$. Note that if r is i.d. we can identify its Lévy measure with the measure q. In this case, the relevant theorem on the asymptotic behaviour of these two measures was stated in section 3.1. When r is not necessarily i.d. the result remains valid in the following form.

Theorem 3.3. The following statements are equivalent

- (i) $r \in \mathscr{S}$;
- (ii) $\frac{1}{n} g_n \sim r_n$ and $r_{n+1} \sim r_n$ as $n \to \infty$.

Proof. The proof goes along the same lines as that of Theorem 1 in [10]. Note that (ii) implies that $(1/n) - g_n$ is positive for n large.

The special case where $(q_n)_{N_0}$ is regularly varying was treated in [16], where also applications to random walk theory are discussed. See also [11, Theorem 3] for the random walk analogue of theorem 3.3 above.

Acknowledgment

We would like to thank R. Grübel for some helpful remarks on an earlier version of this paper.

References

- [1] R. Bojanic and E. Seneta, A unified theory of regularly varying sequences, Math. Zeitschrift 134, 91-106 (1973).
- [2] A. A. Borovkov, Remarks on Wiener's and Blackwell's theorems, Theory Prob. Appl. 9, 303-312 (1964).
- [3] A. A. Borokov, Stochastic Processes in queueing theory (Springer Verlag, New York 1976).
- [4] T.C. Brown and P.K. Pollett, Some distributional approximations in markovian queueing networks. Adv. Appl. Prob. 14, 654-671 (1982).
- [5] J. Chover, P. Ney, and S. Wainger, Functions of probability measures, J. d'Anal. Math. XXVI, 255-302 (1973).
- [6] J. Chover, P. Ney, and S. Wainger, Degeneracy properties of subcritical branching processes, Ann. Probability 1, 663-673 (1973).
- [7] L. de Haan, On regular variation and the weak convergence of sample extremes (Mathematical Centre Tracts, Amsterdam, 1970).
- [8] P. P. B. Eggermont, A note on a paper by Luxemburg concerning the Laplace transform,

Applicable Analysis 11, 39-44 (1980).

- [9] P. P. B. Eggermont, On a generalization of W. A. J. Luxemburg's asymptotic problem concerning the Laplace transform, Indag. Math. 43, 257-265 (1981).
- [10] P. Embrechts, The asymptotic behaviour of series and power series with positive coefficients, Acad. Analecta 45, 41-62 (1983).
- [11] P. Embrechts and J. Hawkes, A limit theorem for the tails of discrete infinitely divisible laws with applications to fluctuation theory, J. Australian Math. Soc. (Series A) 32, 412-422 (1982).
- [12] P. Embrechts and E. Omey, On a renewal theorem of Stefan P. Niculescu, Revue Roumaine Math. Pures Appl., (1981) to appear.
- [13] W. Feller, An introduction to probability theory and its applications, Volume I (Wiley, New York, 1968).
- [14] W. Feller, An introduction to probability theory and its applications, Volume II (Wiley, New York, 1971).
- [15] H. Frenk, On renewal theory, Banach algebras and functions of bounded increase, Ph. D. thesis, Erasmus University, Rotterdam, (1983).
- [16] P. Greenwood, E. Omey, and J. L. Teugels, *Harmonic renewal measures*, Z. Wahrscheinlichkeitstheorie verw. Gebiete **59**, 391-409 (1982).
- [17] R. Grübel, Uber die Geschwindigkeit der Konvergenz beim Erneuerungssatz und dem Hauptgrenswertsatz für Markovketten, Ph. D. thesis, Uuiversity of Essen, (1979).
- [18] W.A.J. Luxemburg, On an asymptotic problem concerning the Laplace transform, Applicable Analysis 8, 67-70 (1978).
- [19] P. Ney, A refinement of the coupling method in renewal theory, Stochastic Process. Appl. 11, 11-26 (1981).
- [20] B. A. Rogozin, An estimate of the remainder term in limit theorems of renewal theory. Theory Probability Appl. 18, 662-677 (1973).
- [21] B. A. Rogozin, Asymptotics of the coefficients in the Lévy-Wiener theorems on absolutely convergent trigonometric series, Sib. Mat. Z. 14, 1304-1312, 1973.
- [22] E. Seneta, Regularly varying functions (Lecture notes in Mathematics 508, Springer Verlag, Berlin, 1976).
- [23] C. Stone, On characteristic functions and renewal theory, Trans. Amer. Math. Soc. 120, 327-342 (1965).
- [24] C. Stone and S. Wainger, One-sided error estimates in renewal theory, J. d'Anal. Math. 20, 325-352 (1967).

Department of Mathematics Imperial College of Science and Technology Queen's Gate London SW7 2BZ U.K.

Economische Hogeschool Sint-Aloysius Broekstraat 113 1000 Brussel Belgium

Note Added in Proof. Some recent interesting work on discrete renewal theory is given in R. Grübel, Functions of discrete probability measures: Rates of convergence in the renewal theorem, Z. Wahrscheinlichkeitstheorie verw. Gebiete 64, 341–357, (1983).