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\S 1. Introduction

In this paper we consider the response of the oscillator

(1.1) V $+g(t, y,\dot{y})\dot{y}+a(t)f(y)=h(t, y,\dot{y})\dot{w}$

with the damping term $g$ and the restoring force $f$ to the random disturbance
of so-called white noise $\dot{w}$ , where by we mean the symbolic derivative $d/dt$ .
According to the recent paper [6], the following results are known;

(I) a sufficient condition for the existence of the global solution of (1.1),

(II) a sufficient condition for the non existence of the global solution of
(1.1) when $g$ is strictly negative.

But the investigation of the following problems are left undone;
(III) a necessary $ndition$ for the non existence of the global solution of

(1.1),

(IV) a construction of the non global solution of (1.1) when $g$ is not strictly
negative.

Our purpose of this paper is to investigate the above problems (III) and (IV).

For (IV) we use the method of the transformation of the damping term $g$ . For
(III) we consider the relation between the non existence of global solution of (1.1)

and the convergence of the integral

$\int_{0}^{\infty}(1+F(u))^{-1/2}du$ $(or\int_{0}^{-\infty}(1+F(u))^{-1/2}du)$

under the assumption that $uf(u)>0$ for $u\neq 0$, where $F(u)=\int_{0}^{u}f(s)ds$ . This inves.
tigation corresponds to an analogue of Burton-Grimmer theorem [11 where the
random disturbance is not considered.

For these purposes we treat the two dimensional nonlinear Ito equation and
investigate the explosion criteria for the solution of the stochastic differential
equation.

Let $(\Omega, F, P)$ be a probability space with an increasing family $\{F_{\iota}; t\geqq 0\}$ of
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$sub-\sigma$-algebras of $F$ and $w(t)$ be a one dimensional Brownian motion process
adapted to $F$ . Then we consider the stochastic differential equation

(1.2) $\left\{\begin{array}{l}dX_{1}(t)=X_{2}(t)dt,\\dX_{2}(t)=\{-g(t, X_{1}(t), X_{2}(t))X_{2}(t)-a(t)f(X_{1}(t))\}dt+h(t, X_{1}(t), X_{2}(t))dw(t).\end{array}\right.$

Throughout this paper we assume the following conditions; $ a:[0, \infty$) $\rightarrow(-\infty, \infty)$

is continuously differentiable, $f:t-\infty,$ $\infty$ ) $\rightarrow(-\infty, \infty)$ is continuously differentiable,
$g$ and $ h:[0, \infty$) $\times(-\infty, \infty)\times(-\infty, \infty)\rightarrow(-\infty, \infty)$ have continuous first partials
with $res\mu ct$ to $ t\in[0, \infty$), $x_{1}\in(-\infty, \infty)$ and $x_{2}\in(-\infty, \infty)$ .

The system (1.2) is one of the formulations such that $X_{1}(t)$ may correspond
to the response of the harmonic oscillator (1.1) (see [2]). In general, the solution
$X(t)=(X_{1}(t), X_{2}(t))$ of (1.2) with the initial condition $X(t_{0})=x_{0}\in R^{2}(t_{0}\geqq 0)$ is defined
up to the random time $e(t_{0}, x_{0})$ , where $e(t_{0}, x_{0})=\lim e.(t_{0}, t_{0})$ and $ e_{n}(t_{0}, x_{0})=n\wedge$

$\inf\{t;|X(t)]\geqq n\}$ (here and hereafter $ R^{2}=(-\infty, \infty)\times(-\infty, \infty)n\uparrow\infty$ and $a\wedge b$ stands for the
smaller of $a$ and $b$). This random time $e(t_{0}, x_{0})$ is called the exPlosion time of the
solution $X(t)$ of (1.2) with the initial condition $X(t_{0})=x_{0}$ . The next remark
enables us to understand the meaning of the explosion time (see [3], [4] and [5]).

Remark 1.1. $\lim|X(t)|=\infty$ for $ e(t_{0}, x_{0})<\infty$ , almost surely. Hence,
$\ell\uparrow\iota(t_{0},x_{0})$

if $ e(t_{0}, x_{0})<\infty$ , then the exPlosion occurs.
The problem introduced at the beginning of this section can be restated in

terms of the explosion for (1.2). Namely, we construct explosive solutions of
(1.2) where the function $g(t, x_{1}, x_{2})$ is not necessarily negative by the method of
the transformation of the function $g(t, x_{1}, x_{2})$ and also we give a necessary
condition for the explosive solution of (1.2).

Throughout this Paper, we shall use the differential generator

(1.3) $L=\frac{\partial}{\partial t}+x_{2}\frac{\partial}{\partial x_{1}}\{g(t, x_{1}, x_{2})x_{2}+a(t)f(x_{1})\}\frac{\partial}{\partial x_{2}}+\frac{1}{2}h^{2}(t, x_{1}, x_{2})\frac{\partial^{2}}{\partial x_{2^{2}}}$

associated with the system (1.2). Introduce the function

(1.4) $V(t, x)=\alpha(t)F(x_{1})+x_{2^{2}}/2$ ,

where $t\geqq 0,$ $x=(x_{1}, x_{2})\in R^{2}$ and $F(x_{1})=\int_{0}^{l}1f(s)ds$ . Then we note that

(1.5) $LV(t, x)=a^{\prime}(t)F(x_{1})-g(t, x_{1}, x_{2})x_{2^{2}}+h^{2}(t, x_{1}, x_{2})/2$

for all $t\geqq 0$ and $x=(x_{1}, x_{2})\in R^{2}$ . Moreover, let $U(t, x)$ be a scalar function which
is twice continuously differentiable with respect to $x\in R^{2}$ and once with respect
to $t\geqq 0$, and let $K(u)$ be a twice continuously differentiable function on $(-\infty, \infty)$ .
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Then we notice that

(1.6) $LK(U(t, x))=(LU(t, x))K^{\prime}(U(t, x))$

$+\frac{1}{2}h^{2}(t, x_{1}, x_{2})(\frac{\partial U(t,x)}{\partial x_{2}})^{2}K^{\prime\prime}(U(t, x))$

for $t\geqq 0$ and $x=(x_{1}, x_{2})\in R^{2}$ .
We shall use (1.5) and (1.6) in the proof of our theorem.

\S 2. An analogue of Burton-Grimmer theorem

Here we discuss the relation between the finite explosion time and the re-
striction on the growth of the coefficient $f$ of (1.2). First of all consider the
deterministic nonlinear second order differential equation

(2.1) $\ddot{y}+a(t)f(y)=0$ ,

where $a$ is continuous, $f$ is continuous and $yf(y)>0$ for $y\neq 0$, and suppose that
$a(t)<0$ on an interval $t_{0}\leqq t<t_{1}$ with $a(t_{1})\leqq 0$ . Then it follows from the theorem
of Burton and Grimmer [1] that (2.1) has a solution $y(t)$ defined for $t=t_{0}$ satisfying
$\lim_{t\uparrow T}|y(t)|=\infty$ for some $T\in(t_{0}, t_{1}$ ] if and only if either

(2.2) $\int_{0}^{\infty}(1+F(u))^{-1/2}du<\infty$

or

(2.3) $\int_{0}^{-\infty}(1+F(u))^{-1/2}du>-\infty$

holds, where $F(u)=\int_{0}^{u}f(s)ds$ .
For the stochastic case of (1.1), consider the system (1.2), and let $e(t_{0}, x_{0})$ be

the the explosion time of the solution $X(t)$ of (1.2) with the initial condition
$X(t_{0})=x_{0}\in R^{2}$ . Then we investigate the problem whether one of the conditions
(2.2) and (2.3) plays a role on the occurrence of the explosion or does not. A
sufficient condition for the finite explosion time is given by [6] as follows.

Theorem 2.1. SuPpose that the following conditions hold;
(i) $a(t)\leqq-m$ and $a^{\prime}(t)\geqq 0$ for all $t\geqq 0$ with a constant $m>0$,
(i1) $x_{1}f(x_{1})>0$ for all $x_{1}\neq 0$,
(iii) $g(t, x_{1}, x_{2})\leqq-\epsilon_{0}h^{2}(t, x_{1}, x_{2})$ for all $t\geqq 0$ and $(x_{1}, x_{2})\in R^{2}$ with a constant

$e_{0}>0$,
(iv) $h^{2}(t, x_{1}, x_{2})\geqq k(t)$ for all $t\geqq 0$ and $(x_{1}, x_{2})\in R^{2}$
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with a nonnegative and continuous function $k(t)$ satisfying

$]_{0}^{\infty}k(t)dt=\infty$ .

Further, suppOse that both (2.2) and (2.3) hold. Then, $P(e(t_{0}, x_{0})<\infty)>0$ for all
$t_{0}\geqq 0$ and $x_{0}\in R^{2}$ .

In the next theorem we show that one of the conditions (2.2) and (2.3) be-
comes a necessary condition for the finite explosion time under certain conditions
of the other $efficients$ .

Theorem 2.2. Suppose that the following conditions hold;

(i) $-M\leqq a(t)$ and $a^{\prime}(t)\leqq 0$ for all $t\geqq 0$ with a constant $M>0$,
(ii) $x_{1}f(x_{1})>0$ for all $x_{1}\neq 0$ ,
(iii) $g(t,x_{1},x_{2})\geqq\epsilon_{0}k(t)$ for all $t\geqq 0$ and $(x_{1}, x_{2})\in R^{2}$ with a constant $\epsilon_{0}>0$ and a

continuous function $k(t)\geqq 0$ ,
(iv) $h^{2}(t, x_{1}, x)\leqq k(t)$ for all $t\geqq 0$ and $(x_{1}, x_{2})\in R^{2}$ with the same function $k(t)$

given in (iii). Further, suppose that (1.2) has a solution $X(t)=(X_{1}(t), X_{2}(t))$ with
the initial condition $X(t_{0})=x_{0}\in R^{2}$ and that the explosion time satisfies

$P(e(t_{0},x_{0})<\infty)>0$ .
Then, either (2.2) or (2.3) holds.

Proof. For the preparation of the proof we choose a positive number $p$ and
a $ntinuous$ function $c(t)$ such that

$0<P\leqq 2\epsilon_{0}$ and $c(t)\geqq k(t)/2$ ,

and then we set $K(u)=\exp(Pu)$ for $u\in(-\infty, \infty)$ and

$U(t, x)=V(t, x)-\int_{0}^{t}e(s)ds$

for $t\geqq 0$ and $x\in R^{2}$ with the function $V(t, x)$ defined by (1.4). Now, let
$X(t)=(X_{1}(t), X_{2}(t))$ be any solution of (1.2) with the initial condition $X(t_{0})=x_{0}\in R^{t}$

and let $e(t_{0}, x_{0})$ be its explosion time. Then, under the $nditions\langle i$), (ii), (iii)

and (iv) we first show that

$P(\sup_{\ell_{0}<\ell<e}U(t, X(f))<\infty)=1$

and that
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(2.4) $P(X_{2}^{2}(t)/2\leqq\alpha+1_{0}^{\iota_{C}}(s)ds+MF(X_{1}(t))$ for aI1 $t_{0}\leqq t<e)=1$ ,

where $e=e(t_{0}, t_{0}),$ $\alpha=$ $supU(t, X(t))$ and $M$ is the constant appearing in (i).
$\ell_{0\leq\ell<*}$

In fact, by $L$ we denote the differential generator defined by (1.3). Then we see
by (1.5) and (1.6) that

$LK(U(t, x))=[c^{\prime}\langle t)F(x_{1})-\{g(\ell, x_{1}, x_{2})-ph^{2}(\ell, x_{1}, x_{2})/2\}x_{2}^{2}$

$-\{c(t)-h^{2}(t, x_{1}, x_{2})/2\}]pK(U(t, x))$

$\leqq-[\{\epsilon_{0}-p/2\}x_{2}^{2}k(t)+\{c(t)-k(t)/2\}]pK(U(t, x))$

for $t\geqq 0$ and $x=(x_{1}, x_{f})\in R^{2}$ , since (i), (ii), (iii) and (iv) hold by the assumption.
Accordingly, it follows from the choice of $p$ and $c(t)$ that $LK(U(t, x))\leqq 0$ for all
$t\geqq 0$ and $x\in R^{2}$ . Therefore, Ito’s formula $n\propto ming$ stochastic differentials impiles
that for arbitrarily fixed $n$

$\{K(U(t\wedge\ell_{n}, X(t\wedge e_{n})));t\geqq 0\}$

is a positive super-martingals, where $e_{n}=n\wedge\inf\{t;|X(t)|\geqq n\}$ . Hence the super-
martingale inequality yields that for any number $N>0$

$P(\sup_{t_{0}<t<e,}K(U(t, X(t)))>N)\leqq N^{-1}K(U(t_{0}, x_{0}))$

Let $n$ tend to infinity in the above equation and notice that $e_{n}\uparrow e$ for $ n\uparrow\infty$ ,
where $e=e(t_{0}, x_{0})$ . Then we get that

$P(\sup_{\ell_{0}<t<e}K(U(t, X(t)))>N)\leqq N^{-1}K(U(t_{0}, x_{0}))$ ,

from which follows

$P(\sup_{0<t<e}K(U(t, X(t)))<\infty)=1$ .

Since $K(u)=\exp(pu)$ with $p>0$. we obtain that

$P(\sup_{t_{0}<t<}U(tX(t))<\infty)=1$ .

Thus, the definition of $U(t, x)$ implies (2.4). Next, let $X(t)=(X_{1}(t), X_{2}(t))$ be
the solution of (1.2) with the initial condition $X(t_{0})=x_{0}\in R^{2}$ and suppose that
$P(e(t_{0}, x_{0})<\infty)>0$ . In the following we take a sample such that $ e(t_{0}, x_{0})<\infty$ , and
for notational simplicity we put $e=e(t_{0}, x_{0})$ once again. Then we show that

(2.5)
$\sup_{t_{0}<\ell<*}|X_{1}\langle t$

) $|=\infty$ for $ e<\infty$ .
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In fact, if it were $that\sup_{\ell_{0}<<e}|X_{1}(t)|<\infty$ for $ e<\infty$ , then we would have by (2.4)

that

$X_{2}^{2}(t)/2\leqq\alpha+\int_{0}c(s)ds+M\overline{F}$

for all $t_{0}\leqq t<e$, where

$\overline{F}=\max\{F(\inf_{t_{0}\leqq\ell<\iota}X_{1}(t)), F(\sup_{\ell_{0}\leq t\leq\ell}X_{1}(t))\}$ .
Namely both $X_{1}(t)$ and $X_{2}(t)$ stay bounded as $t\uparrow e$, which is a contradiction since
$|X(e-)|=\infty$ by Remark 1.1. Hence we get (2.5).

Now consider a sample such that $ e<\infty$ . Then (2.4) implies that

$X_{2}^{2}(t)/2\leqq\beta+MF(X_{1}(t))$

for all $t_{0}\leqq t<e$, where $\beta=\alpha+\int_{0}c(s)ds+b$ with a positive number $b$ chosen so large
that $\beta>0$ . Accordingly, $X_{1}(t)$ and $X_{2}(t)$ satisfy

$-(2M)^{1/2}\leqq(\delta+F(X_{1}(t)))^{-1/2}X_{2}(t)\leqq(2M)^{1/2}$

for all $t_{0}\leqq t<e$, where $\delta=\beta/M>0$ . Integrate both sides of the above equation
from $t_{0}$ to $t(<e)$ and notice that $(2M)^{1/2}(t-t_{0})\leqq(2M)^{1/2}(e-t_{0})$ for all $t_{0}\leqq t<e$ .
Then we get that

(2.6) $-(2M)^{1/2}(e-t_{0})\leqq\int_{X_{1}(\ell_{0})}^{X_{1}(\ell)}(\delta+F(u))^{-1/2}du\leqq(2M)^{1/2}(e-t_{0})$

for all $t_{0}\leqq t<e$, since $dX_{1}(t)=X_{2}(t)dt$ and since $dY(X_{1}(t))=Y^{\prime}(X_{1}(t))dX_{1}(t)$ for

$Y(x_{1})=\int_{0}^{l}1(\delta+F(u))^{-1/2}du$ .
We notice (2.5) and discuss according to each of two cases;

$\sup_{t_{0}<t<e}X_{1}(t)=\infty$
,

$\inf_{\ell_{0}<\ell<}X_{1}(t)=-\infty$ .
Let us $nsider$ that $supX_{1}(\ell)=\infty$ . Then we take the $su\mu rior$ limit as $\ell$

tends to $e$ in the $equati_{on(2.6)}^{t_{0}<\ell}$ , so that

(2.7) $-(2M)^{1/2}(e-t_{0})\leqq\int_{x_{1^{(}0})}^{\infty}(\delta+F(u))^{-1/2}du\leqq(2M)^{1/a}(e-t_{0})$ .
If $\delta\leqq 1$ , then we have that

$(\delta+F(u))^{-1/2}\geqq(1+F(u))^{-1/2}$
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and so (2.2) holds. If $\delta>1$ , then we have that

$\delta^{-1/2}\int_{X_{1}(t_{0})}^{\infty}(1+\delta^{-1}F(u))^{-1/2}du>\delta^{-1/2}\int_{X_{1}(\ell_{0})}^{\infty}(1+F(u))^{-1/2}du$ .
Since the first integral of the above equation converges by (2.7), so does the
second and hence (2.2) holds. Last, let us consider that $infX_{1}(t)=-\infty$ . Then
we take the inferior limit as $t$ tends to $e$ in the $equation(2.6)\ell_{0<t<e}$ and a similar
argument can be carried out, showing (2.3). Hence the proof is completed.

Remark 2.1. Suppose that $F(u)\geqq Cu^{\alpha}$ for $u>0$ with some constants $C>0$

and $\alpha>2$ . Then $F(u)$ satisfies (2.2).

Remark 2.2. Suppose that $uf(u)>0$ for $u\neq 0$ and that $f^{2}(u)\geqq\beta F(u)^{\gamma}$ for $u>0$

with some $nstants\beta>0$ and $\gamma>1$ . Then $F(u)$ satisfies (2.2). In fact, we see
that

$\int_{1}^{\infty}\frac{du}{(1+F(u))^{1/2}}=\int_{1}^{\infty}\frac{f(u)du}{f(u)(1+F(u))^{1/2}}$

$\leqq\beta^{-1/2}\int_{1}^{\infty}\frac{f(u)du}{F(u)^{\gamma/2}(1+F(u))^{1/2}}$

$=\beta^{-1/2}\int_{F(1)}^{F(\infty)}\frac{dv}{v^{\gamma/2}(1+v)^{1/2}}$

$\leqq\beta^{-1/2}\int_{F(1)}^{\infty}\frac{dv}{v^{(r+1)/2}}$

$<\infty$ .
Remark 2.3. During the last several years a number of exceptionally sharp

results regarding uniqueness, $ntinuation$, and oscillation of solutions of the
nonlinear second order differential equation

$\ddot{y}+a(t)f(y)=0$

have been obtained. Our works for (1.1) are influenced by these deterministic
cases.

\S 3. Transformation of damping

Here we $nsider$ the relation between the explosions of the solutions of
the following two systems of the stochastic differential equations;

$dX_{1}(t)=X_{2}(t)dt$ ,(3.1)
$dX_{2}(t)=\{-g(t)X_{2}(t)-a(t)f(X_{1}(t))\}dt+h(t)dw(t)$ ,
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(3.2) $\left\{\begin{array}{l}dY_{1}(t)=Y_{2}(t)dt,\\dY_{2}(t)=-A(t)f(Y_{1}(t))dt+H(t)d\tilde{w}(t),\end{array}\right.$

where $g(t),$ $a(t),$ $f(x_{1}),$ $h(t),$ $A(t)$ and $H(t)$ are $\omega ntinuously$ differentiable functions,
and $w(\ell)$ and $\tilde{w}(t)$ are one dimensional Brownian motion processes.

Both $X_{1}(t)$ and $Y_{1}(\ell)$ correspond to the responses of the ogcillators

\langle 8.1) $\ddot{y}+g(t)\dot{y}+a(t)f(y)=h(t)\dot{w}$

and

(3.2) $\ddot{y}+A(t)f(y)=H(t)\dot{\tilde{w}}$

to the formal white noise $\dot{w}$ and $\dot{\tilde{w}}$ , respectively. Roughly speaking, we will show
that

if (3.1) has an explosive solution corresponding to the family $\{g(t)<0,$ $a(t)$ ,
$f(x_{1}),$ $h(t);w(t)$}, then (3.2) has an explosive solution corresponding to some family
$\{A(t), f(x_{1}), H(t);\tilde{w}(t)\}$ (Theorem 3.1)

and that
if (3.2) has an explosive solution $rresponding$ to the family {$A(t),$ $f(x),$ $H(t)$ ;

$\tilde{w}(t)\}$ , then (3.1) has an explosive solution corresponding to some family $\{g(t)>0$ ,
$a(t),$ $f(x_{1}),$ $h(t),$ $w(t)$ } (Theorem 3.2).

By these results we can know that there exist explosive solutions of (1.2) with
the nonnegative damping function $g$ . Therefore, combining Theorem 2.1 with
Theorem 3.1 and Theorem 3.2, we can $nstruct$ explosive solutions of (1.2) with
any damping function $g$ which depends only on the time variable $t\geqq 0$ .

For the continuous function $g(t)$ let

(3.3) $r(t)=\exp(\int_{0}^{\ell}g(u)du)$

and let

(3.4) $s(t)=\int_{0}^{t}1/r(u)du=\int_{0}^{t}\exp(-\int_{0}^{u}g(v)dv)du$ .

Then we notice that

$r(t)>0$ , $r^{\prime}(t)=g(t)r(t)$ and $s^{\prime}(t)=1/r(t)$ .
If

(3.5) $ s(\infty)=\infty$ ,

then by $\phi(t)$ we denote the inverse function of $s(t)$ , that is $\phi(l)=s^{-1}(t)$ . We also
notice that $\phi^{\prime}(t)=r(\phi(f))>0$ . By the time substitution rule we transform the
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damping term $g$ and construct explosive solutio$ns$ . For the sake of convenience,
we consider the solutions of (3.1) and (3.2) with the initial time $t_{0}=0$ .

Theorem 3.1. Suppose that the following coetditions hold;
(i) $g(\ell)<0$ for all $\ell\geqq 0$,
$r(t)$ and $s(t)$ are defined accordingly as in (3.3) and (3.4),
(ii) $h(t)\neq 0$ for all $t\geqq 0$,
(iii) there exists a point $x_{0}\in R^{2}$ such that $P(e(O, x_{0})<\infty)>0$ holds, where

$e(O, x_{0})$ stands for the explosi0n time of the solution $X(t)=(X_{1}(t), X_{2}(t))$ of (3.1)
with the initial condition $X(O)=x_{0}$ .

Define $Y(t)=(Y_{1}(\ell), Y_{2}(t))$ by

$Y_{1}(t)=X_{1}(\phi(t))$ and $Y_{2}(t)=X_{2}(\phi(t))\phi^{\prime}(t)$ ,

where $\phi(t)$ is the inverse function of $s(t)$ .
Then, $Y(t)$ is a solution of (3.2) with the initia\ell condition $Y(O)=x_{0}\in R^{2}$

corresponing to the coefficients
$A(t)=r^{2}(\phi(t))a(\phi(t))$ , $H(t)=r^{8/2}(\phi(t))h(\phi(t)),$ $f(x_{1})$

and some Brownian motion process $\tilde{w}(t)$ .
Moreover, let $\tilde{e}(O, x_{0})$ be the explosion time of the above process $Y(t)$ with the

initial condition $Y(O)=x_{0}$ . Then,

$P(e(O, x_{0})<\tilde{e}(0, x_{0})=s(e(0, x_{0}))<\infty)>0$ .
Proof. Let $X(t)=(X_{1}(t), X_{2}(t))$ be the solution of (3.1) with the initial con-

dition $X(O)=x_{0}\in R^{2}$ such that $P(e(0, x_{0})<\infty)>0$ . Then, in the following we
consider a sample such that $ e(O, x_{0})<\infty$ . For simplicity of the notation, we set
$e=e(O, x_{0})$ . Since $g(t)<0$ by the condition (i), it follows from (3.3) and (3.4) that
$r(t)<1$ and $s(t)>t$ for all $t>0$ . This implies (3.5), and hence the inverse function
$\phi(t)$ of $s(t)$ is well defined for all $\ell\geqq 0$, satisfying

(3.6) $\phi(t)<\ell$ for all $t>0$ .
Set

$Y_{1}(t)=X_{1}(\phi(t))$ and $Y_{2}(t)=X_{2}(\phi(t))\phi^{\prime}(t)$ $(=X_{2}(\phi(t))r(\phi(t)))$

for all $0\leqq\ell<e$ . This definition is possible since $X(t)$ is defined for all $0\leqq t<e$

and since (3.6) holds. First we see that

$Y_{1}(t)=X_{1}(0)+\int_{0}^{l^{(\ell)}}X_{2}(u)du$
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$=X_{1}(0)+\int_{0}^{\ell}X_{1}(\phi(u))\phi^{\prime}(u)du$

$=X_{1}(0)+\int_{0}^{t}Y,(u)du$

for all $0\leqq t<e$ . Notice that $dr(t)=g(t)r(t)dt$ and use Ito’s formula concerning
stochastic differentials. Then, we also see that

$d(X_{2}(t)r(t))=X_{2}(t)dr(t)+r(t)dX_{2}(t)$

$=X_{2}(t)g(t)r(t)dt+r(t)[\{-g(t)X_{2}(t)-a(t)f(X_{1}(t))\}dt+h(t)dw(t)]$

$=-r(\ell)a(t)f(X_{\iota}(t))dt+r(t)h(t)dw(t)$

and hence

$Y_{2}(t)=X_{2}(\phi(t))r(\phi(t))$

$=X_{2}(0)-\int_{0}^{l^{(\ell)}}r(u)a(u)f(X_{1}(u))du+\tilde{M}(t)$

$=X_{2}(0)-\int_{0}^{\ell}r(\phi(u))a(\phi(u))f(X_{1}(\phi(u)))\phi^{\prime}(u)du+\tilde{M}(\ell)$

$=X_{2}(0)-\int_{0}^{t}r^{2}(\phi(u))a(\phi(u))f(Y_{1}(u))du+\tilde{M}(t)$

for all $0\leqq t<e$ , where $\tilde{M}(t)=M(\phi(t))$ and

$M(t)=\int_{0}^{t}r(u)h(u)dw(u)$ .
Since $r(u)$ and $h(u)$ are $ntinuously$ differentiable by the assumption, $M(\ell)$ is

a continuous and square integrable martingale with its increasing proceae

$\langle M\rangle(t)=\int_{0}^{\ell}r^{2}(u)h^{2}(u)du$ .

This yields that $\tilde{M}(t)$ is a $ntintinuous$ and square integrable martingale with
its increasing process $\langle\tilde{M}\rangle(\ell)$ , for which

$\langle\tilde{M}\rangle(\ell)=\int_{0}^{lt\ell)}r^{2}(u)h^{2}(u)du$

$=\int_{0}^{\ell}r^{2}(\phi(u))h^{2}(\phi(u))\phi^{\prime}(u)du$

$=\int_{0}^{\ell}r^{\iota}(\phi(u))h^{2}(\phi(u))du$ .

Set
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$\tilde{w}(\ell)=\int_{0}^{\ell}\frac{1}{r^{\epsilon/2}(\phi(u))h(\phi(u))}d\tilde{M}(u)$ ,

which is well defined since $h(t)\neq 0$ for all $t\geqq 0$ by the condition (ii), so that $\tilde{w}(\ell)$

is a $\omega ntinuous$ and square integrable martingale with its increasing proceae

$\langle\tilde{w}\rangle(\ell)=\int_{0}^{t}\frac{1}{r^{\epsilon}(\phi(u))h^{2}(\phi(u))}d\langle\tilde{M}\rangle(u)=t$ .
This implioe that $\tilde{w}(t)$ is a Brownian motion proceae and that

$\tilde{M}(t)=\int_{0}^{t}r^{\epsilon/2}(\phi(u))h(\phi(u))d\tilde{w}(u)$ .
Therefore, $Y(t)=(Y_{1}(t), Y_{2}(\ell))$ satisfies

$Y_{1}(t)=X_{1}(0)+\int_{0}^{\ell}Y_{2}(u)du$ ,

$Y_{2}(t)=X_{2}(0)-\int_{0}^{\ell}r^{2}(\phi(u))a(\phi(u))f(Y_{1}(u))du$

$+\int_{0}r^{\epsilon/2}(\phi(u))h(\phi(u))d\tilde{w}(u)$

for all $0\leqq\ell<e$ . Accordingly, $Y(t)$ is a solution of (3.2) with the initial condition
$Y(O)=x_{0}\in R^{2}$ corresponding to the coefficients

$A(t)=r^{2}(\phi(\ell))a(\phi(\ell))$ , $H(t)=r^{\epsilon/2}(\phi(t))h(\phi(\ell)),$ $f(x_{1})$

and the Brownian motion process $\tilde{w}(\ell)$ .
On the other hand, let $\tilde{e}(O, x_{0})$ be the explosion time of $Y(t)$ with the initial

condition $Y(O)=x_{0}\in R^{2}$ , where $Y(t)$ is given by the preceding definition. Consider
that

$|Y(\ell)|^{2}=Y_{1}^{2}(\ell)+Y_{2}^{2}(\ell)=X_{1}^{2}(\phi(t))+X_{2}^{2}(\phi(t))r^{2}(\phi(t))$

and hence

$|Y(s(t))|^{2}=X_{1}^{2}(t)+X_{2}^{2}(t)r^{2}(\ell)$

for all $0\leqq\ell<e$ . Then, since $r(t)<1$ for $\ell>0$ , the above equation yields that
$|Y(s(\ell))|^{2}/r^{2}(\ell)=X_{1}^{2}(t)/r^{2}(t)+X_{2}^{2}(t)\geqq|X(t)|^{2}$

for all $0\leqq t<e$ . Let $\ell$ tend to $e$ on the both sides of the above equation and
notice that $\lim_{\uparrow\iota}|X(\ell)|=\infty$ on $ e<\infty$ since Remark 1.1 holds. Then we obtain that

$\lim_{t\uparrow l}|Y(s(t))|=\infty$ .
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In fact, if it were that $\lim_{\ell\uparrow}$

$inf|Y(s(\ell))|<\infty$ , we would have that

$\infty>\lim_{\ell\uparrow}\inf_{l}|Y(s(t))|^{2}/r^{2}(e)$

$=\lim\inf_{\uparrow l}|Y(s(t))|^{2}/r^{2}(t)$

$\geqq\lim_{t\uparrow}\inf|X(t)|^{2}$

$=\infty$ ,

which is absurd. Therefore, we get that

$\lim_{\iota\uparrow\cdot(\iota)}|Y(\ell)|=\infty$ ,

where $e=e(O, x_{0})$ . Combining this with the definition of the explosion time
$\tilde{e}(O, x_{0})$ of $Y(t)$ , we see that $\tilde{e}(O, x_{0})\leqq s(e)$ . Last, we show that $\tilde{e}(O, x_{0})=s(e)$ .
Assume that $\tilde{e}(O, x_{0})<s(e)$ to the contrary. Then we see that $\phi(\tilde{e}(O, x_{0}))<e$ . Since
$r(u)<1$ for all $>0$ , we also see that

$|Y(t)|^{2}=X_{1}^{2}(\phi(\ell))+X_{2}^{2}(\phi(t))r^{2}(\phi(t))\leqq X_{1}^{2}(\phi(\ell))+X_{2}^{2}(\phi(\ell))$

and hence
$|Y(t)|^{2}\leqq|X(\phi(t))|^{2}$

for all $0\leqq t<e$ . Let $t$ tend to $\tilde{e}(O, x_{0})$ in the both sides of the above equation.
Then, Remark 1.1 and the fact that $\phi(\tilde{e}(O, x_{0}))<e$ yield

$\infty=$
$\lim_{\sim,t\uparrow\epsilon(0,x_{0})}|Y(t)|^{2}\leqq|X(\phi(\tilde{e}(0, x_{0})))|^{2}<\infty$

,

which is a contradiction. Hence we obtain that $\tilde{e}(O, x_{0})=s(e)>e$ and the proof is
completed.

Theorem 3.2. SuPpose that the following conditions hold;

(i) $g(t)>0$ for all $\ell\geqq 0$,
$r(t)$ and $s(t)$ are defined accordingly as in (3.3) and (3.4), satisfying $ s(\infty)=\infty$ .
(ii) $H(t)\neq 0$ for all $t\geqq 0$ ,
(iii) there exists a $Poin\ell x_{0}\in R^{2}$ such that $P(\tilde{e}(O, x_{0})<\infty)>0$ holds, where

$\tilde{e}(O, x_{0})$ stands for the exPtosion time of the solution $Y(\ell)=(Y_{1}(t), Y_{2}(\ell))$ of (3.2)

with the initial condition $Y(O)=x_{0}$ .
Define $X(t)=(X_{1}(t), X_{2}(t))$ by

$X_{1}(t)=Y_{1}(s(t))$ and $X_{2}(t)=Y_{2}(s((t))/r(t)$ .
Then, $X(t)$ is a solution of (3.1) with the initial condition $X(O)=x_{0}\in R^{2}$

corresponding to the coefficients
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$g(t)>0,$ $a(t)=A(s(t))/r^{2}(t)$ , $h(t)=H(s(t))/r^{a/2}(t)$ , $f(x_{\iota})$

and some Brownian motion process $w(t)$ .
Moreover, let $e(O, x_{0})$ be the $exp\ell osion$ time of the above Process $X(t)$ with the

initial condition $X(O)=x_{0}$ . Then,

$P(\tilde{e}(O, x_{0})<e(0, x_{0})=\phi(\tilde{e}(0, x_{0}))<\infty)>0$ ,

where $\phi(t)$ is the inverse function of $s(t)$ .
Proof. Let $Y(t)=(Y_{1}(t), Y_{2}(t))$ be the solution of (3.2) with the initial condition

$Y(O)=x_{0}\in R^{2}$ such that $P(\tilde{e}(O, x_{0})<\infty)>0$ . Then, in the following we consider a
sample such that $\tilde{e}(O, x_{0})<\infty$ . For simplicity of the notation, we set $\tilde{e}=\tilde{e}(0, x_{0})$ .
Since $ s(\infty)=\infty$ by the condition (i), the inverse function $\phi(t)$ of $s(\ell)$ is well defined
for all $t\geqq 0$ . Since $g(t)>0$ for all $t\geqq 0$ by the condition (i), we notice that

(3.7) $s(t)<t$ for all $t>0$ .
Set

$X_{1}(t)=Y_{1}(s(t))$ and $X_{2}(t)=Y_{2}(s(t))/r(t)$

for all $0\leqq t<\tilde{e}$ . This definition is possible since $Y(t)$ is well defined for all
$0\leqq t<\tilde{e}$ and since (3.7) holds. First we see that

$X_{1}(\ell)=Y_{1}(0)+\int_{0}^{\iota t\ell)}Y_{2}(u)du$

$=Y_{1}(0)+\int_{0}^{t}Y_{2}(s(u))s^{\prime}(u)du$

$=Y_{1}(0)+\int_{0}^{t}Y_{2}(s(u))/r(u)du$

$=Y_{1}(0)+\int_{0}^{\ell}X_{2}(u)du$

for all $0\leqq t<\tilde{e}$ . Now put $q(t)=1/r(\phi(t))$ with the inverse function $\phi(t)$ of $s(t)$ , so

that $q(t)=\exp(-\int_{0}^{i^{(\ell)}}g(u)du)$ and

$q^{\prime}(t)=-\phi^{j}(t)g(\phi(t))\exp(-\int_{0}^{\prime t\ell)}g(u)du)$

$=-r(\phi(t))g(\phi(t))/r(\phi(t))$

$=-g(\phi(t))$ ,

that is $dq(\ell)=-g(\phi(t))dt$ . Thus, by Ito’s formula concerning stochastic differen-
tials we see that
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$d(Y_{2}(t)q(t))=Y_{2}(t)dq(t)+q(\ell)dY_{2}(t)$

$=-g(\phi(\ell))Y_{2}(t)dt+q(\ell)[-A(t)f(Y_{1}(t))d\ell+H(t)d\tilde{w}(t)]$

$=[-g(\phi(t))Y_{2}(t)-\{A(\ell)/r(\phi(t))\}f(Y_{1}(t))]d\ell+\{H(t)/r(\phi(t))\}d\tilde{w}(t)$ .
Therefore we obtain that

$X_{2}(t)=Y_{2}(s(t))/r(\ell)$

$=Y_{2}(0)+\int_{0}^{l(\ell)}[-g(\phi(u))Y_{2}(u)-\frac{A(u)}{r(\phi(u))}f(Y_{1}(u))]du+\tilde{N}(\ell)$

$=Y_{2}(0)-\int_{0}^{t}[g(u)Y_{2}(s(u))+\frac{A(s(u))}{r(u)}f(Y_{1}(s(u)))]s^{\prime}(u)du+\tilde{N}(t)$

$=Y_{2}(0)-\int_{0}^{\ell}[g(u)Y_{2}(s(u))+\frac{A(s(u))}{r(u)}f(Y_{1}(s(u)))]\frac{1}{r(u)}du+\tilde{N}(t)$

$=Y_{2}(0)-\int_{0}^{t}[g(u)X_{2}(u)+\frac{A(s(u))}{r^{2}(u)}f(X_{1}(u))]du+\tilde{N}(t)$

for all $0\leqq\ell<\tilde{e}$ , where $\tilde{N}(t)=N(s(t))$ and

$N(t)=\int_{0}^{t}\bigwedge_{r(\phi(u))}\tilde{w}(u)$ .
It is easy to see that $N(\ell)$ is a continuous and square integrable martingale with
its increasing process

$\langle N\rangle(t)=\int_{0}^{\ell}\frac{H^{2}(u)}{r^{2}(\phi(u))}du$ .
Hence, $\tilde{N}(t)$ is a continuous and square integrable martingale with its increasing
process $\langle\tilde{N}\rangle(t)$ , for which

$\langle\tilde{N}\rangle(\ell)=\int_{0}^{l(\ell)}\frac{H^{2}(u)}{r^{2}(\phi(u))}du$

$=\int_{0}^{\ell}\frac{H^{2}(s(u))}{r^{2}(u)}s^{\prime}(u)du$

$=\int_{0}^{\ell}\frac{H^{2}(s(u))}{r^{\epsilon}(u)}du$ .
Set

$w(\ell)=\int_{0}^{t}\frac{r^{\epsilon/2}(u)}{H(s(u))}d\tilde{N}(u)$ ,

which is well defined since $H(\ell)\neq 0$ for all $t\geqq 0$ by the condition (ii), so that $w(t)$

is a continuous and square integrable martingale with its increasing process

$\langle w\rangle(t)=\int_{0}^{\ell}\frac{r^{\epsilon}(u)}{H^{2}(s(u))}d\langle\tilde{N}\rangle(u)=t$ .
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This implies that $w(t)$ is a Brownian motion process and that

$\tilde{N}(t)=\int_{0}^{\ell}\frac{H(s(u))}{r^{\epsilon/2}(u)}dw(u)$ .

Accordingly, $X(\ell)=(X_{1}(t), X_{2}(t))$ satisfies

$X_{1}(\ell)=Y_{1}(0)+\int_{0}^{\ell}X_{2}(u)du$ ,

$X_{2}(\ell)=Y_{2}(0)-\int_{0}^{\ell}[g(u)X_{2}(u)+\frac{A(s(u))}{r^{2}(u)}f(X_{1}(u))]du$

$+\int_{0}^{t}\frac{H(s(u))}{r^{l’ 2}(u)}dw(u)$

for all $0\leqq t<\tilde{e}$ . Namely. $X(t)$ is a solution of (3.1) with the initial $ndition$

$X(O)=x_{0}\in R^{2}rreswnding$ to the coefficients

$g(t)>0$ , $a(\ell)=A(s(\ell))/r^{2}(t)$ , $h(t)=H(s(t))/r^{\epsilon/2}(t)$ , $f(x_{1})$

and the Brownian motion process $w(t)$

Consider that

$|X(\ell)|^{2}=X_{1}^{2}(\ell)+X_{2}^{2}(\ell)=Y_{1}^{2}(s(t))+X_{2}^{2}(s(t))/r^{2}(\ell)$

and hence

$|X(\phi(\ell))|^{2}=Y_{1}^{2}(t)+Y_{2}^{2}(t)/r^{2}(\phi(t))$

for all $0\leqq t<\tilde{e}$ . Since $r(t)>1$ for all $t>0$ , the above equation implies that

$r^{2}(\phi(t))|X(\phi(t))|^{2}=r^{2}(\phi(t))Y_{1}^{2}(t)+Y_{2}^{2}(t)\geqq|Y(t)|^{2}$

for all $0\leqq t<\tilde{e}$ . Let $t$ tend to $\tilde{e}$ in the both sides of the above equation and notice
that

$\lim_{t\uparrow^{\sim}}|Y(t)|=\infty$
on $\tilde{e}<\infty$ since Remark 1.1 holds. Then we obtain that

$\lim_{t\uparrow^{\sim}}|X(\phi(t))|=\infty$
.

In fact, if it were that
$\lim_{t\uparrow}\inf_{*}\sim|X(\phi(t))|<\infty$

, then we would have that

$\infty>r^{2}(\phi(\tilde{e}))\lim_{\ell\uparrow^{\sim}}\inf|X(\phi(t))|^{2}$

$=\lim_{\sim,t\uparrow\iota}\inf r^{2}(\phi(t))|X(\phi(\ell))|^{2}$

$\geqq\lim_{t\uparrow^{\sim}}\inf|Y(t)|^{2}$

$=\infty$ ,
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which is absurd. Thus we have that

$ t\uparrow\phi(e)\lim_{\sim}|X(t)|=\infty$
,

where $\tilde{e}=\tilde{e}(O, x_{0})$ . Combining this with the definition of the explosion time
$e(O, x_{0})$ of $X(t)$ , we see that $e(O, x_{0})\leqq\phi(\tilde{e})$ . Last, we show that $e(O, x_{0})=\phi(\tilde{e})$ .
Assume that $e(O, x_{0})<\phi(\tilde{e})$ to the contrary. Then we get that $s(e(O, x_{0}))<\tilde{e}$ . Since
$r(t)>1$ for $t>0$ by the condition (i), we notice that

$|X(\ell)|^{2}=Y_{1}^{2}(s(t))+Y_{2}^{2}(s(t))/r^{2}(\ell)\leqq Y_{1}^{2}(s(t))+Y_{2}^{2}(s(t))$

and hence

$|X(\ell)|^{2}\leqq|Y(s(t))|^{2}$

for all $0\leqq t<\tilde{e}$ . Let $t$ tend to $e(O, x_{0})$ in the both sides of the the above equation.
Then Remark 1.1 and the fact that $s(e(O, x_{0}))<\tilde{e}$ yield

$\infty=\lim_{i\uparrow e(0,x_{0})}|X(t)|^{2}\leqq|Y(s(e(0, x_{0})))|^{2}<\infty$ ,

which is a contradiction. Hence we obtain that $e(O, x_{0})=\phi(\tilde{e})$ and $prQQf$ is
completed.
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