YOKOHAMA MATHEMATICAL JOURNAL VOL. 32, 1984

EXTREME AND EXPOSED POINTS IN QUOTIENTS OF DOUGLAS ALGEBRAS BY H^{∞} OR $H^{\infty}+C$

By

KEIJI IZUCHI and YUKO IZUCHI

(Received August 31, 1983)

ABSTRACT. For a Douglas algebra B, we study extreme and exposed points of the unit ball of B/H^{∞} or $B/H^{\infty}+C$. Characterizations of extreme and exposed points in B/H^{∞} are given. And we give conditions on B that the unit ball of $B/H^{\infty}+C$ has extreme points or no extreme points.

1. Introduction

Let H^{∞} be the set of boundary values of bounded analytic functions in the unit disk D of the complex number plane. Then H^{∞} is the (essentially) uniformly closed subalgebra of L^{∞} , bounded measurable functions on ∂D with respect to the nomalized Lebesgue measure m. A uniformly closed subalgebra B between H^{∞} and L^{∞} is called a Douglas algebra. We denote by M(B) the maximal ideal space of B. We put $X=M(L^{\infty})$. Let \hat{m} be the lifting measure of m onto X. Let Cbe the space of continuous functions on ∂D , then $H^{\infty}+C$ is the smallest Douglas algebra containing H^{∞} properly. Basic properties for Douglas algebras and H^{∞} can be found in [7] and for uniform algebras in [6].

We put

 $QC = (H^{\infty} + C) \cap \overline{(H^{\infty} + C)}$ and $QA = H^{\infty} \cap QC$.

In [17], Wolff showed the following excellent theorem.

Wolff's theorem. If f is a function in L^{∞} , then there is an outer function q in QA such that $qf \in QC$.

Wolff's theorem gives us many informations about the behaviors of L^{∞} functions on X (see [17]). Here we use it some times.

In [1], Amar and Lederer showed that if E is a closed subset of X with $\hat{m}(E)=0$, then there is a peak set P for H^{∞} with $E \subset P \subsetneq X$. In Section 2, we will show that P can be taken as a peak set for QA (Theorem 1). If we use both Amar and Lederer, and Wolff's theorem, it is easy to show Theorem 1.

Key words: Douglas algebra, extreme point, exposed point.

¹⁹⁸⁰ Mathematics subject classification: Primary 30H05, 46B20, 46J30.

For, by Amar and Lederer's theorem there is a peaking function f in H^{∞} for some peak set P with $E \subset P \subsetneq X$, then by Wolff's theorem there is an outer function q in QA such that $(1-f)q \in H^{\infty} \cap QC = QA$. By [17, Lemma 2.3], $\{x \in X;$ $(1-f)q(x)=0\}$ is a desired peak set for QA. We will give the proof of Theorem 1 using only Wolff's theorem.

The main subject in this paper is to study extreme and exposed points in quotient spaces of Douglas algebras. For a Banach space Y, we denote by ball (Y) the closed unit ball of Y. A point $x \in \text{ball}(Y)$ is called extreme if $x=(x_1+x_2)/2$ for $x_1, x_2 \in \text{ball}(Y)$ implies $x=x_1=x_2$. A point $x \in \text{ball}(Y)$ is called exposed if there is a linear functional L in the dual space Y^* such that ||L||=L(x)=1 and $L(y)\neq 1$ for every $y \in \text{ball}(Y)$ with $y\neq x$. We note that exposed points are extreme points. A characterization of extreme points of ball (L^{∞}/H^{∞}) is given by Koosis ([14]), and a characterization of exposed points of ball (L^{∞}/H^{∞}) is given by Izuchi and Younis ([13]). Axler, Berg, Jewell and Shields ([3]) showed that ball $(L^{\infty}/H^{\infty}+C)$ does not have extreme points. For a general Douglas algebra B, extreme and exposed points of ball (L^{∞}/B) are studied in [10, 11 and 13] (also see these references). Our problem here is to study the case that L^{∞} is replaced by a Douglas algebra B. Our questions are:

Question 1. Give characterizations of extreme and exposed points of ball (B/H^{∞}) .

Question 2. For which Douglas algebra B, does ball $(B/H^{\infty}+C)$ have extreme points?

Answers for Question 1 will be given in Theorems 2 and 3 (in Section 3). But we can not give a complete answer for Question 2. We will give partial answers for Question 2 in Theorems 4 and 5 (in Section 4).

2. Peak sets for QA

For a point $x \in M(H^{\infty})$, we denote by μ_x the unique representing measure on X for x. A closed subset E of X is called a support set if there is $x \in M(H^{\infty}+C) \setminus X$ such that $E = \operatorname{supp} \mu_x$. In [16], Sarason gave the following characterization of QC.

Lemma 1. $QC = \{f \in L^{\infty}; f \text{ is constant on each support set}\}.$

Since QC is the C*-subalgebra of L^{∞} , M(QC) is a quotient space of X by considering that each QC-level set is one point. Here, for a point x_0 in X, $\{x \in X; f(x)=f(x_0) \text{ for every } f \in QC\}$ is called a QC-level set. Thus there is a natural

46

projection π_0 from X onto M(QC). Let \hat{m}_0 be the lifting measure of *m* onto M(QC). That is, \hat{m}_0 is the probability measure on M(QC) such that

$$\int_{\partial D} f \, dm = \int_{\mathcal{M}(QC)} f \, d\hat{m}_0 \quad \text{for every} \quad f \in QC \; .$$

Our theorem is a generalization of Amar and Lederer's H^{∞} peak set theorem ([1]).

Theorem 1. If E is a closed subset of X such that $\hat{m}(E)=0$, then $\hat{m}_0(\pi_0(E))=0$ and there is a peak set P for QA such that $E \subset P \subsetneq X$.

To show Theorem 1, we need some lemmas. Wolff gave the following lemma in [17, Lemma 2.3].

Lemma 2. A closed G_{δ} -set S of M(QC) with $\hat{m}_0(S)=0$ is a peak interpolation set for QA.

The key point to prove Theorem 1 is how to use Wolff's theorem to show $\hat{m}_0(\pi_0(E))=0$. For a subset F of L^{∞} , we denote by [F] the closed subalgebra generated by F.

Lemma 3. For a sequence $\{f_n\}_{n=1}^{\infty}$ in L^{∞} , we put $B = [H^{\infty}, f_n; n=1, 2, \cdots]$. Then there is an outer function $q \in QA$ such that $qB \subset H^{\infty} + C$.

Proof. By Lemma 2.2 in [12], there is a Blaschke product b such that $bB \subset H^{\infty} + C$. By Wolff's theorem, there is an outer function $q \in QA$ such that $qb \in QC$. Then

$$qB = qb \cdot bB \subset QC(H^{\infty} + C) \subset H^{\infty} + C$$
 .

Lemma 4. For a sequence $\{f_n\}_{n=1}^{\infty}$ in L^{∞} , there is an outer function $q \in QA$ such that $qf_n \in QC$ for every n.

Proof. We put $B = [H^{\infty}, f_n, \bar{f_n}; n=1, 2, \cdots]$. Then by Lemma 3, there is an outer function $q \in QA$ such that $qB \subset H^{\infty} + C$. Thus we get

$$qf_n, qf_n \in H^{\infty} + C$$
 for every n .

Let E be a support set such that $q \neq 0$ on E. Then q is non-zero constant on E by Lemma 1. Also we get

$$\operatorname{Re} f_n|_E \in (H^{\infty} + C)|_E = H^{\infty}|_E$$
 and $\operatorname{Im} f_n|_E \in H^{\infty}|_E$.

This shows that f_n is constant on E, because E is a set of antisymmetry for H^{∞} . Hence qf_n is constant on E and this means that $qf_n \in QC$ by Lemma 1.

Proof of Theorem 1. We can take a decreasing sequence $\{U_n\}_{n=1}^{\infty}$ of openclosed subsets of X such that $E \subset U_n$ $(n=1, 2, \cdots)$ and $\hat{m}(\bigcap_n U_n)=0$. Then clearly we get $\hat{m}(U_n) \to 0$ as $n \to \infty$. Let χ_n be the characteristic function of U_n . Then by Lemma 4, there is an outer function $q \in QA$ such that $q\chi_n \in QC$ for every n. We put

$$V_n = \{x \in X; (q\chi_n)(x) \neq 0\}$$
 and $V_0 = \{x \in X; q(x) = 0\}$.

We note that $V_n \subset U_n$. Since q and $q\chi_n$ are contained in QC, we get

$$V_n = \pi_0^{-1}(\pi_0(V_n))$$
 and $V_0 = \pi_0^{-1}(\pi_0(V_0))$.

If we put $W_n = V_n \cup V_0$, then $W_n = \pi_0^{-1}(\pi_0(W_n))$. Since $\overline{V}_n \subset U_n$, q vanishes on $\overline{V}_n \setminus V_n$. This implies that $\overline{V}_n \setminus V_n \subset V_0$. Hence W_n is closed and $W_n \supset U_n$. We note that $\hat{m}_0(G) = \hat{m}(\pi_0^{-1}(G))$ for any closed subset G of M(QC). Since q is outer, we have $\hat{m}(V_0) = 0$ and thus $\hat{m}(W_n) = \hat{m}(U_n)$. If we put $K = \bigcap_n W_n$, then $E \subset \bigcap_n U_n \subset K$ and $K = \pi_0^{-1}(\pi_0(K))$. Since

$$\hat{m}(K) \leq \hat{m}(W_n) = \hat{m}(U_n) \rightarrow 0 \text{ as } n \rightarrow \infty$$
,

we have $\hat{m}_0(\pi_0(E))=0$. Then there exists a closed G_{δ} -set P_0 of M(QC) such that $\pi_0(E) \subset P_0$ and $\hat{m}_0(P_0)=0$. If we put $P=\pi_0^{-1}(P_0)$, then P is a peak set for QA such that $E \subset P \subsetneq X$ by Lemma 2.

Corollary 1. For a closed subset E of X, $\hat{m}(E)=0$ if and only if $\hat{m}_0(\pi_0(E))=0$.

Using Lemma 4, we get the following proposition by the same way as the proof of Theorem 2.1 of [12].

Proposition 1. Let B be a Douglas algebra with $B \supset H^{\infty} + C$ and let $\{\mu_n\}_{n=1}^{\infty}$ be a sequence of annihilating measure on X for B, that is, $\mu_n \in B^{\perp}$ for every n. Let $\{\lambda_n\}_{n=1}^{\infty}$ be a sequence of measures on X such that λ_n is absolutely continuous with respect to μ_n for every n. Then there exists an outer function $q \in QA$ such that $q\lambda_n \in B^{\perp}$ for every n.

In [12], we showed the following corollary using M-ideal's theorem. Here we give another proof using Proposition 1.

Corollary 2. Let $\{\mu_n\}_{n=1}^{\infty}$ be a sequence of measures on X such that $\mu_n \in (H^{\infty}+C)^{\perp}$ for every n. If we put E the closure of $\bigcup \{\text{supp } \mu_n; n=1, 2, \cdots\}$ in X, then $\hat{m}(E)=0$.

Proof. Let $\{\mu_n\}_{n=1}^{\infty}$ be a sequence of measures on X such that $\mu_n \in (H^{\infty}+C)^{\perp}$. By Proposition 1, there is an outer function $q \in QA$ such that $q \mid \mu_n \mid \in (H^{\infty}+C)^{\perp}$ for every *n*. Then we get

$$\int |q|^2 d|\mu_n| = 0 \quad \text{for every} \quad n ,$$

because $\bar{q} \in H^{\infty} + C$. Thus q=0 on the closure of $\bigcup \{ \text{supp } \mu_n ; n=1, 2, \cdots \}$. Since q is outer, we get our assertion.

3. Extreme and exposed points of ball (B/H^{∞})

Throughout of this and next sections, let B be a Douglas algebra with $B \supset H^{\infty}+C$ and let Γ be the essential set for B, that is, Γ is the smallest closed subset of X for which $f \in L^{\infty}$ vanishing on Γ implies $f \in B$. In this section, we give a complete answer for Question 1.

Theorem 2. Let $f \in B$ with $|| f + H^{\infty} || = 1$. Then $f + H^{\infty}$ is an extreme point of ball (B/H^{∞}) if and only if $f + H^{\infty}$ is an extreme point of ball (L^{∞}/H^{∞}) .

Proof. Assume that $f+H^{\infty}$ is an extreme point of ball (B/H^{∞}) . Since H^{∞} has the best approximation property, we may assume that ||f||=1. Moreover suppose that

 $|f+h| \leq 1$ and $|f+h| \neq 1$ on X for some $h \in H^{\infty}$.

Since $|H^{\infty}+C|=|L^{\infty}|$ by [2], there is $g \in H^{\infty}+C$ such that

 $g \neq 0$, $g \notin H^{\infty}$ and $|f+h\pm g| \leq 1$ on X.

Then we have $||f+H^{\infty}\pm(g+H^{\infty})|| \leq 1$ and $g+H^{\infty}\neq H^{\infty}$. Since $g \in B$, this implies that $f+H^{\infty}$ is not an extreme point of ball (B/H^{∞}) . So that we get

$$|f+h|=1$$
 on X for every $h \in H^{\infty}$ with $||f+h||=1$.

This shows us f has a unique best approximation 0 in H^{∞} and |f|=1 on X, because if $h\neq 0$, consider f+h/2. By Koosis' theorem ([14]), $f+H^{\infty}$ is an extreme point of ball (L^{∞}/H^{∞}) .

The converse is trivial.

Theorem 3. Let $f \in B$ with $|| f + H^{\infty} || = 1$. Then $f + H^{\infty}$ is an exposed point of ball (B/H^{∞}) if and only if $f + H^{\infty}$ is an exposed point of ball (L^{∞}/H^{∞}) .

Proof. Assume that $f+H^{\infty}$ is an exposed point of ball (B/H^{∞}) and ||f||=1. Then there is a measure μ on X such that

$$\|\mu\|=1$$
, $\mu\perp H^{\infty}$, $\int fd\mu=1$ and $\int gd\mu\neq 1$
for every $g\in B$ with $\|g+H^{\infty}\|=1$ and $g+H^{\infty}\neq f+H^{\infty}$.

We put $\mu = \mu_a + \mu_s$, where $\mu_a \ll \hat{m}$ and $\mu_s \perp \hat{m}$. To show $\mu_a \neq 0$, suppose that $\mu_a = 0$. Then we get $\mu \perp H^{\infty} + C$. By Corollary 2, we have $\hat{m}(\text{supp }\mu) = 0$. By Amar and Lederer's theorem (or Theorem 1), there is a non-constant function h_1 in H^{∞} such that $||h_1|| = 1$ and

$${x \in X; h_1(x) = 1} = {x \in X; |h_1(x)| = 1} \supset \text{supp } \mu$$
.

By [11, Corollary 2], we have $\{x \in X; h_1(x)=1\} \supseteq \sup \mu$, so we can take a non-zero function $h_2 \in H^{\infty} + C$ such that

$$\|h_1+h_2\|=1$$
 and $\operatorname{supp} h_2 \cap \operatorname{supp} \mu = \emptyset$.

Since non-trivial peak set, $\{x \in X; h_1(x)=1\}$, has \hat{m} -measure zero, we have $\sup f \not\subset \{x \in X; h_1(x)=1\}$. So we may assume that $h_2 f \neq 0$. Since $\sup h_2 \neq X$, we note that $h_2 f \notin H^{\infty}$. Then we have $h_1 f$, $(h_1+h_2)f \in B$, $||h_1f|| = ||(h_1+h_2)f|| = 1$ and

$$\int h_1 f d\mu = \int (h_1 + h_2) f d\mu = 1.$$

This shows $||h_1f+H^{\infty}|| = ||(h_1+h_2)f+H^{\infty}|| = 1$. Since $f+H^{\infty}$ is exposed, we get $h_1f+H^{\infty}=(h_1+h_2)f+H^{\infty}=f+H^{\infty}$. Thus we get a contradiction $h_2f \in H^{\infty}$. This contradiction gives us $\mu_a \neq 0$. Since ||f||=1, $||\mu||=1$ and $\int fd\mu=1$, we have $\int fd\mu_a = ||\mu_a||$. Since $\mu_a \perp H^{\infty}$, there is a function F in H_0^1 such that $\int_{a_D} fFdm = ||F||_1$. Thus we get $fF \ge 0$. By Izuchi and Younis' characterization theorem of exposed points of ball (L^{∞}/H^{∞}) ([13]), $f+H^{\infty}$ is an exposed points of ball (L^{∞}/H^{∞}) .

The converse is trivial.

Using Theorems 2 and 3, we can study extreme and exposed points of other quotient spaces. Chang ([5]) showed that $B=H^{\infty}+C_B$, where C_B is the C*-sub-algebra generated by inner functions I with $\overline{I} \in B$. Also she showed that $||f+H^{\infty}|| = ||f+H^{\infty} \cap C_B||$ for $f \in C_B$. By this fact, we can consider that

$$B/H^{\infty} = (H^{\infty} + C_{\scriptscriptstyle B})/H^{\infty} = C_{\scriptscriptstyle B}/H^{\infty} \cap C_{\scriptscriptstyle B}$$

Corollary 3. Let $f \in C_B$ with $||f+H^{\infty} \cap C_B||=1$. Then $f+H^{\infty} \cap C_B$ is an extreme (exposed) point of ball $(C_B/H^{\infty} \cap C_B)$ if and only if $f+H^{\infty}$ is an extreme (exposed) point of ball (L^{∞}/H^{∞}) .

For each f in C with $||f+H^{\infty}||=1$, there exist unique $g \in H^{\infty}$ and $F \in H_0^1$ such that ||f+g||=1 and $(f+g)F \ge 0$ ([7, p. 137]). By Izuchi and Younis' theorem [13], $f+H^{\infty}$ is an exposed point of ball (L^{∞}/H^{∞}) . Thus we get

Corollary 4. Every boundary point of ball $(H^{\infty}+C/H^{\infty})$, ball $(C/H^{\infty}\cap C)$ and ball (QC/QA) is an exposed point of respective space.

Proof. By Wolff ([17, Lemma 2.1]), QC=QA+C. So that $H^{\infty}+C/H^{\infty}=C/H^{\infty}\cap C=QC/QA$.

We note that $H^{\infty} \cap C$ is called a disk algebra usually.

4. Extreme points of ball $(B/H^{\infty}+C)$

In this section, we study Question 2 and give two partial answers.

Theorem 4. If $qB \not\subset H^{\infty} + C$ for every outer function $q \in QA$, then ball $(B/H^{\infty} + C)$ does not have extreme points.

To show Theorem 4, we need the following two lemmas.

Lemma 5 ([3]). $H^{\infty}+C$ has the best approximation property.

Lemma 6 ([16]). For $f \in L^{\infty}$, $f \in H^{\infty} + C$ if and only if $f|_{E} \in H^{\infty}|_{E}$ for every support set E.

Proof of Theorem 4. Let $f+H^{\infty}+C \in \text{ball}(B/H^{\infty}+C)$ with $||f+H^{\infty}+C||=1$. By Lemma 5, we may assume ||f||=1. By Wolff's theorem, there is an outer function $q \in QA$ such that $qf \in QC$. We may assume ||q||=1. By Lemma 1, we have

$$(1) |q|f \in QC.$$

By our condition, there is $F \in B$ such that

(2) $qF \notin H^{\infty} + C \text{ and } ||F|| = 1.$

By Lemmas 1 and 6, we have $|q|F \notin H^{\infty} + C$. We note that $|q|F \in B$. Then we have

$$\begin{aligned} \|f + H^{\infty} + C_{\pm}(|q|F + H^{\infty} + C)\| &= \|(1 - |q|)f + |q|f \pm qF + H^{\infty} + C\| \\ &\leq \|(1 - |q|)f \pm qF\| \quad \text{by (1)} \\ &\leq \|1 - |q| + |q|\| \quad \text{by } \|f\| = \|q\| = \|F\| = 1 \\ &= 1. \end{aligned}$$

This shows that $f+H^{\infty}+C$ is not an extreme point of ball $(B/H^{\infty}+C)$.

For a Douglas algebra B, we put

N(B) = the closure of $\bigcup \{ \text{supp } \mu_x ; x \in M(H^{\infty} + C) \setminus M(B) \}$.

Corollary 6. If $\hat{m}(N(B)) > 0$, then ball $(B/H^{\infty}+C)$ does not have extreme points.

Proof. By Corollary 1, $\hat{m}(N(B)) > 0$ if and only if $\hat{m}_0(\pi_0(N(B))) > 0$. Here we will show that $\hat{m}_0(\pi_0(N(B))) > 0$ if and only if $qB \not\subset H^\infty + C$ for every outer function $q \in QA$.

Suppose that $\hat{m}_0(\pi_0(N(B))) > 0$ and $q \in QA$ is an outer function. Since $\hat{m}_0(\{x \in M(QC); q(x)=0\})=0$, there is $x_0 \in M(H^{\infty}+C) \setminus M(B)$ such that $q \neq 0$ on supp μ_{x_0} . Then $q(x_0) \neq 0$. By Chang-Marshall's theorem ([4], [15]),

 $M(B) = \{x \in M(H^{\infty} + C); B|_{\sup p_{\mu_x}} = H^{\infty}|_{\sup p_{\mu_x}}\}.$

Then there is $F \in B$ such that $F|_{\sup p_{\mu_{x_0}}} \notin H^{\infty}|_{\sup p_{\mu_{x_0}}}$. Thus we get $qF \notin H^{\infty} + C$ by Lemma 6.

Suppose that $\hat{m}_0(\pi_0(N(B)))=0$. Then $\pi_0(N(B))$ is contained in a proper peak set for QA by Lemma 2. Hence there is an outer function $q \in QA$ such that q=0 on $\pi_0(N(B))$, and then $qB \subset H^{\infty} + C$.

Corollary 7. If $\hat{m}(\Gamma) < 1$, then ball $(B/H^{\infty} + C)$ does not have extreme points.

Proof. If $\hat{m}(\Gamma) < 1$, then $N(B) \supset \Gamma^c$ and $\hat{m}(N(B)) > 0$.

When $\hat{m}(N(B))=0$, Theorem 4 does not work for Question 2. The last part of this paper, we will give a Douglas algebra B such that $ball(B/H^{\infty}+C)$ has an extreme point.

A sequence $\{z_n\}_{n=1}^{\infty}$ in D is called interpolating if for each bounded sequence $\{a_n\}_{n=1}^{\infty}$ there is $h \in H^{\infty}$ such that $h(z_n) = a_n$ for $n = 1, 2, \cdots$. A Blaschke product with zeros $\{z_n\}_{n=1}^{\infty}$ is called interpolating if $\{z_n\}_{n=1}^{\infty}$ is interpolating.

Theorem 5. Let b be an interpolating Blaschke products and $B=[H^{\infty}, \bar{b}]$. Then $\bar{b}+H^{\infty}+C$ is an extreme point of ball $(B/H^{\infty}+C)$.

To show this, we need two lemmas. For $f \in H^{\infty} + C$, we put

$$Z(f) = \{x \in M(H^{\infty} + C); f(x) = 0\}$$
.

The following is a special case of [8, Theorem 1].

Lemma 7. If $f \in H^{\infty} + C$ and b is an interpolating Blaschke products with $Z(f) \supset Z(b)$, then $fb \in H^{\infty} + C$.

Lemma 8 ([9, p. 176]). Let $f \in H^{\infty}+C$ and I is an inner function. If f vanishes on $\{x \in M(H^{\infty}+C); |I(x)| < 1\}$, then $f\bar{I}^n \in H^{\infty}+C$ for every n.

Proof of Theorem 5. First we note that $\|\bar{b}+H^{\infty}+C\|=1$. Suppose that

$$\bar{b} + H^{\infty} + C = \frac{1}{2}(g_1 + H^{\infty} + C) + \frac{1}{2}(g_2 + H^{\infty} + C)$$

with $||g_i+H^{\infty}+C||=1$ and $g_i \in B$ (i=1,2). By Lemma 5, there are h_i (i=1,2) in $H^{\infty}+C$ such that $||g_i+h_i||=1$. Then there is h in $H^{\infty}+C$ such that

(1)
$$\bar{b}+h=(g_1+h_1+g_2+h_2)/2$$
 and $\|\bar{b}+h\|=1$.

Here our claim is

$$h=0$$
 on $N(B)$.

Suppose that the above claim is true. Since $|\bar{b}|=1$ on N(B) and $||g_i+h_i||=1$, by (1) and our claim, we get

$$b = g_1 + h_1 = g_2 + h_2$$
 on $N(B)$.

Then $\overline{b}-g_1-h_1=0$ on N(B) and $\overline{b}-g_1-h_1\in B$. Since $B|_{\sup p_{\mu_y}}=H^{\infty}|_{\sup p_y}$ for every $y\in M(H^{\infty}+C)$ with |b(y)|=1, we get

$$(\bar{b}-g_1-h_1)|_{\sup p_{\mu_s}} \in H^{\infty}|_{\sup p_{\mu_s}}$$
 for every $z \in M(H^{\infty}+C)$.

By Lemma 6, we have $\bar{b}-g_1-h_1 \in H^{\infty}+C$. Thus $\bar{b}+H^{\infty}+C=g_1+H^{\infty}+C$. This implies that $\bar{b}+H^{\infty}+C$ is an extreme point of ball $(B/H^{\infty}+C)$.

Proof of Claim. To show our claim, we need Lemmas 7 and 8. Since $M(B) = \{x \in M(H^{\infty}+C); |b(x)|=1\}, N(B)$ coincides with the closure of $\bigcup \{\text{supp } \mu_x; x \in M(H^{\infty}+C), |b(x)|<1\}$. Let $\varphi \in Z(b)$. Since ||1+bh||=1 and $1=\int (1+bh)d\mu_{\varphi}$, we have 1+bh=1 on $\supp \mu_{\varphi}$. Thus we get

(2)
$$h=0$$
 on $\operatorname{supp} \mu_{\varphi}$ for every $\varphi \in Z(b)$.

This means that h=0 on Z(b). By Lemma 7, we have $h\bar{b} \in H^{\infty}+C$. By (2), we have $h\bar{b}=0$ on Z(b). Again we get $h\bar{b}^2 \in H^{\infty}+C$. Continuing this argument, we get

$$hb^n \in H^{\infty} + C \quad \text{for every} \quad n = 1, 2, \cdots$$

By Lemma 8, we have

h=0 on $\{x \in M(H^{\infty}+C); |b(x)| < 1\}$.

By the same way as the first part, we get

h=0 on $\operatorname{supp} \mu_x$ for every $x \in M(H^{\infty}+C)$ with |b(x)| < 1.

Thus we get our claim.

This work was done while the both authors were visiting scholars at the University of California, Berkeley.

References

- E. Amar and A. Lederer, Points exposés de la boule unité de H∞(D), C.R. Acad. Sci, Paris, Ser., A 272 (1971), 1449-1552.
- [2] S. Axler, Factorization of L^{∞} functions, Ann. of Math., 106 (1977), 567-572.
- [3] S. Axler, I. D. Berg, N. Jewell, and A. L. Shields, Approximation by compact operators and the space H[∞]+C, Ann, of Math., 109 (1979), 601-612.

- [4] S-Y. A. Chang, A characterization of Douglas subalgebras, Acta Math., 137 (1976), 81-89.
- [5] S-Y. A. Chang, Structure of subalgebras between L[∞] and H[∞], Trans. Amer. Math. Soc., 227 (1977), 319-332.
- [6] T.W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- [7] J. Garnett, Bounded analytic functions, Academic Press, New York and London, 1981.
 [8] C. Guillory, K. Izuchi, and D. Sarason, Interpolating Blaschke products and division in Douglas algebras, Proc. Royal Irish Acad., 84A (1984), 1-7.
- [9] C. Guillory and D. Sarason, Division in $H^{\infty}+C$, Michigan Math. J., 28 (1981), 173-181.
- [10] K. Izuchi, Extreme points of unit balls of quotients of L^{∞} by Douglas algebras, to appear in Illinois J. Math.
- [11] K. Izuchi, Exposed and strongly exposed points in quotient spaces of Douglas algebras, to appear in Bull. Acad. Pol. Sci.
- K. Izuchi and Y. Izuchi, Annihilating measures for Douglas algebras, Yokohama Math. J. 32 (1984), 135-151.
- [13] K. Izuchi and R. Younis, On the quotient space of two Douglas algebras, preprint.
- [14] P. Koosis, Weighted quadratic means of Hilbert transforms, Duke Math. J., 38 (1971), 609-634.
- [15] D. E. Marshall, Subalgebras of L^{∞} containing H^{∞} , Acta Math., 137 (1976), 91-98.
- [16] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc., 207 (1975), 391-405.
- [17] T. Wolff, Two algebras of bounded functions, Duke Math. J., 49 (1982), 321-328.

Department of Mathematics, Kanagawa University, Yokohama 221 Japan Nishirokugo 4-6-24-1016, Ota-ku Tokyo 144, Japan