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ABSTRACT. For a Douglas algebra B, we study extreme and exposed points
of the unit ball of B/H* or B/H*+(C. Characterizations of extreme and
exposed points in B/H® are given. And we give conditions on B that the
unit ball of B/H*+C has extreme points or no extreme points.

1. Introduction

Let H* be the set of boundary values of bounded analytic functions in the
unit disk D of the complex number plane. Then H* is the (essentially) uniformly
closed subalgebra of L>, bounded measurable functions on D with respect to the
nomalized Lebesgue measure m. A uniformly closed subalgebra B between H*
and L~ is called a Douglas algebra. We denote by M{(B) the maximal ideal space
of B. We put X=M(L~). Let # be the lifting measure of m onto X. Let C
be the space of continuous functions on 3D, then H=+C is the smallest Douglas
algebra containing H> properly. Basic properties for Douglas algebras and H*
can be found in [7] and for uniform algebras in [6].

We put

QC=(H"+C)n(H*+C) and QA=H"NQC.
In [17], Wolff showed the following excellent theorem.

Wolff’s theorem. If f is a function in L=, then there is an outer function q
in QA such that qf € QC.

Wolff’s theorem gives us many informations about the behaviors of L* func-
tions on X (see [17]). Here we use it some times.

In [I], Amar and Lederer showed that if E is a closed subset of X with
#m(E)=0, then there is a peak set P for H* with ECP&X. In Section 2, we

will show that P can be taken as a peak set for QA (Theorem I). If we use
both Amar and Lederer, and Wolff’s theorem, it is easy to show [Theorem 1.
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For, by Amar and Lederer’s theorem there is a peaking function f in H> for
some peak set P with EC P& X, then by Wolff’s theorem there is an outer func-
tion ¢ in QA such that (1-f)ge H* NQC=QA. By [17, Lemma 2.3], {xe X;
(1— f)g(x)=0} is a desired peak set for QA. We will give the proof of Theorem
1 using only Wolff’s theorem. |
The main subject in this paper is to study extreme and exposed points in
quotient spaces of Douglas algebras. For a Banach space Y, we denote by ball (Y)
the closed unit ball of Y. A point zeball(Y) is called extreme if z=(x,+x.)/2
for x,, x;€ball(Y) implies x=x,=%,. A point zecball(Y) is called exposed if
there is a linear functional L in the dual space Y* such that ||L)|=L(z)=1 and
L(y)#1 for every yehball (Y) with y#x. We note that exposed points are extreme
points. A characterization of extreme points of ball (L~/H>) is given by Koosis
([14), and a characterization of exposed points of ball (L=/H =) is given by Izuchi
and Younis ([13])). Axler, Berg, Jewell and Shields (3] showed that ball (L*/H>+C)
~ does not have extreme points. For a general Douglas algebra B, extreme and
exposed points of ball (L*/B) are studied in [10, 11 and 13] (also see these refer-
ences). Our problem here is to study the case that L~ is replaced by a Douglas
algebra B. Our questions are:

Question 1. Give characterizations of extreme and exposed points of
ball (B/H=).

Question 2. For which Douglas algebra B, does ball (B/H"+C) have extreme
boints? '

Answers for Question 1 will be given in Theorems 2 and 3 (in Section 3). But
we can not give a complete answer for Question 2. We will give partial answers
for Question 2 in Theorems 4 and 5 (in Section 4).

2. Peak sets for QA

For a point € M(H*), we denote by g, the unique representing measure on
X for z. A closed subset E of X is called a support set if there is z € MHA+C\X
such that E=supp yg,. In [16], Sarason gave the following characterization of
QC.

Lemma 1. QC={feL"; f is constant on each support set}.

Since QC is the C*-subalgebra of L, M(QC) is a quotient space of X by
considering that each @C-level set is one point. Here, for a point z, in X, {xe X;
S (@)=f(x,) for every fe@QC} is called a QC-level set. Thus there is a natural
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projection 7, from X onto M(QC). Let #, be the lifting measure of m onto
M(@QC). That is, s, is the probability measure on M(QC) such that

S fdm:S fdm, for every feQC.
aD M(QO)

Our theorem is a generalization of Amar and Lederer’s H> peak set theorem

(1D.

Theorem 1. If E is a closed subset of X such that m(E)=0, then 1 (z,(E))=0
and there is a peak set P for QA such that Ec P<X.

To show [Theorem 1, we need some lemmas. Wolff gave the following lemma
in [17, Lemma 2.3].

Lemma 2. A closed Gs-set S of M(QC) with %,(S)=0 is a peak interpolation
set for QA.

The key point to prove [Theorem 1 is how to use Wolff’s theorem to show
Mo(mo(E))=0. For a subset F of L~, we denote by [F] the closed subalgebra
generated by F. '

Lemma 3. For a sequence {f,.};;lvin L>, we put B=[H", fn;n=1,'2, eee].
Then there is an outer function q€ QA such that gBc H>+C.

Proof. By Lemma 2.2 in [12], there is a Blaschke product b such that
bBc H>+C. By Wolff’s theorem, there is an outer function g€ @A such that
gbe@QC. Then ‘

qB=qb-bBCQCH>*+C)cH~+C.

Lemma 4. For a sequence {f.}3-1 in L, there is an outer function g QA
such that qf, € QC for every n.

Proof. We put B=[H", f,, fn; #=1,2, -+-]. Then by there is an
outer function g€ QA such that gBCc H*+C. Thus we get

afn af.€ H*+C for every =.

Let E be a support set such that g0 on E. Then ¢ is non-zero constant on E
by Lemma 1. Also we get

Refn]Ee(Hw-l_C)lE:leE and ImfnlEeH”IEo

This shows that f, is constant on E, because E is a set of antisymmetry for H=.
Hence gf, is constant on E and this means that ¢f, € QC by Lemma 1.
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Proof of Theorem 1. We can take a decreasing sequence {U,}>., of open-
closed subsets of X such that ECU, (n=1,2, ---) and #() U,)=0. Then clearly
we get m(U,)—0 as n—oo. Let X, be the characteristic funnction of U,. Then by
there is an outer function ge QA such that gX,eQC for every .
We put '

Vi={ze X; (gt)(x)#0} and V,={zeX; q(x)=0} .

We note that V,cU,. Since q and gX, are contained in QC, we get
Ve=n"Yxo(V,)) and Vo=my"Hmo(Vy)) «

If we put W,=V,UV,, then W,=z,""x(W,)). Since V,cU, q vanishes on
Va\V.. This implies that V,\V,c V,. Hence W, is closed and W,oU,. We note
that #71,(G)=u(z,"*(G)) for any closed subset G of M(QC). Since q is outer, we
have #(V,)=0 and thus #(W,)=m(U,). If we put K= W,, then EcNU,cK
and K=r,"(z,(K)). Since " "

m(K)=m(W,)=m(U,)>0 as n—oo,

we have #,(x,(E))=0. Then there exists a closed Gs-set P, of M(QC) such that
m(E)C P, and #,(P,)=0. If we put P=r,"'(P,), then P is a peak set for QA such
that Ec P<X by Lemma 2.

Corollary 1. For a closed subset E of X, m(E)=0 if and only if mi,(x,(E))=0.

Using we get the following proposition by the same way as the
proof of Theorem 2.1 of [12].

Proposition 1. Let B be a Douglas algebra with BOH>+C and let {u}:-,
be a sequence of annihilating measure on X for B, that is, p, € B* for every n.
Let {:}7-1 be a sequence of measures on X such that 2, is absolutely continuous
with respect to p, for every n. Then there exists an outer function qc QA such
that qi, € B* for every n.

In [12], we showed the following corollary using M-ideal’s theorem. Here

we give another proof using [Proposition 1.

Corollary 2. Let {¢,}7-, be a sequence of measures on X such that p, € (H>+C)*
for every n. If we put E the closure of U {supp u,;7=1,2, -} in X, then
m(E)=0.

Proof. Let {u.}.-, be a sequence of measures on X such that p, € (H*+C)*.
By [Proposition 1, there is an outer function g€ QA such that q| ., | e (H>+C)*
for every n. Then we get




QUOTIENTS OF DOUGLAS ALGEBRAS 49

SIQIzdIan=O for every n,

because g€ H*+C. Thus ¢=0 on the closure of U {supp p.; n=1,2, ---}. Since
q is outer, we get our assertion.

3. Extreme and exposed points of ball (B/H>)

Throughout of this and next sections, let B be a Douglas algebra with B>
H=4-C and let I" be the essential set for B, that is, I" is the smallest closed subset
of X for which f €L~ vanishing on I implies f € B. In this section, we give
a complete answer for Question 1.

Theorem 2. Let feB with || f+H="|=1. Then f-+H" is an extreme point
of ball (B/H*) if and only if f+H= is an extreme point of ball (L=/H").

Proof. Assume that f+H= is an extreme point of ball (B/H*). Since _H >
has the best approximation property, we may assume that || f|]|=1. Moreover
suppose that

|f+AI=1 and |f+h|#1 on X for some heH>.
Since |H>+C|=|L>| by [2], there is ge H~+C such that
g+0, g¢H= and |f+h+g|<1 on X.

Then we have | f+H>+(9+H*)||<1 and g+H~+H=. Since g€ B, this implies
that f4-H* is not an extreme point of ball (B/H~). So that we get

1f+h|=1 on X for every he H* with [|f+h[=1.

This shows us f has a unique best approximation 0 in H* and | f|=1 on X,
because if A0, consider f+#4/2. By Koosis’ theorem ([14]), f+H= is an extreme
point of ball (L=/H~).

The converse is trivial.

Theorem 3. Let feB with | f+H*|=1. Thern f+H" is an exposed point
of ball (B/H*) if and only if f+H" is an exposed point of ball (L=/H™).

Proof. Assume that f+H> is an exposed point of ball (B/H*) and | f|=1.
Then there is a measure g on X such that

lel=1, pLH=, Sfd,u=1 and Sgd,u;bl
for every geB with [|g+H=|=1 and g+H~+~f+H>.
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We put p=p,+p,, where p, &< and g, 1#m. To show u,#0, suppose that p,=O0.
Then we get p1 H*+C. By we have si(supp ©)=0. By Amar and
Lederer’s therorem (or [Theorem 1), there is a non-constant function A, in H®
such that || 4, ]|=1 and

{xe X; h(@x)=1}={zre€ X; | h)(x) |=1}Dsupp .

By [11, Corollary 2], we have {x € X; h,(x)=1}=2supp ¢, so we can take a non-zero
function A, € H>+C such that

| i+h.|=1 and supp k.Nsupp p=0 .

Since non-trivial peak set, {x € X; k,(x)=1}, has »-measure zero, we have supp f &
{x€X; h,(x)=1}. So we may asuume that A,f+0. Since supp h,+X, we note
that h,f ¢ H*. Then we have h,f, (h,+h)f€B, |hf|=|(h+h)f|=1 and

S b, fd;z=§ (hy+hy) fdp=1 .

This shows ||, f+H>|=|(h+h)f+H=>||=1. Since f+H= is exposed, we get
hf+H>=(h+h)f+H=f+H=~. Thus we get a contradiction h,f € H*. This
contradiction gives us p,#0. Since | f||=1, |g¢l=1 and S fdp=1, we have
S fdp.=|lp,)l. Since g,1 H>, there is a function F in H,® such that S JFdm=
[Fll,. Thus we get fF=0. By Izuchi and Younis’ characterization theorem of
exposed points of ball (L=/H=) ([13]), f+H> is an exposed points of ball (L=/H*).

The converse is trivial.

Using Theorems 2 and 3, we can study extreme and exposed points of other
quotient spaces. Chang ([5]) showed that B=H>+C,;, where C,; is the C*-sub-
algebra generated by inner functions I with I € B. Also she showed that || f+H>||=
| f+H=NCg]| for f€Cs By this fact, we can consider that

B/H>=(H~"+Cy)/H*=Cs/H"NCy .

Corollary 8. Let feC, with |f+H"NCsll=1. Then f+H"NC, is an
extreme (exposed) point of ball (Cx/H>NC;) if and only if f+H> is an extreme
(exposed) point of ball (L~/H").

For each f in C with || f+H"|=1, there exist unique ge H* and FeH,!
such that || f+g| =1 and (f+g)F=0 ([7, p. 137]). By Izuchi and Younis’ theorem
[13], f+H" is an exposed point of ball (L*/H>). Thus we get

Corollary 4. Every boundary point of ball (H>+C/H<), ball (C/H*NC) and
ball (QC/QA) is an exposed point of respective space.
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Proof. By Wolff ([17, Lemma 2.1]), QC=QA+C. So that H*+C/H>=
C/H*NC=QC|QA.
We note that H*NC is called a disk algebra usually.

4. Extreme points of ball (B/H>+C)

In this section, we study Question 2 and give two partial answers.

Theorem 4. If gBg H>+C for every outer function q € QA, then ball (B/H>+C)
does not have extreme points.

To show we need the following two lemmas.
Lemma 5 ([3]). H>-+C has the best approximation property.

Lemma 6 ([16])). For felL~, feH*+C if and only if flz€ H"|gz for every
support set E.

Proof of Let f+H=+Ceball(B/H*+C) with | f+H>+C|=1.
By we may assume || f||=1. By Wolff’s theorem, there is an outer
function g€ QA such that gfe QC. We may assume | ¢||=1. By [Lemma 1, we
have

(1) lglfeQC.
By our condition, there is F e B such that
(2) qgF¢ H*+C and | F|=1.

By Lemmas 1 and 6, we have |q|F¢ H*+C. We note that |g|Fe€B. Then we
have
| f+H>+Cx(IqIF+H~+C)|=||1—1q)f+Iglf+qF+H~+C]|

=|A—IlgDf+qF| by ()
=ll1-lql+liqlll by [rfll=lql=]lFl=1

, =1.

This shows that f+H=+C is not an extreme point of ball (B/H=+C).

For a Douglas algebra B, we put

.N(B)=the closure of U {supp p.; x € M(H>+C)\M(B)} .
Corollary 6. If m(N(B))>O0, then ball (B/H*+C) does not have extreme points.

Proof. By Corollary 1, #(N(B))>0 if and only if #,(z,(N(B)))>0. Here we
will show that #,(z,(N(B))) >0 if and only if ¢gBg H*+C for every outer function
geQA. ' ‘
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Suppose that s,(z(N(B))>0 and geQA is an outer function. Since
my({x € M(QC); q(x)=0})=0, there is %, € M(H"+C)\M(B) such that ¢+0 on
SUPP ¢z, Then g(x,)#0. By Chang-Marshall’s theorem ], [15)p,

M(B)={x € M(H=+ C); B]!upppw'—_-Hmlauppp,,} .

Then there is Fe B such that Flsup, reg & H*|supp Py Thus we get gF¢ H>+C by
[Lemma 6.

Suppose that #7,(z,(N(B)))=0. Then 7o(N(B)) is contained in a proper peak
set for QA by Hence there is an outer function g€ QA such that
g=0 on r,(N(B)), and then ¢gBc H~+C.

Corollary 7. If wi(I")<1, then ball (BIH=+C) does not have extreme points.
Proof. If m(I')<1, then N(B)>I* and #M(N(B))>O0.

When #:(N(B))=0, does not work for Question 2. The last part

of this paper, we will give a Douglas algebra B such that ball (B/H>=+C) has an
extreme point.

A sequence {z,}7., in D is called interpolating if for each bounded sequence
{@.}7-1 there is he H> such that h(z,)=a, for n=1,2, ---. A Blaschke product
with zeros {z,};., is called interpolating if {z,}%., is interpolating.

Theorem 5. Let b be an interpolating Blaschke products and B=[H=,b].
Then b+H=+C is an extreme point of ball (B/H=+C).

To show this, we need two lemmas. For fe H*+C, we put
Z(f)={x € M(H>+C); f(x)=0} .
The following is a special case of {8, Theorem 1].

Lemma 7. If fe H"+C and b is an interpolating Blaschke products with
Z(f)> Z(b), then fbe H>+C.

Lemma 8 ([9, p. 176]). Let feH~+C and I is an inner function. If f
vanishes on {x € M(H>+C); | Kx)|1<1}, then fIre H*+C for every n.

Proof of First we note that ||6+H~>+C|=1. Suppose that
b+H"+C=+@g+H"+C) + Lo+ H-+0)

with | g;+H=+C| =1 and g,€B (:=1,2). By there are &, (:=1,2) in
H>+C such that ||g,+4;||=1. Then there is 2 in H*+C such that

(1) b+h=(g,+h+g,+h)2 and |b+h|=1.
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Here our claim is
Claim. h=0 on N(B).

Suppose that the above claim is true. Since |5|=1 on N(B) and lg+m =1,
by (1) and our claim, we get

b=g,+h1=92+h2 on N(B) .

Then b—g,—h,=0 on N(B) and 5—g,—h, € B. Since Blsupp sy =H"|supp, for every
y € M(H-+C) with |b(y)|=1, we get

(5_gl_h1)lﬂuppp'eH”lsupppx for every ze M(H*+C).
By Lemma 6, we have b—g,—h, e H*+C. Thus b+H"+C=g,+H"+C. This
implies that 5+ H=+C is an extreme point of ball (B/H~+C).

Proof of Claim. To show our claim, we need Lemmas 7 and 8. Since
M(B)={x e M(H>+-C); |b(z)|=1}, N(B) coincides with the closure of U {supp z.;
x € M(H*+C), |b(x)|<1}. Let o€ Z(). Since l1+bk||=1 and 1=S (1+-dh)dy,, we
have 1+bh=1 on supp y,. Thus we get
(2) h=0 on suppp, for every ¢eZ(®).

This means that /=0 on Z(%). By Lemma 7, we have kb e H*1C. By (2), we
have b=0 on Z(b). Again we get hb>c H~-+C. Continuing this argument, we get

(3) hb»e H+C for every n=1,2,--- .
By Lemma 8, we have

h=0 on {xeMH=+C); |bx)|<1}.
By the same way as the first part, we get

k=0 on suppp, for every ze M(H"+C) with |b(x)|<1.

Thus we get our claim.

This work was done while the both authors were visiting scholars at the
University of California, Berkeley.
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