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ABSTBACT. For a Douglas algebra $B$, we study extreme and exposed points
of the unit ball of $B/H^{\infty}$ or $B/H^{\infty}+C$ . Characterizations of extreme and
exposed points in $B/H^{\infty}$ are given. And we give conditions on $B$ that the
unit ball of $B/H^{\infty}+C$ has extreme points or no extreme points.

1. Introduction

Let $H^{\infty}$ be the set of boundary values of bounded analytic functions in the
unit disk $D$ of the complex number plane. Then $H^{\infty}$ is the (essentially) uniformly

closed subalgebra of $L^{\infty}$ , bounded measurable functions on $\partial D$ with respect to the
nomalized Lebesgue measure $m$ . A uniformly closed subalgebra $B$ between $H^{\infty}$

and $L^{\infty}$ is called a Douglas algebra. We denote by $M(B)$ the maximal ideal space
of $B$ . We put $X=M(L^{\infty})$ . Let $\hat{m}$ be the lifting measure of $m$ onto $X$. Let $C$

be the space of continuous functions on $\partial D$, then $H^{\infty}+C$ is the smallest Douglas
algebra containing $H^{\infty}$ properly. Basic properties for Douglas algebras and $H^{\infty}$

can be found in [7] and for uniform algebras in [6].

We put

$QC=(H^{\infty}+C)\cap\overline{(H^{\infty}+C)}$ and $QA=H^{\infty}\cap QC$ .
In [17], Wolff showed the following excellent theorem.

Wolff’s theorem. If $f$ is a function in $L^{\infty}$ , then there is an outer function $q$

in $QA$ such that $qf\in QC$.
Wolff’s theorem gives us many informations about the behaviors of $L^{\infty}$ func $\cdot$

tions on $X$ (see [17]). Here we use it some times.
In [1], Amar and Lederer showed that if $E$ is a closed subset of $X$ with

$\hat{m}(E)=0$, then there is a peak set $P$ for $H^{\infty}$ with $E\subset P\subsetneqq X$. In Section 2, we
will show that $P$ can be taken as a peak set for $QA$ (Theorem 1). If we use
both Amar and Lederer, and Wolff $s$ theorem, it is easy to show Theorem 1.

$\ovalbox{\tt\small REJECT} 1980$Mathematics subject classification:Primary $30H05,46BW,$ $46J30$ .
Key words: Douglas algebra, extreme point, exposed point.
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For, by Amar and Lederer’s theorem there is a peaking function $f$ in $H^{\infty}$ for
some peak set $P$ with $E\subset P\subsetneqq X$, then by Wolff’s theorem there is an outer func-
tion $q$ in $QA$ such that $(1-f)q\in H^{\infty}\cap QC=QA$ . By [17, Lemma 2.3], {$x\in X$;
$(1-f)q(x)=0\}$ is a desired peak set for $QA$ . We will give the proof of Theorem
1 using only Wolff’s theorem.

The main subject in this paper is to study extreme and exposed points in
quotient spaces of Douglas algebras. For a Banach space $Y$, we denote by ball (Y)
the closed unit ball of Y. A point $ x\in$ ball (Y) is called extreme if $x=(x_{\iota}+x_{2})/2$

for $x_{1},$ $ x_{2}\in$ ball (Y) implies $x=x_{1}=x_{2}$ . A point $ x\in$ ball (Y) is called exposed if
there is a linear functional $L$ in the dual space $Y*$ such that $||L||=L(x)=1$ and
$L(y)\neq 1$ for every $ y\in$ ball (Y) with $y\neq x$ . We note that exposed points are extreme
points. A characterization of extreme points of ball $(L^{\infty}/H^{\infty})$ is given by Koosis
([14]), and a characterization of exposed points of ball $(L^{\infty}/H^{\infty})$ is given by Izuchi
and Younis ([13]). Axler, Berg, Jewell and Shields ([3]) showed that ball $(L^{\infty}/H^{\infty}+C)$

does not have extreme points. For a general Douglas algebra $B$, extreme and
exposed points of ball $(L^{\infty}/B)$ are studied in [10, 11 and 13] (also see these refer-
ences). Our problem here is to study the case that $L^{\infty}$ is replaced by a Douglas
algebra $B$ . Our questions are:

Question 1. Give characterizations of extreme and $exPosed$ points of
ball $(B/H^{\infty})$ .

Question 2. For which Douglas algebra $B$, does ball $(B/H^{\infty}+C)$ have extreme
points?

Answers for Question 1 will be given in Theorems 2 and 3 (in Section 3). But
we can not give a complete answer for Question 2. We will give partial answers
for Question 2 in Theorems 4 and 5 (in Section 4).

2. Peak sets for $QA$

For a point $x\in M(H^{\infty})$ , we denote by $\mu_{x}$ the unique representing measure on
$X$ for $x$ . A closed subset $E$ of $X$ is called a support set if there is $x\in M(H^{\infty}+C)\backslash X$

such that $E=supp\mu_{x}$ . In [161, Sarason gave the following characterization of
$QC$ .

Lemma 1. $QC=$ {$f\in L^{\infty}$ ; $f$ is constant on each suPport set}.

Since $QC$ is the $c*$-subalgebra of $L^{\infty},$ $M(QC)$ is a quotient space of $X$ by
considering that each QC-level set is one point. Here, for a point $x_{0}$ in $X,$ {$x\in X$;
$f(x)=f(x_{0})$ for every $f\in QC$} is called a QC.level set. Thus there is a natural
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projection $\pi_{0}$ from $X$ onto $M(QC)$ . Let $\hat{m}_{0}$ be the lifting measure of $m$ onto
$M(QC)$ . That is, $\hat{m}_{0}$ is the probability measure on $M(QC)$ such that

$\int_{\partial D}fdm=\int_{K(QC)}fd\hat{m}_{0}$ for every $f\in QC$ .

Our theorem is a generalization of Amar and Lederer’s $H^{\infty}$ peak set theorem
([1]).

Theorem 1. If $E$ is a closed subset of $X$ such that $\hat{m}(E)=0$, then $\hat{m}_{0}(\pi_{0}(E))=0$

and there is a peak set $P$ for $QA$ such that $E\subset P\subsetneqq X$.
To show Theorem 1, we need some lemmas. Wolff gave the following lemma

in [17, Lemma 2.3].

Lemma 2. A closed $G_{\delta}$-set $S$ of $M(QC)$ with $\hat{m}_{0}(S)=0$ is a Peak interPolation
set for $QA$ .

The key point to prove Theorem 1 is how to use Wolff’s theorem to show
$\hat{m}_{0}(\pi_{0}(E))=0$ . For a subset $F$ of $L^{\infty}$ , we denote by $[F]$ the closed subalgebra
generated by $F$.

Lemma 3. For a sequence $\{f_{n}\}_{n=1}^{\infty}$ in $L^{\infty}$ , we Put $B=[H^{\infty}, f_{n}; n=1,2, \cdots]$ .
Then there is an outer function $q\in QA$ such that $qB\subset H^{\infty}+C$.

Proof. By Lemma 2.2 in [121, there is a Blaschke product $b$ such that
$bB\subset H^{\infty}+C$. By Wolff’s theorem, there is an outer function $q\in QA$ such that
$qb\in QC$. Then

$qB=qb\cdot bB\subset QC(H^{\infty}+C)\subset H^{\infty}+C$ .
Lemma 4. For a sequence $\{f_{\mathfrak{n}}\}_{n\Leftarrow 1}^{\infty}$ in $L^{\infty}$ , there is an outer function $q\in QA$

such that $qf_{n}\in QC$ for every $n$ .
Proof. We put $B=[H^{\infty},f_{n},\overline{f}_{n}; n=1,2, \cdots]$ . Then by Lemma 3, there is an

outer function $q\in QA$ such that $qB\subset H^{\infty}+C$. Thus we get

$qf_{n},$ $q\overline{f}_{n}\in H^{\infty}+C$ for every $n$ .
Let $E$ be a suPport set such that $q\neq 0$ on $E$ . Then $q$ is non-zero constant on $E$

by Lemma 1. Also we get

${\rm Re} f,$ $|_{B}\in(H^{\infty}+C)|_{B}=H^{\infty}|_{B}$ and ${\rm Im} f_{n}|_{B}\in H^{\infty}|_{P}$ .
This shows that $f_{n}$ is constant on $E$, because $E$ is a set of antisymmetry for $H^{\infty}$ .
Hence $qf_{n}$ is constant on $E$ and this means that $qf_{n}\in QC$ by Lemma 1.
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Proof of Theorem 1. We can take a decreasing sequence $\{U_{n}\}_{n=1}^{\infty}$ of oPen-
closed subsets of $X$ such that $E\subset U.$ $(n=1,2, \cdots)$ and $\hat{m}(\bigcap_{n}U_{n})=0$ . Then clearly
we get $\hat{m}(U_{n})\rightarrow 0$ as $ n\rightarrow\infty$ . Let $\chi_{n}$ be the characteristic function of $U_{n}$ . Then by
Lemma 4, there is an outer function $q\in QA$ such that $q\chi_{n}\in QC$ for every $n$ .
We put

$V_{n}=\{x\in X;(q^{\chi_{n}})(x)\neq 0\}$ and $V_{0}=\{x\in X;q(x)=0\}$ .
We note that $V_{n}\subset U_{n}$ . Since $q$ and $q^{\chi_{n}}$ are contained in $QC$, we get

$V_{n}=\pi_{0}^{-1}(\pi_{0}(V_{n}))$ and $V_{0}=\pi_{0^{-1}}(\pi_{0}(V_{0}))$ .
If we put $W_{n}=V_{n}\cup V_{0}$ , then $W_{n}=\pi_{0^{-1}}(\pi_{0}(W_{n}))$ . Since $\overline{V}_{n}\subset U_{n},$

$q$ vanishes on
$\overline{V}_{n}\backslash V_{n}$ . This implies that $\overline{V}_{n}\backslash V_{n}\subset V_{0}$ . Hence $W_{n}$ is closed and $W_{n}\supset U_{n}$ . We note
that $\hat{m}_{0}(G)=\hat{m}(\pi_{0^{-1}}(G))$ for any closed subset $G$ of $M(QC)$ . Since $q$ is outer, we
have $h(V_{0})=0$ and thus $\hat{m}(W_{n})=\hat{m}(U_{n})$ . If we Put $K=\bigcap_{n}W_{n}$ , then $E\subset\bigcap_{n}U_{n}\subset K$

and $K=\pi_{0^{-1}}(\pi_{0}(K))$ . Since

$\hat{m}(K)\leqq\hat{m}(W_{n})=\hat{m}(U_{n})\rightarrow 0$ as $ n\rightarrow\infty$ ,

we have $\hat{m}_{0}(\pi_{0}(E))=0$ . Then there exists a closed $G_{\delta}$-set $P_{0}$ of $M(QC)$ such that
$\pi_{0}(E)\subset P_{0}$ and $\hat{m}_{0}(P_{0})=0$ . If we put $P=\pi_{0^{-1}}(P_{0})$ , then $P$ is a peak set for $QA$ such
that $E\subset P\subsetneqq X$ by Lemma 2.

Corollary 1. For a closed subset $E$ of $X,\hat{m}(E)=0$ if and only if $\hat{m}_{0}(\pi_{0}(E))=0$ .
Using Lemma 4, we get the following Proposition by the same way as the

proof of Theorem 2.1 of [12].

Proposition 1. Let $B$ be a Douglas algebra with $B\supset H^{\infty}+C$ and let $\{\mu_{n}\}_{n\Rightarrow 1}^{\infty}$

be a sequence of annihilating measure on $X$ for $B$, that is, $\mu_{n}\in B^{\perp}for$ every $n$ .
Let $\{\lambda_{n}\}_{n\Leftarrow 1}^{\infty}$ be a sequence of measures on $X$ such that $\lambda_{n}$ is absolutely continuous
with respect to $\mu_{n}$ for every $n$ . Then there exists an outer function $q\in QA$ such
that $q\lambda_{n}\in B^{\perp}for$ every $n$ .

In [12], we showed the following corollary using M-ideal’s theorem. Here
we give another proof using Proposition1.

Corollary 2. Let $\{\mu_{n}\}_{n-1}^{\infty}$ be a sequence of measures on $X$ such that $\mu_{n}\in(H^{\infty}+C)^{\lfloor}$

for every $n$ . If we Put $E$ the closure of $U\{supp\mu_{n} ; n=1,2, \cdots\}$ in $X$, then
$\hat{m}(E)=0$ .

Proof. Let $\{\mu_{n}\}_{n=1}^{\infty}$ be a sequence of measures on $X$ such that $\mu_{n}\in(H^{\infty}+C)^{\perp}$ .
By Proposition 1, there is an outer function $q\in QA$ such that $q|\mu_{n}|\in(H^{\infty}+C)^{\perp}$

for every $n$ . Then we get
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$\int|q|^{2}d|\mu_{n}|=0$ for every $n$ ,

because $\overline{q}\in H^{\infty}+C$. Thus $q=0$ on the closure of $\cup\{supp\mu_{n}; n=1,2, \cdots\}$ . Since
$q$ is outer, we get our assertion.

3. Extreme and exposed points of ball $(B/H^{\infty})$

Throughout of this and next sections, let $B$ be a Douglas algebra with $ B\supset$

$H^{\infty}+C$ and let $\Gamma$ be the essential set for $B$, that is, $\Gamma$ is the smallest closed subset
of $X$ for which $f\in L^{\infty}$ vanishing on $\Gamma$ implies $f\in B$ . In this section, we give
a complete answer for Question 1.

Theorem 2. Let $f\in B$ with $\Vert f+H^{\infty}||=1$ . Then $f+H^{\infty}$ is an extreme point
of ball $(B/H^{\infty})$ if and only if $f+H^{\infty}$ is an extreme point of ball $(L^{\infty}/H^{\infty})$ .

Proof. Assume that $f+H^{\infty}$ is an extreme point of ball $(B/H^{\infty})$ . Since $H^{\infty}$

has the best approximation property, we may assume that $\Vert f||=1$ . Moreover
suppose that

$|f+h|\leqq 1$ and $|f+h|\neq 1$ on $X$ for some $h\in H^{\infty}$ .
Since { $H^{\infty}+C|=|L^{\infty}|$ by [2], there is $g\in H^{\infty}+C$ such that

$g\neq 0$ , $g\not\in H^{\infty}$ and $|f+h\pm g|\leqq 1$ on $X$ .
Then we have $\Vert f+H^{\infty}\pm(g+H^{\infty})\Vert\leqq 1$ and $g+H^{\infty}\neq H^{\infty}$ . Since $g\in B$, this implies
that $f+H^{\infty}$ is not an extreme point of ball $(B/H^{\infty})$ . So that we get

$|f+h|=1$ on $X$ for every $h\in H^{\infty}$ with $\Vert f+h\Vert=1$ .
This shows us $f$ has a unique best approximation $0$ in $H^{\infty}$ and $|f|=1$ on $X$,
because if $h\neq 0$, consider $f+h/2$ . By Koosis’ theorem ([14]), $f+H^{\infty}$ is an extreme
point of ball $(L^{\infty}/H^{\infty})$ .

The converse is trivial.

Theorem 3. Let $f\in B$ with $\Vert f+H^{\infty}||=1$ . Then $f+H^{\infty}$ is an $exPosed$ point

of ball $(B/H^{\infty})$ if and only if $f+H^{\infty}$ is an exPosed point of ball $(L^{\infty}/H^{\infty})$ .
Proof. Assume that $f+H^{\infty}$ is an exposed point of ball $(B/H^{\infty})$ and $||f|$] $=1$ .

Then there is a measure $\mu$ on $X$ such that

$U\mu U=1$ , $\mu\perp H^{\infty}$ , $\int fd\mu=1$ and $\int gd\mu\neq 1$

for every $g\in B$ with fi $g+H^{\infty}||=1$ and $g+H^{r}\neq f+H^{\infty}$ .
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We put $\mu=\mu_{a}+\mu.$ , where $\mu_{a}\ll\hat{m}$ and $\mu.\perp\hat{m}$ . To show $\mu_{a}\neq 0$, suppole that $\mu_{u}=0$ .
Then we get $\mu\perp H^{\infty}+C$ . By Corollary 2, we have $\hat{m}(suPp\mu)=0$ . By Amar and
Lederer’s therorem (or Theorem 1), there is a non-constant function $h_{1}$ in $H^{\infty}$

such that $||h_{1}\Vert=1$ and

$\{x\in X;h_{1}(x)=1\}=\{x\in X;|h_{1}(x)|=1\}\supset supp\mu$ .
By [11, Corollary 2], we have $\{xeX;h_{1}(x)=1\}\supsetneq supp\mu$, so we can take a non.zero
function $h\in H^{\infty}+C$ such that

$||h_{1}+h_{2}||=1$ and supp $ h_{2}\cap supp\mu=\emptyset$ .
Since non-trivial peak set, $\{x\in X;h_{1}(x)=1\}$ , has $\hat{m}$-measure zero, we have supp $ f\not\subset$

$\{x\in X;h_{1}(x)=1\}$ . So we may asuume that $h_{2}f\neq 0$ . Since supp $h_{2}\neq X$, we note
that $h_{2}f\not\in H^{\infty}$ . Then we have $h_{1}f,$ $(h_{1}+h_{2})f\in B,$ $\Vert h_{1}f\Vert=||(h_{1}+h_{2})f\Vert=1$ and

$\int h_{1}fd\mu=\int(h_{1}+h_{2})fd\mu=1$ .
This shows $\Vert h_{1}f+H^{\infty}||=\Vert(h_{1}+h_{2})f+H^{\infty}\Vert=1$ . Since $f+H^{\infty}$ is exposed, we get
$h_{1}f+H^{\infty}=(h_{1}+h_{2})f+H^{\infty}=f+H^{\infty}$ . Thus we get a contradiction $hf\in H^{\infty}$ . This
contradiction gives us $\mu_{a}\neq 0$ . Since $\Vert f\Vert=1$ , $||\mu\Vert=1$ and $\int fd\mu=1$ , we have
$\int fd\mu_{a}=||\mu_{a}\Vert$ . Since $\mu_{a}\perp H^{\infty}$ , there is a function $F$ in $H_{0}^{1}$ such that $\int_{\partial D}fFdm=$

$||F||_{1}$ . Thus we get $fF\geqq 0$ . By Izuchi and Younis’ characterization theorem of
exposed points of ball $(L^{\infty}/H^{\infty})$ ([13]), $f+H^{\infty}$ is an exposed points of ball $(L^{\infty}/H^{\infty})$ .

The converse is trivial.
Using Theorems 2 and 3, we can study extreme and exposed points of other

quotient spaces. Chang ([5]) showed that $B=H^{\infty}+C_{B}$ , where $C_{B}$ is the $C^{*}$-sub-
algebra generated by inner functions $I$ with $\overline{I}\in B$. Also she showed that $\Vert f+H^{\infty}\Vert=$

$\Vert f+H^{\infty}\cap C_{B}\Vert$ for $f\in C_{B}$ . By this fact, we can consider that

$B/H^{\infty}=(H^{\infty}+C_{B})/H^{\infty}=C_{B}/H^{\infty}\cap C_{B}$ .
Corollary 3. Let $f\in C_{B}$ with $||f+H^{\infty}\cap C_{B}||=1$ . Then $f+H^{\infty}\cap C_{B}$ is an

extreme (expOsed)point of ball $(C_{B}/H^{\infty}\cap C_{B})$ if and only if $f+H^{\infty}$ is an extreme
(exposed)point of ball $(L^{\infty}/H^{\infty})$ .

For each $f$ in $C$ with $\Vert f+H^{\infty}\Vert=1$ , there exist unique $g\in H^{\infty}$ and $F\in H_{0^{1}}$

such that $\Vert f+g\Vert=1$ and $(f+g)F\geqq 0$ ( $[7$, p. 1371). By Izuchi and Younis’ theorem
[13], $f+H^{\infty}$ is an exposed point of ball $(L^{\infty}/H^{\infty})$ . Thus we get

Corollary 4. Every boundary Point of ball $(H^{\infty}+C/H^{\infty})$ , ball $(C/H^{\infty}\cap C)$ and
ball $(QC/QA)$ is an exposed point of respective space.
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Proof. By Wolff ([17, Lemma 2.1]), $QC=QA+C$. So that $H^{\infty}+ClH^{\infty}=$

$C/H^{\infty}\cap C=QC/QA$ .
We note that $H^{\infty}\cap C$ is called a disk algebra usually.

4. Extreme points of ball $(B/H^{\infty}+C)$

In this section, we study Question 2 and give two partial answers.

Theorem 4. If $qB\not\subset H^{\infty}+C$ for every outerfunction $q\in QA$ , then ball $(B/H^{\infty}+C)$

does not have extreme Points.
To show Theorem 4, we need the following two lemmas.

Lemma 5 ([31). $H^{\infty}+C$ has the best apprOximatiOn Property.

Lemma 6 ([16]). For $f\in L^{\infty},$ $f\in H^{\infty}+C$ if and only if $f|_{B}\in H^{\infty}|_{B}$ for every
support set $E$ .

Proof of Theorem 4. Let $ f+H^{\infty}+C\in$ ball $(B/H^{\infty}+C)$ with $||f+H^{\infty}+C||=1$ .
By Lemma 5, we may assume $||f||=1$ . By Wolff’s theorem, there is an outer
function $q\in QA$ such that $qf\in QC$. We may assume $\Vert q||=1$ . By Lemma 1, we
have

(1) $|q|f\in QC$ .
By our condition, there is $F\in B$ such that

(2) $qF\not\in H^{\infty}+C$ and $\Vert F\Vert=1$ .
By Lemmas 1 and 6, we have $|q|F\not\in H^{\infty}+C$ . We note that $|q|F\in B$. Then we
have

$\Vert f+H^{\infty}+C\pm(|q|F+H^{\infty}+C)\Vert=||(1-|q|)f+|q|f\pm qF+H^{\infty}+C||$

$\leqq\Vert(1-|q|)f\pm qF||$ by (1)

$\leqq\Vert 1-|q|+|q|$ Il by Ilfll $=\Vert q||=||F||=1$

$=1$ .
This shows that $f+H^{\infty}+C$ is not an extreme point of ball $(B/H^{\infty}+C)$ .

For a Douglas algebra $B$, we put

$N(B)=the$ closure of $\cup\{supp\mu_{x};x\in M(H^{\infty}+C)\backslash M(B)\}$ .
Corollary 6. If $\hat{m}(N(B))>0$, then ball $(B/H^{\infty}+C)$ does not have extreme Points.
Proof. By Corollary 1, $r\hslash(N(B))>0$ if and only if $\hat{m}_{0}(\pi_{0}(N(B)))>0$ . Here we

will show that $\hat{m}_{0}(\pi_{0}(N(B)))>0$ if and only if $qB\not\subset H^{\infty}+C$ for every outer function
$q\in QA$ .
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SuPpoae that $\hat{m}_{0}(\pi_{0}(N(B)))>0$ and $q\in QA$ is an outer function. Since
$\hat{m}_{0}(\{x\in M(QC);q(x)=0\})=0$, there is $x_{0}\in M(H^{\infty}+C)\backslash M(B)$ such that $q\neq 0$ on
$supp\mu_{x_{0}}$ . Then $q(x_{0})\neq 0$. By Chang-Marshall’s theorem ([4], [15]),

$M(B)=\{x\in M(H^{\infty}+C);B|_{\sup p_{Fx}}=H^{\infty}|_{\epsilon upp\mu_{g}}\}$ .
Then there is $F\in B$ such that $F|_{\sup p\mu ae0}\not\in H^{\infty}|_{\sup p\mu_{l}}0$ Thus we get $qF\not\in H^{\infty}+C$ by
Lemma 6.

Suppose that $\hat{m}_{0}(\pi_{0}(N(B)))=0$ . Then $\pi_{0}(N(B))$ is contained in a proper peak
set for $QA$ by Lemma 2. Hence there is an outer function $q\in QA$ such that
$q=0$ on $\pi_{0}(N(B))$ , and then $qB\subset H^{\infty}+C$ .

Corollary 7. If $\hat{m}\langle\Gamma$) $<1$ , then ball $(B/H^{\infty}+C)$ does not have extreme points.

Proof. If $\hat{m}(\Gamma)<1$ , then $N(B)\supset\Gamma^{c}$ and $\hat{m}(N(B))>0$ .
When $\hat{m}(N(B))=0$ , Theorem 4 does not work for Question 2. The last part

of this paper, we will give a Douglas algebra $B$ such that ball $(B/H^{\infty}+C)$ has an
extreme point.

A sequence $\{z_{n}\}_{n=1}^{\infty}$ in $D$ is called interpolating if for each bounded sequence
$\{a_{n}\}_{n-1}^{\infty}$ there is $h\in H^{\infty}$ such that $h(z_{n})=a_{n}$ for $n=1,2,$ $\cdots$ . A Blaschke product
with zeros $\{z_{n}\}_{n=1}^{\infty}$ is called interpolating if $\{z_{n}\}_{n=1}^{\infty}$ is interpolating.

Theorem 5. Let $b$ be an interPolating Blaschke products and $B=[H^{\infty},\overline{b}]$ .
Then $\overline{b}+H^{\infty}+C$ is an extreme Point of ball $(B/H^{\infty}+C)$ .

To show this, we need two lemmas. For $f\in H^{\infty}+C$, we put

$Z(f)=\{xeM(H^{\infty}+C);f(x)=0\}$ .
The following is a special case of [8, Theorem 1].

Lemma 7. If $f\in H^{\infty}+C$ and $b$ is an interpolating Blaschke products with
$Z(f)\supset Z\langle b$), then $fb\in H^{\infty}+C$ .

Lemma 8 ([9, p. 176]). Let $f\in H^{\infty}+C$ and I is an inner function. If $f$

vanishes on $\{x\in M(H^{\infty}+C);|I(x)|<1\}$ , then $f\overline{I}^{n}\in H^{\infty}+C$ for every $n$ .
Proof of Theorem 5. First we note that $\Vert\overline{b}+H^{\infty}+C||=1$ . Suppose that

$\overline{b}+H^{\infty}+C=\frac{1}{2}(g_{1}+H^{\infty}+C)+\frac{1}{2}(g_{2}+H^{\infty}+C)$

with $||g+H^{\infty}+C\Vert=1$ and $g_{\ell}\in B(i=1,2)$ . By Lemma 5, there are $h_{\ell}(i=1,2)$ in
$H^{\infty}+C$ such that $Ug_{\ell}+h_{i}N=1$ . Then there is $h$ in $H^{\infty}+C$ such that

(1) $\overline{b}+h=(g_{1}+h_{1}+g_{2}+h_{2})/2$ and $||\overline{b}+h||=1$ .
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Here our claim is

Claim. $h=0$ on $N(B)$ .
Suppose that the above claim is true. Since $|\overline{b}|=1$ on $N(B)$ and $||g+h\Vert=1$ ,

by (1) and our claim, we get

$\overline{b}=g_{1}+h_{1}=g_{2}+h$ on $N(B)$ .
Then $\overline{b}-g_{1}-h_{1}=0$ on $N(B)$ and $\overline{b}-g_{1}-h_{1}\in B$. Since $B\}_{\sup pp_{y}}=H^{\infty}|_{\sup p}$ , for every
$y\in M(H^{\infty}+C)$ with 1 $b(y)|=1$ , we get

$(\overline{b}-g_{1}-h_{1})|_{\iota upp_{\mu_{e}}}\in H^{\infty}|_{\sup p\mu_{z}}$ for every $z\in M\langle H^{\infty}+C$).

By Lemma 6, we have $\overline{b}-g_{1}-h_{1}\in H^{\infty}+C$. Thus $\overline{b}+H^{\infty}+C=g_{1}+H^{\infty}+C$. This
implies that $\overline{b}+H^{\infty}+C$ is an extreme point of ball $(B/H^{\leftrightarrow}+C)$ .

Proof of Claim. To show our claim, we need Lemmas 7 and 8. Since
$M(B)=\{x\in M(H^{\infty}+C);|b(x)|=1\},$ $N(B)$ coincides with the closure of $U\{supp\mu_{x}$ ;
$x\in M(H^{\infty}+C),$ $|b(x)|<1$}. Let $\varphi\in Z(b)$ . Since $N1+bh||=1$ and $1=\int(1+bh)d\mu_{\varphi}$ , we
have $1+bh=1$ on supp $\mu_{\varphi}$ . Thus we get

(2) $h=0$ on $supp\mu_{\varphi}$ for every $\varphi\in Z(b)$ .
This means that $h=0$ on $Z(b)$ . By Lemma 7, we have $h\overline{b}\in H^{\infty}+C$. By (2), we
have $h\overline{b}=0$ on $Z(b)$ . Again we get $h\overline{b}^{2}\in H^{\infty}+C$. Continuing this argument, we get
(3) $h\overline{b}^{n}\in H^{\infty}+C$ for every $n=1,2,$ $\cdots$ .
By Lemma 8, we have

$h=0$ on $\{xeM(H^{\infty}+C);|b(x)|<1\}$ .
By the same way as the first part, we get

$h=0$ on supp $\mu_{x}$ for every $x\in M(H^{\infty}+C)$ with $|b(x)|<1$ .
Thus we get our claim.

This work was done while the both authors were visiting scholars at the
University of California, Berkeley.
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