PROPERTIES OF SUBWEAKLY CONTINUOUS FUNCTIONS

By

C. W. BAKER

(Received August 24, 1983)

1. Introduction

The concept of subweak continuity was introduced by Rose in [7]. Weak continuity implies subweak continuity, but the converse implication does not hold (see Example 1). In [5] Noiri proved that if the range space of a weakly continuous function is Hausdorff, then the graph of the function is closed. In Section 3 we prove that the graph of a subweakly continuous function into a Hausdorff space is closed. In Section 4 additional properties of subweakly continuous functions are investigated.

2. Definitions and notation

Let U be a subset of a topological space X. The closure of U in X will be denoted by $Cl\ U$. If $U \subseteq A \subseteq X$, the closure of U in A will be denoted by $Cl_A\ U$.

Definition 1. (Levine [3]) A function $f: X \to Y$ is said to be weakly continuous if for each x in X and for each neighborhood V of f(x) there is a neighborhood U of x such that $f(U) \subseteq Cl V$.

The following theorem due to Noiri [6] and Rose [7] gives an alternate characterization of weak continuity.

Theorem 1. A function $f: X \to Y$ is weakly continuous if and only if $Clf^{-1}(V) \subseteq f^{-1}(Cl\ V)$ for each open subset V of Y.

Definition 2. (Rose [7]) A function $f: X \to Y$ is said to be subweakly continuous if there is an open basis B for the topology on Y such that $Clf^{-1}(V) \subseteq f^{-1}(Cl\ V)$ for all V in B.

Definition 3. (Gentry & Hoyle [2]) A function $f: X \to Y$ is said to be c-continuous if for each x in X and each open subset V of Y containing f(x) and with compact complement, there exists an open subset U of X containing x such that $f(U) \subseteq V$.

3. Closed graph property

Let X and Y be topological spaces and $f: X \to Y$ a function. The graph of f will be denoted by G(f) and is the set $\{(x, f(x)): x \in X\}$. We say the function f has a closed graph if the graph is closed as a subset of the product space $X \times Y$.

It is well known that the graph of a continuous function into a Hausdorff space is closed. In [5] Noiri proved that the graph of a weakly continuous function into a Hausdorff space is also closed. In the following theorem we prove that subweak continuity is sufficient for the graph of a function into a Hausdorff space to be closed.

Theorem 2. If $f: X \rightarrow Y$ is a subweakly continuous function and Y is Hausdorff, then the graph of f is closed.

Proof. Let $(x,y) \in X \times Y - G(f)$. Then $y \neq f(x)$. Let B be an open basis for the topology on Y such that $Clf^{-1}(V) \subseteq f^{-1}(Cl\ V)$ for all V in B. Then there exist disjoint open sets V and W in B such that $y \in V$ and $f(x) \in W$. Since $f(x) \in W$ which is open and disjoint from V, it follows that $f(x) \notin Cl\ V$. Thus $x \notin f^{-1}(Cl\ V)$. Since f is subweakly continuous and $V \in B$, $Clf^{-1}(V) \subseteq f^{-1}(Cl\ V)$. Then $(x,y) \in (X - Cl(f^{-1}(V))) \times V \subseteq X \times Y - G(f)$. Hence G(f) is closed.

Long and Hendrix [4] proved that the closed graph property implies c-continuity. Thus we have the following corollary.

Corollary 1. If $f: X \rightarrow Y$ is subweakly continuous and Y is Hausdorff, then f is c-continuous.

The following results are also implied by the closed graph property (Fuller [1]).

Corollary 2. If $f: X \rightarrow Y$ is subweakly continuous and Y is Hausdorff, then for each compact subset C of Y, $f^{-1}(C)$ is closed in X.

Corollary 3. If $f: X \rightarrow Y$ is subweakly continuous and Y is Hausdorff, then for each compact subset C of X, f(C) is closed in Y.

4. Additional properties

Theorem 3. If $f: X \rightarrow Y$ is subweakly continuous and A is an open subset of Y containing f(X), then $f: X \rightarrow A$ is subweakly continuous.

Proof. Let B be an open basis for the topology on Y such that $Clf^{-1}(V) \subseteq f^{-1}(ClV)$ for all V in B. Then $C=\{V \cap A : V \in B\}$ is an open basis for the topology on A. Let $V \cap A \in C$. Then $Clf^{-1}(V \cap A) = Clf^{-1}(V) \subseteq f^{-1}(ClV) = f^{-1}((ClV) \cap A)$. It remains to be shown that $(ClV) \cap A \subseteq Cl_A(V \cap A)$.

Let $y \in (Cl\ V) \cap A$. Let W be any subset of A that is open in A and contains y. Since A is open in Y, W is open in Y. Because $y \in Cl\ V$, $W \cap V \neq \phi$. Therefore $W \cap (V \cap A) = W \cap V \neq \phi$. Thus $y \in Cl_A(V \cap A)$ and $(Cl\ V) \cap A \subseteq Cl_A(V \cap A)$.

It follows that $Cl\ f^{-1}(V\cap A)\subseteq f^{-1}((Cl\ V)\cap A)\subseteq f^{-1}(Cl_A(V\cap A))$. Hence $f\colon X\to A$ is subweakly continuous.

Theorem 4. If $f: X \rightarrow Y$ is subweakly continuous and A is a subset of X, then $f|_{A}: A \rightarrow Y$ is subweakly continuous.

Proof. Let B be an open basis for the topology on Y such that $Clf^{-1}(V) \subseteq f^{-1}(ClV)$ for all V in B. Then for $V \in B$, $Cl_{A}(f|_{A}^{-1}(V)) = A \cap Cl(f|_{A}^{-1}(V)) = A \cap Cl(f^{-1}(V) \cap A) \subseteq A \cap Cl(f^{-1}(V)) \cap ClA = A \cap Clf^{-1}(V) \subseteq A \cap f^{-1}(ClV) = f|_{A}^{-1}(ClV)$. Thus $f|_{A}: A \to Y$ is subweakly continuous.

A space X is said to be an Urysohn space if for every pair of distinct points x and y in X there exist open sets U and V in X such that $x \in U$ and $y \in V$ and $(Cl\ U) \cap (Cl\ V) = \phi$. In [6] Noiri proved that if Y is an Urysohn space and $f: X \rightarrow Y$ is a weakly continuous injection, then X is Hausdorff. The following example due to Rose [7] shows that subweak continuity can not be substituted for weak continuity in this result.

Example 1. Let X be any set with a non-discrete T_1 topology, and let Y=X have the discrete topology. Let $f: X \to Y$ be the identity mapping. Rose observed that this function is subweakly continuous but not weakly continuous. Note that Y is an Urysohn space and f is injective, but X need not be Hausdorff. The following related result is true for subweakly continuous functions.

Theorem 5. If Y is Hausdorff and $f: X \rightarrow Y$ is a subweakly continuous injection, then X is T_1 .

Proof. Let x_1 and x_2 be distinct points in X. Then $f(x_1) \neq f(x_2)$. Let B be an open basis for the topology on Y such that $Clf^{-1}(V) \subseteq f^{-1}(ClV)$ for all V in B. Since Y is Hausdorff, there exist disjoint open sets U and V in Y such that $f(x_1) \in U$, $f(x_2) \in V$, and $V \in B$. Then since $f(x_1) \notin ClV$, we have $x_1 \in X - f^{-1}(ClV) \subseteq X - Clf^{-1}(V)$. Therefore $X - Clf^{-1}(V)$ is an open subset of X which contains x_1 but not x_2 .

Theorem 6. Let Y be a Hausdorff space, $f_1: X \to Y$ continuous, and $f_2: X \to Y$ subweakly continuous. Then $\{x \in X: f_1(x) = f_2(x)\}$ is a closed subset of X.

Proof. Let $A = \{x \in X: f_1(x) = f_2(x)\}$. Let $x \in X - A$. Then $f_1(x) \neq f_2(x)$. Let B be an open basis for the topology on Y such that $Clf_2^{-1}(V) \subseteq f_2^{-1}(ClV)$ for all V

in B. Since Y is Hausdorff, there exist disjoint open sets V and W in Y such that $f_1(x) \in V$, $f_2(x) \in W$, and $V \in B$. Then $f_2(x) \notin Cl\ V$. Therefore $x \in X - f_2^{-1}(Cl\ V) \subseteq X - Cl\ f_2^{-1}(V)$. Hence $x \in f_1^{-1}(V) \cap (X - Cl\ f_2^{-1}(V)) \subseteq X - A$. Thus A is closed.

Corollary 1. Let Y be Hausdorff, $f_1: X \rightarrow Y$ continuous, and $f_2: X \rightarrow Y$ subweakly continuous. If f_1 and f_2 agree on a dense subset of X, then $f_1 = f_2$.

For a function $f: X \to Y$ the graph function is the map $g: X \to X \times Y$ given by g(x) = (x, f(x)).

Theorem 7. If $f: X \rightarrow Y$ is subweakly continuous, then the graph function is subweakly continuous.

Proof. Let $g: X \to X \times Y$ be the graph function for f. Let B be an open basis for the topology on Y such that $Clf^{-1}(V) \subseteq f^{-1}(ClV)$ for all V in B. Then $C = \{U \times V: U \subseteq X \text{ is open and } V \in B\}$ is an open basis for the topology on $X \times Y$. For $U \times V \in C$, $Clg^{-1}(U \times V) = Cl(U \cap f^{-1}(V)) \subseteq (ClU) \cap Clf^{-1}(V) \subseteq (ClU) \cap f^{-1}(ClV) = g^{-1}((ClU) \times ClV) = g^{-1}(Cl(U \times V))$. Hence the graph function g is subweakly continuous.

In [6] Noiri proved that if A is a subset of X and $f: X \rightarrow A$ is a weakly continuous retraction of X onto A and X is Hausdorff, then A is a closed subset of X. The following somewhat weaker result is true for subweakly continuous functions. The proof is similar to Noiri's.

Theorem 8. Let $A \subseteq X$ and let $f: X \to X$ be a subweakly continuous function such that f(X) = A and $f|_A$ is the identity on A. Then if X is Hausdorff, A is a closed subset of X.

Proof. Assume A is not closed. Let $x \in Cl A - A$. Let B be an open basis for the topology on X such that $Cl f^{-1}(V) \subseteq f^{-1}(Cl V)$ for all V in B. Since $x \notin A$, $x \neq f(x)$. Because X is Hausdorff, there exist disjoint open sets V and W such that $x \in V$, $f(x) \in W$ and $V \in B$. Let U be any open subset of X containing x. Then $x \in U \cap V$ which is an open subset of X. Since $x \in Cl A$, $(U \cap V) \cap A \neq \phi$. So there exists an element $y \in (U \cap V) \cap A$. Since $y \in A$, $f(y) = y \in V$. Hence $y \in f^{-1}(V)$. Thus $U \cap f^{-1}(V) \neq \phi$. It follows that $x \in Cl(f^{-1}(V))$. However $f(x) \in W$ which is open and disjoint from V. So $x \notin f^{-1}(Cl V)$. This contradicts the assumption that f is subweakly continuous. Hence A is closed.

Theorem 9. Let $f_{\alpha}: X \to Y_{\alpha}$ be a subweakly continuous function for each α in A. Let $f: X \to \Pi Y_{\alpha}$ be given by $f(x) = (f_{\alpha}(x))$. Then f is subweakly continuous.

Proof. For each α in A let B_{α} be an open basis for Y_{α} such that $Clf_{\alpha}^{-1}(V_{\alpha})\subseteq$

 $f_{\alpha}^{-1}(Cl\ V_{\alpha})$ for all V_{α} in B_{α} . Then $B=\{\Pi\ V_{\alpha}:\ V_{\alpha}=Y_{\alpha}\ \text{for all but finitely many coordinates and if }V_{\alpha}\neq Y_{\alpha},\ \text{then }V_{\alpha}\in B_{\alpha}\}$ is an open basis for $\Pi\ Y_{\alpha}$. For $\Pi\ V_{\alpha}\in B$, $Cl\ f^{-1}(\Pi\ V_{\alpha})=Cl\ \bigcap_{\alpha}\ f_{\alpha}^{-1}(V_{\alpha})\subseteq\bigcap_{\alpha}\ f_{\alpha}^{-1}(Cl\ V_{\alpha})=f^{-1}(\Pi\ Cl\ V_{\alpha})=f^{-1}(Cl\ \Pi\ V_{\alpha}).$ Thus f is subweakly continuous.

References

- [1] R. V. Fuller, Relations among continuous and various noncontinuous functions, Pacific J. of Math., 25 (1968), 495-509.
- [2] Karl R. Gentry and Hughes B. Hoyle, III, C-continuous functions, Yokohama Math. J., 18 (1970), 71-76.
- [3] Norman Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68 (1961), 44-46.
- [4] Paul E. Long and Michael D. Hendrix, *Properties of c-continuous functions*, Yokohama Math. J., 22 (1974), 117-123.
- [5] Takashi Noiri, Between continuity and weak continuity, Boll. U.M.I., 9 (1974), 647-654.
- [6] Takashi Noiri, On weakly continuous mappings, Proc. Amer. Math. Soc., 46 (1974), 120-124.
- [7] D. A. Rose, Weak continuity and almost continuity, International Journal of Mathematics and Mathematical Sciences, to appear.

Department of Mathematics Indiana University Southeast New Albany, Indiana 47150 USA