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1. Introduction

The concept of subweak continuity was introduced by Rose in [7]. Weak
continuity implies subweak continuity, but the converse implication does not hold
(see Example 1). In [5] Noiri proved that if the range space of a weakly continuous
function is Hausdorff, then the graph of the function is closed. In Section 3 we
prove that the graph of a subweakly continuous function into a Hausdorff space
is closed. In Section 4 additional properties of subweakly continuous functions
are investigated.

2. Definitions and notation

Let $U$ be a subset of a topological space $X$. The closure of $U$ in $X$ will
be denoted by $ClU$. If $U\subseteqq A\subseteqq X$, the closure of $U$ in $A$ will be denoted by
$Cl_{A}U$.

Deflnition 1. (Levine [3]) A function $f:X\rightarrow Y$ is said to be weakly continuous
if for each $x$ in $X$ and for each neighborhood $V$ of $f(x)$ there is a neighborhood
$U$ of $x$ such that $f(U)\subseteqq ClV$.

The following theorem due to Noiri [6] and Rose [7] gives an altemate char-
acterization of weak continuity.

Theorem 1. A function $f:X\rightarrow Y$ is weakly continuous if and only if
$Clf^{-1}(V)\subseteqq f^{-1}(ClV)$ for each oPen subset $V$ of Y.

Definition 2. (Rose [7]) A function $f:X\rightarrow Y$ is said to be subweakly continuous
if there is an open basis $B$ for the topology on $Y$ such that $Clf^{-1}(V)\subseteqq f^{-1}(ClV)$

for all $V$ in $B$.
Deflnition 3. (Gentry & Hoyle [2]) A function $f:X\rightarrow Y$ is said to be c-

continuous if for each $x$ in $X$ and each open subset $V$ of $Y$ containing $f(x)$ and
with compact complement, there exists an open subset $U$ of $X$ containing $x$ such
that $f(U)\subseteqq V$.
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3. Closed graph property

Let $X$ and $Y$ be topological spaces and $f:X\rightarrow Y$ a function. The graph of $f$

will be denoted by $G(f)$ and is the set $\{(x, f(x)):x\in X\}$ . We say the function $f$

has a closed graph if the graph is closed as a subset of the product space $X\times Y$.
It is well known that the graph of a continuous function into a Hausdorff

space is closed. In [5] Noiri proved that the graph of a weakly continuous
function into a Hausdorff space is also closed. In the following theorem we prove
that subweak continuity is sufficient for the graph of a function into a Hausdorff
space to be closed.

Theorem 2. If $f:X\rightarrow Y$ is a subweakly continuous function and $Y$ is Haus-
dorff, then the graph of $f$ is closed.

Proof. Let $(x, y)\in X\times Y-G(f)$ . Then $y\neq f(x)$ . Let $B$ be an open basis for
the topology on $Y$ such that $Clf^{-1}(V)\subseteqq f^{-1}(ClV)$ for all $V$ in $B$. Then there
exist disjoint open sets $V$ and $W$ in $B$ such that $y\in V$ and $f(x)eW$. Since $f(x)eW$

which is open and disjoint from $V$, it follows that $f(x)\not\in ClV$. Thus $x\not\in f^{-1}(CtV)$ .
Since $f$ is subweakly continuous and $V\in B,$ $Clf^{-1}(V)\subseteqq f^{-1}(ClV)$ . Then $(x, y)e$

$(X-Cl(f^{-1}(V)))\times V\subseteqq X\times Y-G(f)$ . Hence $G(f)$ is closed.
Long and Hendrix [4] proved that the closed graph property implies c-

$co$ntinuity. Thus we have the following corollary.

Corollary 1. If $f:X\rightarrow Y$ is subweakly continuous and $Y$ is Hausdorff, then
$f$ is c-continuous.

The following results are also implied by the closed graph property (Fuller [1]).

Corollary 2. If $f:X\rightarrow Y$ is subweakly continuous and $Y$ is Hausdorff, then
for each compact subset $C$ of $Y,$ $f^{-1}(C)$ is closed in $X$.

Corollary 3. If $f:X\rightarrow Y$ is subweakly continuous and $Y$ is Hausdorff, then
for each comPact subset $C$ of $X,$ $f(C)$ is closed in Y.

4. Additional properties

Theorem 3. If $f:X\rightarrow Y$ is subweakly continuous and $A$ is an open subset of
$Y$ containing $f(X)$ , then $f:X\rightarrow A$ is subweakly continuous.

Proof. Let $B$ be an open basis for the topology on $Y$ such that $ Clf^{-1}(V)\subseteqq$

$f^{-1}(ClV)$ for all $V$ in $B$. Then $C=\{V\cap A:V\in B\}$ is an open basis for the topology
on $A$ . Let $V\cap AeC$. Then $Clf^{-1}(V\cap A)=CIf^{-1}(V)\subseteqq f^{-1}(ClV)=f^{-1}((ClV)\cap A)$ .
It remains to be shown that $(ClV)\cap A\subseteqq Cl_{A}(V\cap A)$ .
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Let $y\in(ClV)\cap A$ . Let $W$ be any subset of $A$ that is open in $A$ and $ntains$

$y$ . Since $A$ is open in $Y,$ $W$ is open in Y. Because $yeCIV,$ $ W\cap V\neq\phi$ . There-
fore $ W\cap(V\cap A)=W\cap V\neq\phi$ . Thus $yeCl_{4}(V\cap A)$ and $(ClV)\cap A\subseteqq Cl_{4}(V\cap A)$ .

It follows that $Clf^{-1}(V\cap A)\subseteqq f^{-1}((ClV)\cap A)\subseteqq f^{-1}(Cl_{A}(V\cap A))$ . Hence $f:X\rightarrow A$

is subweakly continuous.

Theorem 4. If $f:X\rightarrow Y$ is subweakly continuous and $A$ is a subset of $X$, then
$f|_{A}$ ; $A\rightarrow Y$ is subweakly continuous.

Proof. Let $B$ be an open basis for the topology on $Y$ such that $ Clf^{-1}(V)\subseteqq$

$f^{-1}(ClV)$ for all $V$ in $B$. Then for $V\in B,$ $Cl_{A}(f|_{A}^{-1}(V))=A\cap Cl(f|_{4}^{-1}(V))=$

$A\cap Cl(f^{-1}(V)\cap A)\subseteqq A\cap Cl(f^{-1}(V))\cap ClA=A\cap Clf^{-1}(V)\subseteqq A\cap f^{-1}(ClV)=f|_{A}^{-1}(ClV)$ .
Thus $f|_{A}$ : $A\rightarrow Y$ is subweakly continuous.

A space $X$ is said to be an Urysohn space if for every pair of distinct points
$x$ and $y$ in $X$ there exist open sets $U$ and $V$ in $X$ such that $xeU$ and $yeV$ and
$(ClU)\cap(ClV)=\phi$ . In [6] Noiri proved that if $Y$ is an Urysohn space and $f:X\rightarrow Y$

is a weakly continuous injection, then $X$ is Hausdorff. The following example
due to Rose [7] shows that subweak continuity can not be substituted for weak
continuity in this result.

Example 1. Let $X$ be any set with a non-discrete $T_{1}$ topology, and let $Y=X$

have the discrete topology. Let $f:X\rightarrow Y$ be the identity mapping. Rose observed
that this function is subweakly continuous but not weakly continuous. Note that
$Y$ is an Urysohn space and $f$ is injective, but $X$ need not be Hausdorff. The
following related result is true for subweakly continuous functions.

Theorem 5. If $Y$ is Hausdorff and $f:X\rightarrow Y$ is a subweakly continuous in-
jection, then $X$ is $T_{1}$ .

Proof. Let $x_{\iota}$ and $x_{2}$ be distinct points in $X$. Then $f(x_{1})\neq f(x_{2})$ . Let $B$ be an
ooen basis for the topology on $Y$ such that $Clf^{-1}(V)\subseteqq f^{-1}(ClV)$ for all $V$ in $B$. Since
$Y$ is Hausdorff, there exist disjoint open sets $U$ and $V$ in $Y$ such that $f(x_{1})eU$,
$f(x_{2})eV$, and $VeB$. Then since $f(x_{1})\not\in CIV$, we have $ x_{\iota}eX-f^{-1}(ClV)\subseteqq$

X-Cl$f^{-1}(V)$ . Therefore X-Cl$f^{-1}(V)$ is an open subset of $X$ which contains
$x_{1}$ but not $x_{g}$ .

Theorem 6. Let $Y$ be a Hausdorff sPace, $f_{1}$ : $X\rightarrow Y$ continuous, and $f_{2}$ : $X\rightarrow Y$

subweakly continuous. Then $\{xeX;f_{1}(x)=f_{2}(x)\}$ is a closed subset of $X$.
Proof. Let $A=\{xeX:f_{1}1x)=f_{2}(x)\}$ . Let $xeX-A$ . Then $f_{1}(x)\neq f_{2}(x)$ . Let $B$

be an open basis for the topology on $Y$ such that $Clf_{2}^{-1}(V)\subseteqq f_{f}^{-1}(ClV)$ for all $V$
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in $B$. Sinoe $Y$ is Hausdorff, there exist disjoint open sets $V$ and $W$ in $Y$ such
$thatf_{1}(x)\in V,f_{2}(x)\in W,$ $andV\in B$. $Thenf_{2}(x)\not\in ClV$. $ThereforexeX-f_{2}^{-1}(ClV7\subseteqq$

X–Cl $f_{2}^{-1}(V)$ . Hence $xef_{1}^{-1}(V)\cap(X-Clf_{2}^{-1}(V))\subseteqq X-A$ . Thus $A$ is closed.

Corollary 1. Let $Y$ be Hausdorff, $f_{1}:X\rightarrow Y$ continuous, and $f_{2}$ : $X\rightarrow Y$ subweakly
continuous. If A and $f_{2}$ agree on a dense subset of $X$, then $f_{1}=f_{2}$ .

For a function $f:X\rightarrow Y$ the graph function is the map $g:X\rightarrow X\times Y$ given by
$g(x)=(x,f(x))$ .

Theorem 7. If $f:X\rightarrow Y$ is subweakly continuous, then the graPh function is
subweakly continuous.

Proof. Let $g:X\rightarrow X\times Y$ be the graph function for $f$. Let $B$ be an open basis
for the topology on $Y$ such that $Clf^{-1}(V)\subseteqq f^{-1}(ClV)$ for all $V$ in $B$. Then
$C=$ { $U\times V:U\subseteqq X$ is open and $VeB$} is an open basis for the topology on $X\times Y$.
For $U\times VeC,$ $Clg^{-1}(U\times V)=Cl(U\cap f^{-1}(V))\subseteqq(ClU)\cap Clf^{-1}(V)\subseteqq(ClU)\cap f^{-1}(ClV)=$

$g^{-1}((ClU)\times ClV)=g^{-1}(Cl(U\times V))$ . Hence the graph function $g$ is subweakly con-
tinuous.

In [6] Noiri proved that if $A$ is a subset of $X$ and $f:X\rightarrow A$ is a weakly
continuous retraction of $X$ onto $A$ and $X$ is Hausdorff, then $A$ is a closed subset
of $X$. The following somewhat weaker result is true for subweakly continuous
functions. The proof is similar to Noiri’s.

Theorem 8. Let $A\subseteqq X$ and let $f:X\sim X$ be a subweakly continuous function
such that $f(X)=A$ and $f|_{4}$ is the identity on A. Then if $X$ is Hausdorff, $A$ is
a closed subset of $X$.

Proof. Assume $A$ is not closed. Let $x\in ClA-A$ . Let $B$ be an $0\mu n$ basis
for the topology on $X$ such that $Clf^{-1}(V)\subseteqq f^{-1}(ClV)$ for all $V$ in $B$. Since $x\not\in A$ ,
$x\neq f(x)$ . Because $X$ is Hausdorff, there exist disjoint open sets $V$ and $W$ such that
$xeV,$ $f(x)\in W$ and $V\in B$. Let $U$ be any open subset of $X$ containing $x$ . Then
$xeU\cap V$ which is an open subset of $X$. Since $xeClA,$ $(U\cap V)\cap A\neq\phi$ . So there
exists an element $ye(U\cap V)\cap A$ . Since $y\in A,$ $f(y)=y\in V$. Hence $yef^{-1}(V)$ .
Thus $ U\cap f^{-1}(V)\neq\phi$ . It follows that $xeCl(f^{-1}(V))$ . However $f(x)eW$ which is
open and disjoint from $V$. So $x\not\in f^{-1}(ClV)$ . This $ntradicts$ the assumption
that $f$ is subweakly continuous. Hence $A$ is closed.

Theorem 9. Let $f_{\alpha}$ : $X\rightarrow Y_{\alpha}$ be a subweakly continuous function for each $a$ in
A. Let $f:X\rightarrow\Pi Y_{\alpha}$ be given by $f(x)=(f_{\alpha}(x))$ . Then $f$ is subweakly continuous.

Proof. For each $\alpha$ in $A$ let $B_{\alpha}$ be an open basis for $Y_{\alpha}$ such that $ Clf_{a}^{-1}(V_{\alpha})\subseteqq$
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$f_{a}^{-1}(ClV_{a})$ for all $V_{\alpha}$ in $B_{\alpha}$ . Then $B=\{\Pi V_{\alpha}$ : $V_{\alpha}=Y_{\alpha}$ for all but finitely many
coordinates and if $V_{\alpha}\neq Y_{\alpha}$ , then $V_{\alpha}\in B_{\alpha}$} is an open basis for $\Pi Y_{\alpha}$ . For $\Pi V_{\alpha}eB$,
$Clf^{-1}(\Pi V_{\alpha})=Cl\bigcap_{\alpha}f_{a}^{-1}(V_{\alpha})\subseteqq\bigcap_{\alpha}$ CI $f_{\alpha}^{-1}(V_{\alpha})\subseteqq\bigcap_{\alpha}f_{\alpha}^{-1}(ClV_{\alpha})=f^{-1}(\Pi ClV_{\alpha})=f^{-1}(Cl\Pi V_{\alpha})$ .
Thus $f$ is subweakly continuous.
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