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ABSTRACT. We study a $C^{*}$-dynamical system $(A, G, \alpha)$ in which $G$ is a
discrete group acting freely on $A$ in a strong sense. We show that the en-
veloping von Neumann algebra $(A\times G)^{\prime\prime}$ of the $C^{*}$ -crossed product $A\times G$ of
such a system is isomorphic to the $ W^{*}\cdot crossed\alpha$ product

$ A^{\prime\prime}\times G\alpha$ where $\alpha^{\prime\prime}isa$ the
bitransposed action of $G$ on $A^{\prime\prime}$ . Consequently, $ A\times G\alpha$ is a type I $C^{*}$-algebra
if $A$ is a type I $C^{*}$-algebra.

1. Introduction

Let $G$ be a discrete group with identity $e$ . A $c*$-dynamical system $(A, G, \alpha)$

consists of a $c*$-algebra $A$ and a homomorphism $\alpha;g\rightarrow\alpha_{q}$ from $G$ into the group
$Aut(A)$ of $*_{- automorphisms}$ of $A$ . In [3], the author formulated the definition of
a strongly centrally free action $\alpha$ in a $c*$-dynamical system $(A, G, \alpha)$ . We show
in section 2 that this freeness $ndition$ coincides with the notion of shift auto-
morphisms introduced by Choda in [2]. Moreover, it is shown that the shift
automorphisms are analogous to the completely dissipative transformations in
ergodic theory. In fact, if we consider $G$ acting on the state space $S$ of $A$ in a
natural way, then $G$ acts strongly centrally freely on $A$ if and only if there is a
wandering split faoe of $S$ which ’generates’ $S$. Also, similar to the Hopf de-
comPosition (cf. [4; p. 48]), for any group $G$ acting on $A$ , its state space $S$ is
decomposed into a $nvex$ sum of two $G\cdot invariant$ split faces $F_{\epsilon}$ and $F_{a}$ where
$F_{\iota}$ contains no wandering split face ($G$ is conservative on $F_{\epsilon}$ ) and $F_{a}$ is either
empty or is ’generated’ by a wandering split face ($G$ is completely dissipative on
$F_{a})$ . In section 3, we show that if $G$ acts strongly centrally freely in $(A, G, \alpha)$ ,
then the enveloping von Neumann algebra $(A\times G)^{\prime\prime}$ of the $c*$-crossed product
$A\times G$ is isomorphic to the $W^{*}$-crossed product $A^{\prime\prime}\times G$ where $\alpha^{\prime\prime}$ is the bitrans-
$posed\alpha$ action of $G$ on the enveloping von $Neumann\alpha^{\prime\prime}$ algebra $A^{\prime\prime}$ of $A$ . Under
this condition, $A\times G$ is a type I $c*$-algebra if $A$ is a type I $C^{*}\cdot algebra$ . The
question of type $I^{\alpha}\cdot neae$ of the crossed products in other circumstances has also
been condidered by Rieffel [9], Takesaki [10] and Zeller-Meier [11].
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2. Central shifts

In the sequel, $G$ will denote a discrete group unless otherwise stated. Let
$(A, G, \alpha)$ be a $c*$-dynamical system and let $S$ be the state space of $A$ . For each
$g\in G$ , the transpose $\alpha_{g^{\prime}}$ of the automorphism $a_{g}$ ; $A\rightarrow A$ induces an affine $hom-$

morphism from $S$ onto itself which will also be denoted by $\alpha_{g}^{\prime}$ . A (nonempty)

subset $W$ of $S$ is called G-wandering if $\alpha_{g^{\prime}}(W)\cap W=\emptyset$ for each $g\neq e$ . Let
$W^{*}=\overline{co}\cup\alpha_{\sigma}^{\prime}(W)$ where co denotes the norm-closed convex hull. Let $A^{\prime\prime}$ be the

$\sigma eG$

universal enveloping von Neumann algebra of $A$ which is identified with the bidual
$A^{**}$ of $A$ . The action $\alpha;g\rightarrow\alpha_{g}$ also induces the bitransposed action $\alpha^{\prime\prime}$ ; $ g\rightarrow$

$\alpha_{g^{\prime\prime}}\in Aut(A^{\prime\prime})$ and $(A^{\prime\prime}, G, \alpha^{\prime\prime})$ becomes a $W^{*}$-dynamical system. We say that $G$

acts strongly centrally freely on $A$ [3] if there is a family $\{p_{j}\}$ of mutually
orthogonal central projections in $A^{\prime\prime}$ such that $\Sigma P_{j}=1$ and $\alpha_{\sigma}^{\prime\prime}(p_{j})p_{f}=0$ for each $j$

and $g\neq e$ .
We refer to [11 for the definition of a split face of a convex set and various

properties of these faces in $c*$-algebras.

Proposition 1. Let $(A, G, \alpha)$ be a $C^{*}\cdot dynamical$ system. Then the following
conditions are equivalent:

(i) $G$ acts strongly centrally freely;
(ii) $G$ is a central shift [2] in $(A^{\prime\prime}, G, \alpha^{\prime\prime})$ , that is, there is a central pro-

jection $peA^{\prime\prime}$ such that $\sum_{geG}\alpha_{\sigma^{\prime\prime}}(p)=1$ and $\alpha_{g}^{\prime\prime}(p)p=0$ for $g\neq e$ ;
(iii) $S$ admits a G-wandering split face $F$ such that $S=\overline{co}\bigcup_{geG}\alpha_{\sigma^{\prime}}(F)$ .

In the above situation, we call $G$ a central shift in $(A, G, \alpha)$ by abuse of
language.

Proof. Since the central projections in $A^{\prime\prime}$ are in one-one correspondence
with the split faces of $S$ (cf. [1]), the equivalence of (ii) and (iii) is evident. We
only need to prove $(i)\Rightarrow(ii)$ . Let $-\ovalbox{\tt\small REJECT}^{-}=\{p\in A^{\prime\prime}$ : $p$ is a central projection and
$\alpha_{g^{\prime\prime}}(p)p=0\forall g\neq e\}$ with the usual ordering of projections. Then $ F\neq\emptyset$ . Suppose
$\mathscr{G}$ is a totally ordered subset of $\ovalbox{\tt\small REJECT}^{-}$. Let $q=\sup\{p:p\in C\}$ . Then for $g\neq e_{r}$

we have $\alpha_{\sigma^{\prime\prime}}(q)=\sup\{\alpha_{g}^{\prime\prime}(p):pec\}$ and if $p_{1},$ $P_{2}\in C$ with $p_{1}\leqq p_{2}$ say, then
$\alpha_{g}^{\prime r}(p_{2})p_{1}\leqq\alpha/’(p_{2})p_{2}=0$ . It follows that $\alpha/’(q)=0$ and $q\in \mathscr{F}$ By Zorn’s lemma,
there is a maximal element $p$ in $\ovalbox{\tt\small REJECT}^{-}$. A routine argument using (i) and the
maximality of $p$ shows that $\sum_{ge\theta}\alpha_{g}^{\prime\prime}(p)=1$ which $mpletes$ the proof.

We note that if $G$ i8 a central shift in $(A, G, \alpha)$ and if $A$ has a $G,invariant$

state, then $G$ must be finite. Also we remark that in a (discrete) $W^{*}$-dynamical
system $(M, G, \beta),$ $G$ is a shift if and only if $\beta$ is a ‘dual’ action in the sense of
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Nakagami (cf. [7; $Threm$ II. 2.4]). Hence the investigation of shift automor-
phisms may be of some interest.

$A$ maximality argument similar to the above proof yields the following result.

Proposition 2. Let $(A, G, \alpha)$ be a $c*$-dynamical system. Then there is a G-
invariant central projection $P$ in $A^{\prime\prime}$ such that $G$ is a central shift in $(Ap, G, \alpha|_{4p})$

and $G$ is not a central shift in $(Aq, G, \alpha|_{Aq})$ for any G-invariant central Pro-
jection $q\leqq 1-P$ .

The above result can be expressed in terms of split faces, analogous to the
Hopf decomposition in ergodic $thry$ , as follows.

Corollary 3. Let $(A, G, \alpha)$ be a $c*$-dynamical system and let $S$ be the state
space of A. Then there are G-invariant $sPlit$ faces $F_{\iota}$ and $F_{a}$ of $S$ such that

(i) $S=\omega(F_{c}\cup F_{a})$ where $F_{a}$ is the complementary face of $F_{\iota}$ ;
(ii) $F_{e}$ contains no $G\cdot wandering$ split face of $S$ ;
(iii) $ F_{a}=\emptyset$ or $F_{a}=W^{*}for$ some G-wandering spljt face $W$ of $S$ .
Example 1. Any discrete group $G$ acts as a central shift in some $c*$-dynamical

system. In fact, let $C_{o}(G)$ be the $c*$-algebra of continuous functions on $G$ van-
ishing at infinity and let $\tau;G\rightarrow Aut(C_{o}(G))$ be the translation

$(\tau.f)(t)=f(s^{-1}t)$

where $f\in C_{o}(G)$ and $s,$ $t\in G$ . Then $G$ is a central shift in $(C_{o}(G), G, \tau)$ .
We note that if $G$ is a central shift in $(A, G, \alpha)$ , then $G$ acts centrallyfreely

in the sense of Zeller-Meier [11], that is, for $g\neq e,$ $\alpha_{g^{\prime\prime}}$ acts freely on the centre
$A^{\prime\prime}$ as in [6]. The $nverse$ is true if $G$ is finite (cf. [3]) and false in general if
$G$ is infinite (cf. Example 2).

A $c*$-algebra $A$ is scattered [3] if if $A^{\prime\prime}$ is the direct sum of type I factors.
If $A$ is a separable commutative scattered $c*$-algebra, then $A^{\prime\prime}=l_{\infty}$ and obviously
there is a natural central shift acting on $A^{\prime\prime}$ . On the other hand, there is no
nontrivial central shift acting on the compact operators $K(H)$ .

Remark. Note that if $G$ acts centrally freely in $(A, G, \alpha)$ where $A$ is a
scattered $c*$-algebra, then $G$ is a central shift. Ideed, if $A^{\prime\prime}$ is the full opera-
tor algebra $B(H)$ , then trivially $G=\{e\}$ . Otherwise there is a family $\{p_{j}\}$ of
nontrivial minimal central projections in $A^{\prime\prime}$ such that $\Sigma P_{j}=1$ . Then for each $j$

and $g\neq e$, we have either $\alpha_{g}^{\prime\prime}(p_{j})=p_{j}$ or $a_{\sigma^{\prime\prime}}(p_{j})p_{j}=0$ by minimality. Since $\alpha_{g}^{\prime\prime}$ is
free, we must have $\alpha_{\sigma^{\prime\prime}}(P_{j})p_{j}=0$ . So $G$ is a central shift. Further, if $G$ acts on
a nonscattered $c*$-algebra $B$ with action $\beta$, then the $c*$-tensor product $A\otimes B$ is
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not scattered by [3; Proposition 1] and $G$ is a central shift in $(A\otimes B, G, a\otimes\beta)$

where $(A\otimes B)^{\prime\prime}$ is isomorphic to the $W^{*}$-tensor product $A^{\prime\prime}\otimes B^{\prime\prime}-$ since $A$ is scat-
tered (cf. [5]). So there exist central shifts on nonscattered $c*$-algebras.

3. Crossed products

Recall that the crossed product $A\times G$ of $(A, G, \alpha)$ , for discrete $G$, is the
enveloping $c*$-algebra of the $*.algebra\alpha k(G, A)$ of A-valued functions on $G$ with
finite support, where the $*$-algebraic structure of $k(G, A)$ is defined as follows:

$(fh)(s)=\sum_{\ell eC}f(t)\alpha_{t}(h(t^{-1}s))$

$f^{*}(s)=\alpha_{*}(f(s^{-1}))^{*}$

where $f,$ $g\in k(G, A)$ and $s\in G$ (cf. [8]). We shall identify $A$ as a subalgebra of
$ A\times G\alpha$ via the embedding $a\leftrightarrow f_{a}\in k(G, A)$ where $f_{a}(e)=a$ and $f_{a}(t)=0$ for $t\neq e$ .

Proposition 4. If $G$ acts centrally freely in $(A, G, a)$ , then $ A\times G\alpha$ is scattered
if (and only if) $A$ is scattered.

This follows immediately from $[3; Threm5]$ since we have remarked
before that if $G$ acts centrally freely on a scattered $c*$-algebra, then $G$ is in fact
a central shift.

Given a $c*$-dynamical system $(A, G, \alpha)$ and the universal representation
$\pi_{u}$ ; $A\rightarrow B(H_{u})$ of $A$ , we define the covariant representations $\tilde{\pi}_{u}$ ; $A\rightarrow B(l_{2}(G, H_{u}))$

and $\lambda:G\rightarrow B(l_{2}(G, H_{u}))$ by

$(\tilde{\pi}_{u}(a)\xi)(t)=\pi_{u}(\alpha_{t}-\iota(a))\xi(t)$

$(\lambda.\xi)(t)=\xi(s^{-1}t)$

for $a\in A,$ $s,$ $t\in G$ and $\xi\in l_{2}(G, H_{u})$ (cf. [8]). Further we define the induced regular
representation $\tilde{\pi}_{u}\times a\lambda:A\times G\rightarrow B(l_{2}(G\alpha H_{u}))$ by

(3.1) $(((\tilde{\pi}_{u}\times\lambda)f)\xi)=\sum_{\in G}\pi_{u}(\alpha_{t}-1(f(s)))\xi(s^{-1}t)$ $(f\in k(G, A))$ .
If we identify $A$ as a subalgebra of $ A\times G\alpha$ via $a-\rangle f_{a}$ as aforementioned, then
we have, for $a\in A$ ,

(3.2) $(((\tilde{\pi}_{u}X\lambda)a)\xi)(t)=\sum_{leG}\pi_{u}(\alpha_{t}-1(f_{a}(s)))\xi(s^{-1}t)=\pi_{u}(\alpha_{t}-1(a))\xi(t)$ .
We now defie the $W^{*}$-crossed product $A^{\prime\prime}\times G$ of the $W^{*}$-dynamical system

$\alpha^{\prime}$

$(A^{\prime\prime}, G, \alpha^{\prime\prime})$ where $A^{\prime\prime}$ is the a-weak closure of $\pi_{u}(A)\subset B(H_{u})$ and $\alpha^{\prime\prime};G\rightarrow Aut(A^{\prime\prime})$

is the bitransposed action such that $\alpha_{\sigma^{\prime\prime}}(\pi_{u}(a))=\pi_{u}(\alpha_{g}(a))$ for $a\in A$ and $g\in G$ . As
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usual, we define the faithful normal $*$-representation $\ell:A^{\prime\prime}\rightarrow B(l_{2}(G, H_{u}))$ by

$(\ell(m)\xi)(t)=\alpha_{t^{-1}}^{\prime\prime}(m)\xi(t)$

for $m\in A^{\prime\prime},$ $\xi\in l_{2}(G, H_{u})$ and $t\in G$ . The $W^{*}$-crossed product $A^{\prime\prime}\times G$ is the von
Neumann algebra in $B(l_{2}(G, H_{u}))$ generated by $\ell(A^{\prime\prime})\cup\lambda(G)$ and it $i\dot{s}$ not difficult
to see from (3.1) and (3.2) above that $A^{\prime\prime}\times G$ is just the $\sigma$-weak closure of
$(\tilde{\pi}_{u}X\lambda)(A\times G)$ with $(\tilde{\pi}_{u}\times\lambda)(a)=\ell(\pi_{u}(a))$ for $a\in^{\alpha_{A}^{\prime}}$ .

Now $\alpha_{1et}\pi;A\times G\rightarrow B(H)$ be the universal representation of $A\times G$ so that
$(A\times G)^{\prime\prime}$ is the $\sigma- weak\alpha$ closure of $\pi(A\times G)$ in $B(H)$ . The by [8; 3 and as
in $[3]\alpha$ there is a $*$ -isomorphism $\tilde{\rho}$ of $ A^{\alpha}\prime\prime$ into $(A\times G)^{\prime\prime}$ such that $\tilde{\rho}(\pi_{u}(a))=\pi(a)$ for

$\alpha$

each $a\in A$ . Let $\tau;(A\times G)^{\prime\prime}\rightarrow B(l_{2}(G, H_{u}))$ be the a-weakly continuous extension of
$\tilde{\pi}_{u}X\lambda;A\times G\rightarrow B(l_{2}(G, H_{u}^{\alpha}))$ so that $\tau((A\times G)^{\prime\prime})a$ is the a-weak closure of $(\tilde{\pi}_{u}\times\lambda)(A\times G)\alpha$

in $B(l_{2}(G^{a}H_{u}))$ .
Lemma 5. We have the the following commutative diagram

$ A\subset A\times G^{\underline{\pi_{u}}\times\lambda}\rightarrow B(l_{2}(G, H_{u}))\backslash ^{a}\pi_{u}\backslash \pi\nearrow\searrow\searrow/\sim\tau$

$ A^{\prime\prime}\rightarrow^{\tilde\rho}(A\times G)^{\prime\prime}\alpha$

in which $\tau(\tilde{\rho}(m))=\ell(m)$ for each $m\in A^{\prime\prime}$ .
Proof. Since $\pi_{u}(A)$ is $\sigma$-weakly dense in $A^{\prime\prime}$ and since $\tau,\tilde{\rho}$ and $\ell$ are a-weakly

continuous, it suffices to show that $\tau(\tilde{\rho}(\pi_{u}(a)))=\ell(\pi_{u}(a))fora\in A$ . Indeed, we have
$\tau(\tilde{\rho}(\pi_{u}(a)))=\tau(\pi(a))=(\tilde{\pi}_{u}\times\lambda)(a)=\ell(\pi_{u}(a))$ for $a\in A$ .

Theorem 6. If $G$ is a central shift in $(A, G, a)$ , then $(A\times G)^{\prime\prime}$$is\alpha*$ -isomorPhic
to $A^{\prime\prime}\times G\alpha^{\prime}$

Proof. We need only prove that the a-weakly continuous $*$-epimorphism
$\tau;(A\times G)^{\prime\prime}\rightarrow A^{\prime\prime}\times G$ in Lemma 5 is faithful. Let $z\in(A\times G)^{\prime\prime}$ be a central pro-
$jecti_{on}^{\alpha}$ such $th^{\alpha^{r}}atker\tau=(A\times G)^{\prime\prime}z$ . By the ’relative $com^{\alpha}mutant$ property’ of $A^{\prime\prime}$

proved in [3; Proposition $4$]
$\alpha$

we have $z=\tilde{\rho}(m)$ for some $m$ in $A^{\prime\prime}$ . Now $c(m)=$

$\tau(\tilde{\rho}(m))=\tau(z)=0$ implies that $m=0$ as $\ell$ is faithful. Therefore $z=0$ and $\tau$ is faithful.

Remark. The above conclusion is not true in general as the faithfulness of
$\tau$ in Lemma 5 would imply that $ A\times G\alpha$ is isomorphic to the reduced $c*$-crossed
product $(\tilde{\pi}_{u}X\lambda)(A\times_{\alpha}G)$ .

We have the following immediate consequences.
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Corollary 7. If $G$ is a central shift in $(A, G, \alpha)$ , then $(A\times G)^{\prime\prime}$ is $*_{- iso-}$

morphic to $M\otimes B(l_{2}(\alpha^{\prime\prime}(G)))$ where $M=\{m\in A^{\prime\prime} ; \alpha_{t}^{\prime\prime}(m)=m\forall t\in G\}is^{\alpha}the$ fixed-point
algebra under $G$.

Proof. By [2; Theorem 2], $A^{\prime\prime}\times G\alpha^{\prime}$ is isomorphic to $M\otimes B(l_{2}(\alpha^{\prime\prime}(G)))$ .
Theorem 8. If $G$ is a central shift in $(A, G, a)$ , then $ A\times G\alpha$ is a type I $C^{*}-$

algebra if (and only if) $A$ is a type I $c*$-lagebra.

Proof. Since $A^{\prime\prime}$ is a type I von Neumann algebra, by [2; Theorem 7], the
$W^{*}crossed$ product $A^{\prime\prime}\times G$ is a type I von Neumann algebra and so is $(A\times G)^{\prime\prime}\alpha$

Hence $A\times G$ is a type $I^{\alpha^{\prime}}C^{*}$-algebra.
In $th^{\alpha}e$ above theorem, if both $A$ and $G$ are separable, then the type I-ness of

$A\times G$ that implies the action of $G$ induces a smooth action on $\hat{A}$ as in [10; $Threm$
$8.1^{\alpha}]$ . It follows that separable central shifts on separable type I algebras induce
smooth actions. It would be of interest to obtain a direct proof of this fact which
would then give an alternative proof of Theorem 8 in the separable case since it
has been shown in $[10, 11]$ that free and smooth action of a separable group on a
separable type I algebra give rise to tyPe I crossed Product.

Rieffel [9] has shown that if $G$ is finite in any $c*$-dynamical system $(A, G, a)$

in which $A$ is a type I $c*$-algebra, then $A\times G$ is also a type I $c*$-algebra.
In contrast to Proposition 4, the $conditi_{0}^{\alpha}n$ in $Threm8$ can not be weakened

to a centrally free action as the following example shows.

Example 2. Let $T=\{e^{it} : t\in R\}$ be the unit circle and $C(T)$ the $c*$-algebra of
continuous functions on $T$. Consider the rational rotations $\alpha:Q\rightarrow Aut(C(T))$

(modulo $ 2\pi$):

$(\alpha_{r}f)(e^{it})=f(e^{\ell(\iota+r)})$ $(feC(T))$ .
Then $Q$ acts on $T$ naturally and it is evident that the stabilizer of each point in
$T$ reduces to $\{0\}$ . So $Q$ acts centrally freely in $(C(T), Q, \alpha)[11:1.18]$ . Also
it is easily seen that the orbit of $Q$ at each point in $T$ is dense in $T$. So
$C(T)\times Q$ is not a type I $c*$-algebra by [11; Th\’eor8me 7.7].

$F^{\alpha}inally$ we remark that if $G$ is finite or compact in a $c*$-dynamical system
$(A, G, \alpha)$ , then by a result of Rieffel [91, $A\times G$ is isomorphic to the fixed-point
algebra $(A\otimes K(L_{2}(G)))^{\alpha\theta r}$ where $\gamma$ is the action of $G$ on the compact operators
$K(L_{2}(G))$ by conjugation by the action of right translation on $L_{2}(G)$ . Therefore if
$A$ is scattered (or $ty$oe I), then so is $A\times G$ since the scatteredness is preaerved under
$c*$-tensor product and is hereditary [3]. This answers a question in [3; Remark 3].
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