
YOKOHAMA MATHEMATICAL
JOURNAL VOL. 32, 1984

CONVERGENT POWER SERIES EXPANSIONS FOR THE BIRKHOFF
INVARIANTS OF MEROMORPHIC DIFFERENTIAL EQUATIONS

Part I. Definition of the coefficient functions

By

W. BALSER

(Received June 9, 1983)

0. Introduction

Solutions of the standard differential equation of Poincar\’e rank one
(0.1) $zx^{\prime}=(z\Lambda+A_{1})x$ ,

where $\Lambda=diag[\lambda_{1}, \ldots, \lambda_{n}]$ has all distinct diagonal entries, can be expressed in
terms of convergent Laplace integrals of the form

$x(z)=\int y(t)e^{\iota t}dt$ ,

and $y(t)$ is a solution of the associated differential equation

(0.2) $(\Lambda-tI)y^{\prime}=(I+A_{1})y$ .
R. Sch\"afke [2] and, independently, W. Balser, W. B. Jurkat, and D. A. Lutz [1]
have shown that the Stokes’ multipliers of certain unique fundamental solutions
of (0.1) can be explicitly calculated in terms of constants $c_{kf}(1\leqq j, k\leqq n)$ , arising
from (0.2) as follows: To every one of the points $\lambda_{j}(1\leqq j\leqq n)$ (which are regular
singular points of (0.2)) there corresponds a unique solution $y_{j}(t)$ having a charac-
teristic singular behavior at $\lambda_{j}$ . A convergent expansion of $y_{j}(t)$ , for $|t-\lambda_{j}|$ suf-
ficiently small, is given in terms of the $j^{th}$ column of a formal fundamental solution
of (0.1), so that, given the formal solution, one may think of $y_{j}(t)$ to be known
locally (i.e. at the point $\lambda_{f}$). Furthermore, $y_{j}(t)$ may be analytically continued
to every other wint $\lambda_{k}(1\leqq k\leqq n)$ , and assuming this to be done, one may find $c_{kj}$

mentioned above as the unique constant for which

(0.3) $y_{j}(t)=y_{k}(t)c_{kj}+reg(t-\lambda_{k})$

(by reg $(t)$ we generically denote a vector or a matrix being analytic in a neigh-
borhood of the origin). Hence, although in principle the constants $c_{kj}$ (and from
them, the Stokes’ multipliers) may be calculated by means of analytic continuation
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of the functions $y_{1}(t),$ $\cdots,$
$y_{n}(t)$ , an $exPlicit$ formula for the analytic $ntinuation$

would be helpful if not necessary, in order to make a calculation work effectively.

In this paper, we obtain such a formula by means of expanding the functions
$y_{j}(t)$ as power series (in several variables) with roepect to the $0ff\cdot diagonal$ elements

of $A_{1}$ as variables, and we prove that the coefficients (which depend upon $t$ , the
points $\lambda_{1},$

$\cdots,$
$\lambda_{n}$ , and the diagonal elements of $A_{1}$ as parameters) are analytic func-

tions of $t$ (for $t\neq\lambda_{1},$ $\cdots,$
$\lambda_{n}$) which can be recursively calculated from explicit

integral formulas (Sections 1 and 2). In Section 3 we then show that the power

series converges for every $A_{1}$ , and that the convergence is uniform with respect

to $t$ , for $t$ in every compact set avoiding the points $\lambda_{1},$

$\cdots,$
$\lambda_{n}$ . In Section 4 we

analize the behavior of the $efficients$ at $\lambda_{k}(1\leqq k\leqq n)$ and show that, in a sense,

the convergence even is uniform for $t$ close to $\lambda_{k}$ . So, mainly because of the
convergence for $t$ near $\lambda_{k}$ , the expansion we have obtained seems a useful means
for calculating the constants $c_{kf}$ , and in fact we show in Sections 4 and 5 that $c_{kj}$

itself admits a convergent power series expansion with respect to the off-diagonal

elements of $A_{1}$ as variables. The coefficients of the expansion of $c_{kj}$ only depend

upon the formal invariants (i.e. $\lambda_{1},$

$\cdots,$
$\lambda_{n}$ and the diagonal entries of $A_{1}$ ) and may

be obtained from the coefficients in the expansion of $y_{j}(t)$ by analysing their
behavior at $\lambda_{k}$ . While we do not yet have a recursion formula for the $\infty efficienS$

of $c_{kj}$ , they still may be effectively calculated by means of the recursion formulas
for the coefficients of $y_{j}(t)$ and “evaluating” them at $\lambda_{k}$ .

As a consequence of this paper, we obtain that the constants $c_{kj}$ are entire
functions in the off-diagonal elements of $A_{1}$ , which is not very surprising. How-
ever, based upon the results obtained here, we hope to analyse the nature of $c_{kj}$

as a function of the elements $\lambda_{1},$

$\cdots,$
$\lambda_{n}$ , which should give more important

information about the nature of these functions.

1. An integral equation for the associated functions

Throughout this paper, let $\lambda_{1},$

$\cdots,$
$\lambda_{n}$ (for fixed $n\geqq 2$) always denote mutually

distinct complex numbers, and let

$\Lambda=diag[\lambda_{1}, \cdots, \lambda_{n}]$

denote the diagonal matrix with the (diagonal) entries $\lambda_{1},$

$\cdots,$
$\lambda_{n}$ . Furthermore,

let $A_{1}$ be an arbitrary $n\times n$ matrix, which we like to decompose as
$A_{1}=\Lambda^{\prime}+A$ ,

where
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$\Lambda^{\prime}=diag[\lambda_{1}^{\prime}, \cdots, \lambda_{n}^{\prime}]$

$nsists$ of the diagonal entries of $A_{1}$ , and accordingly

$A=[a_{jk}]$ , $1\leqq j,$ $k\leqq n$ , $a_{11}=\cdots=a_{nn}=0$ ,

contains the off-diagonal entries of $A_{1}$ .
Remark 1.1. Whenever we will later on make what we call our basic assump-

tions, it will be understood that $n$ distinct numbers $\lambda_{1},$

$\cdots,$
$\lambda_{n}$ and a matrix $A_{1}$ of

size $n\times n$ are arbitrarily given, and that $\Lambda,$
$\Lambda^{\prime}$ , and $A$ are as above.

Under our basic assumptions, it is easily seen (cf. e.g. [11, [2]) that the
differential equation

(1.1) $(tI-\Lambda)y^{\prime}=(\rho I-A_{1})y$ ,

for arbitrary complex $\rho$, has singularities only at the points $\lambda_{1},$

$\cdots,$
$\lambda_{n}$ , and $\infty$ ,

which are all regular singular points. If we restrict $\rho$ by

(1.2) $\rho\not\equiv\lambda_{k}^{\prime}$ mod 1 , $1\leqq k\leqq n$ ,

then for every fixed $k,$ $1\leqq k\leqq n$ , a fundamental solution of (1.1) is seen to exist
which consists of $n-1$ solution vectors analytic at $t=\lambda_{k}$ , and one of the form

(1.3) $y_{k}(t)=y_{k}(t_{j}\rho)=(t-\lambda_{k})^{\rho-\lambda_{k}^{\prime}}\{\delta_{k}/\Gamma(1+\rho-\lambda_{k}^{\prime})+reg_{0}(t-\lambda_{k})\}$ ,

where $\delta_{k}$ is the $k^{\ell\hslash}$ unit vector, and $reg_{0}(t)$ generically denotes, throughout, a vector
or matrix of appropriate size whose components are analytic in some neighbor-
hood of zero and vanish for $t=0$ .

Remark 1.2. For $\rho=-1$ , the equation (1.1) coincides with the associated
differential equation (0.2). The idea of introducing a parameter $\rho$ is due to R.
Sch\"afke [2] who also investigated the dependence of $y_{k}(t;\rho)$ upon $\rho$ and $nsidered$,
in particular, the extension of the definition of $y_{k}(t;\rho)$ to cases where $\rho-\lambda_{k}$ be-
$mes$ an integer. We do, however, not $nsider$ these cases here.

Due to (1.2), the functions $y_{1}(t),$
$\cdots,$ $y_{n}(t)$ (which $incide$, aside from scalar

factors, with the associated functions introduced in [1]) are multi-valued and are,
among all solutions of (1.1), uniquely characterized by (1.3) (because of the struc-
ture of fundamental solutions mentioned above). To have an unambiguous defini.
tion of these functions, we cut the t-plane along parallel rays

arg $(t-\lambda_{k})=\eta$ , $1\leqq k\leqq n$ ,

for some fixed real value $\eta$ for which no point $\lambda_{j}(j\neq k)$ lies on the cut arg $(t-\lambda_{k})=\eta$,
$1\leqq k\leqq n$ . For every $t$ in the cut plane (i.e. not on one of the cuts) we then select
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arg $(t-\lambda_{k})$ to be in the interval $(\eta-2\pi, \eta)$ , and define log $(t-\lambda_{k})$ and general powers
of $t-\lambda_{k}$ consistent with this choice $(1\leqq k\leqq n)$ . The functions $y_{1}(t),$

$\cdots,$ $y_{n}(t)$ then
become single-valued analytic functions of $t$ in the cut plane. If we fix $\Lambda$ and

$\Lambda^{\prime}$ (and the direction of the cuts), these functions depend upon $\rho$ and the entries
of $A$ as parameters. To study this dependence, it is sufficient to $ncentrate$ on
$y_{1}(t)$ , e.g., since a permutation similarity of $[y_{1}(t), \cdots, y_{n}(t)]$ and the matrices $\Lambda$ ,
$\Lambda^{\prime},$ $A$ may be used to generalize results for $y_{1}(t)$ to $y_{2}(t),$

$\cdots,$ $y_{n}(t)$ . For notational
convenience, we therefore omit the index and write

$y(t)=y(t;\rho, A)$

instead of $y_{1}(t)$ .
Lemma 1. In addition to our basic assumptions, assume that $\rho$ satisfies (1.2)

and ${\rm Re}(\rho-\lambda_{1}^{\prime})>-1$ . Then the components

$y^{(1)}(t),$
$\cdots,$ $y^{(n)}(t)$

of the vector solution $y(t)$ satisfy the following system of integral equations:

(1.4) $\left\{\begin{array}{ll}y^{(1)}(t)=(t-\lambda_{1})^{\rho-\lambda_{1^{\prime}}}\{1/\Gamma(1+\rho-\lambda_{1}^{\prime})-\sum_{j\neq 1}a_{1j}\int_{\lambda_{1}}^{t}(u-\lambda_{1})^{\lambda_{1^{\prime}}-} & y^{(j)}(u)du\}.\\y^{(k)}(t)=-(t-\lambda_{k})^{\rho-\lambda_{k^{\prime}}}\sum_{j\neq k}a_{kj}\int_{\lambda_{1}}^{t}(u-\lambda_{k})_{k}^{\lambda^{\prime}-\rho-1}y^{(j)}(u)du, & 2\leqq k\leqq n,\end{array}\right.$

for $t$ in the cut plane.

Proof. From (1.3) with $k=1$ we conclude for the components of $y(t)=y_{1}(t)$ :
(1.5) $(t-\lambda_{1})^{\lambda_{1^{\prime}}-\rho}y^{(1)}(t)=1/\Gamma(1+\rho-\lambda_{1}^{\prime})+reg_{0}(t-\lambda_{1})$ ,

(1.6) $(t-\lambda_{1})^{\lambda_{1^{\prime}}-\rho-1}y^{(j)}(t)=reg(t-\lambda_{1})$ , $2\leqq;\leqq n$ .
Furthermore, since $y(t)$ is a solution vector of (1.1), we obtain

(1.7) $\frac{d}{dt}[(t-\lambda_{k})^{\lambda_{k^{\prime}}-\rho}y^{(k)}(t)]=-(t-\lambda_{k})^{\lambda_{k^{\prime}}-\rho-1}\sum_{j\neq k}a_{kj}y^{(j)}(t)$ , $1\leqq k\leqq n$ .
For $k=1$ , we conclude from (1.6) that the right hand side of (1.7) is analytic at
$t=\lambda_{1}$ , whereas for $k=2,$ $\cdots,$ $n$ it has an integrable singularity, due to (1.5), (1.6)
and our assumption ${\rm Re}(\rho-\lambda_{1}^{\prime})>-1$ . Hence with suitable constants $c_{k}$, for
$k=1,$ $\ldots,$ $n$ :

$(t-\lambda_{k})^{\lambda_{k^{\prime}}-\rho}y^{(k)}(t)=c_{k}-\int_{\lambda_{1}}^{l}(u-\lambda_{k})^{\lambda_{k^{\prime}}-\rho- 1}\{\sum_{\dot{g}\neq k}a_{kj}y^{(j)}(u)\}du$ ,

and taking a limit as $t\rightarrow\lambda_{1}$ (and again using (1.5), (1.6)), we see
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$c_{1}=1/\Gamma(1+\rho-\lambda_{1}^{\prime})$ , $c_{2}=\cdots=c_{n}=0$ .
In order to expand $y(t;\rho, A)$ as a power series in several variables (namely

the components of $A$), we use the following notation:
An index matrix $P=[p_{jk}],$ $1\leqq j,$ $k\leqq n$ , is a matrix with non-negative integer

entries, for which

$p_{11}=p_{22}=\cdots=p_{n},=0$ .
For every such $P$, define

(1.8)
$A^{P}=\sum_{j\neq k}a_{fk}^{p_{jk}}$

(i.e. $A^{P}$ is a scalar!). Then for every two index matrices $P$ and $Q$ we have
$A^{P}A^{Q}=A^{P+Q}=A^{Q}A^{P}$ ,

whatever the values of the entries of $A$ are. The ”modulus” of such an index
matrix is defined by

(1.9)
$|P|=\sum_{j,k}p_{jk}$ .

Using these notations, we formally expand $y(t;\rho, A)$ as a power series

(1.10) $y(t;\rho, A)=\prod_{P}g(t;\rho, P)A^{P}$ .
If $E_{jk}$ (for $j\neq k,$ $1\leqq j,$ $k\leqq n$) denotes the index matrix with a single one in the

$(j, k)$ position and zeros elsewhere, then

$a_{fk}=A^{B_{jk}}$ .
Inserting (1.10) into (1.4), formally interchanging summation and integration and
comparIng coefficients of like powers leads to recursion formulas for the $com\mu nents$

$g^{(1)}(t;\rho, P),$
$\ldots,$ $g^{(n)}(t;\rho, P)$ of the coefficient functions $g(t;\rho, P)$ . If we interpret,

in the formulas below, $g(t;\rho, P)\equiv 0$ if $P$ haPoens to have some negative entry, then
these relations may be written as

(1.11) $\left\{\begin{array}{ll}g^{(1)}(t;\rho, 0)=(t- & )^{\rho-\lambda_{1^{\prime}}}/\Gamma(1+\rho-\lambda_{1}^{\prime}),\\g^{(k)}(t;\rho, 0)\equiv 0, & 2\leqq k\leqq n,\end{array}\right.$

and for $P\neq 0$ :

(1.12) $g^{(k)}(t;\rho, P)=-(t-\lambda_{k})^{\rho-\lambda_{k^{\prime}}}\sum_{j\neq k}\int_{\lambda_{1}}^{t}(u-\lambda_{k})^{\lambda_{k^{\prime}}-\rho-1}g^{(j)}(u;\rho, P-E_{kj})du$ ,

$1\leqq k\leqq n$ .
In the following section we show that the integrals in (1.12) always exist,
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provided ${\rm Re}(\rho-\lambda_{1}^{\prime})>-1$ , and for every such $\rho,$ $(1.11)$ and (1.12) define the coefficient
functions $g^{(k)}(t;\rho, P)$ uniquely for every index matrix $P$. Obviously, the coefficient
functions form a set of functions of $t$ which (aside from the parameter $\rho$) only
depend uPon the formal invariants $\lambda_{1},$

$\cdots,$
$\lambda_{n}$ , and $\lambda_{1}^{\prime},$

$\ldots,$
$\lambda_{n}^{\prime}$ , and $!^{t}$ is a reasonable

point of view if we consider them as “known” functions for the purpose of cal-
culating the Stokes’ multipliers. Nonetheless, they seem to be higher transcendental
functions, and we are going to study some of their properties later.

Remark 1.3. One can see from (1.11), (1.12) that for many index matrices $P$,
the corresponding coefficient function vanishes identically.

2. Analytic behavior of the coefficient functions

We are going to investigate the analytic behavior of $g(t;\rho, P)$ with respect to
the variable $t$ .

Proposition 1. In addition to our basic assumPtions, let ${\rm Re}(\rho-2_{1}^{\prime})>-- 1$ .
Then for every index matrix $P$, the function $g(t;\rho, P)$ is uniquely defined by (1.11),

(1.12), analytic (with $resPect$ to t) in the cut plane, and may be analytically con-
tinued along arbitrary $Pa\ell hs$ across the cuts which do not contain any of the
points $\lambda_{1},$

$\cdots,$
$\lambda_{n}$ . Furthermore, for arbitrary non-negative integer $q$,

(2.1) $g(t;\rho, P)=(t-\lambda_{1})^{\rho-\lambda_{1^{\prime}}+q+1}$ reg $(t-\lambda_{1})$ if $|P|=2q+1$ ,

$resP$ .
(2.2) $g(t;\rho, P)=(t-\lambda_{1})^{\rho-\lambda_{1^{\prime}}+q}\{c_{P}\delta_{1}+reg_{0}(t-\lambda_{1})\}$ if $|P|=2q$

(with a scalar constant $c_{P}=c_{P}(\rho)$).

Proof. Provided the integrals in (1.12) always exist, the statements upon the
uniqueness, analyticity, and analytic continuation of $g(t;\rho, P)$ are immediate.
Hence it suffices to prove (2.1), (2.2), because then the integrals exist, due to our
assumption ${\rm Re}(\rho-\lambda_{1}^{\prime})>-1$ . We prove (2.1), (2.2) by induction with respect to $|P|$ :

For $|P|=0$ (i.e. $P=0$), we see that (2.2) holds with $c_{0}=1/\Gamma(1+\rho-\lambda_{1}^{\prime})$ , due to
(1.11). Hence we assume that (2.2) holds for some fixed $q\geqq 0$ . Then for arbitrarily
fixed $P$ with $|P|=2q+1$ , we have $|P-E_{kj}|=2q$ for every $k\neq j,$ $1\leqq k,$ $j\leqq n$ , except
if $P_{kj}=0$ in which case $P-E_{kj}$ is not an index matrix. But in the second case
we defined $g^{(j)}(t;\rho, P-E_{kj})\equiv 0$ ; hence by induction hypothesis we have for every
$k,$ $1\leqq k\leqq n$ :

$g^{(j)}(t;\rho, P-E_{kj})=(t-\lambda_{1})^{\rho-\lambda_{1^{\prime}}+q+1}$ reg $(t-\lambda_{1})$ , $j\neq k$ , $2\leqq;\leqq n$ ,

and (if $k\neq 1$)



POWER SERIES EXPANSIONS FOR BIRKHOFF INVARIANTS, I 21

$g^{(1)}(t;\rho, P-E_{k1})=(t-\lambda_{1})^{\rho-\lambda_{1^{\prime}}+q}$ reg $(t-\lambda_{1})$ .
For $k=1$ , the integrands on the right of (1.12) are therefore of the form

$(u-\lambda_{1})^{q}$ reg $(u-\lambda_{1})$ ,

hence

$g^{(1)}(t;\rho, P)=(t-\lambda_{1})^{\rho-\lambda_{1^{\prime}}+q}$ reg $(t-\lambda_{1})$ .
For $k=2,$ $\cdots,$ $n$ , the integrands in (1.12) are of the form

$(u-\lambda_{1})^{\rho-\lambda_{1^{\prime}}+q}$ reg $(u-\lambda_{1})$ ,

and expanding the analytic function and integrating termwise, we find
$g^{(k)}(t;\rho, P)=(t-\lambda_{1})^{\rho-\lambda_{1^{\prime}}+q+1}$ reg $(t-\lambda_{1})$ , $2\leqq k\leqq n$ .

Therefore (2.1) holds for every $P$ with $|P|=2q+1$ , and in quite the same way one
proves(2.2) (with $q+1$ in place of q) for every $P$ with $|P|=2q+2$ . This completes
the proof.

Next we analyse the dependence of $g(t;\rho, P)$ upon $\rho$ if $\rho$ changes modulo
one:

Proposition 2. Under our basic assumPtions, the function $g(t;\rho, P)$ (for every
fixed index matrix $P$) is analytic with $resPect$ to $\rho$ (for fixed $t$ in the cut plane),

in the halfPlane
(2.3) ${\rm Re}(\rho-\lambda_{1}^{\prime})>-1$ .
Furthermore,

(2.4) $g(t;\rho, P)=\frac{d}{dt}g(t;\rho+1, P)$

for $t$ in the cut plane and every $\rho$ with (2.3).

Proof. We proceed by induction with respect to $P=|P|$ : For $P=0$, the state-
ments are obviously true, due to (1.11), and we furthermore observe that
$(\partial/\partial\rho)g^{\langle k)}(t;\rho, 0)$ has an absolutely integrable singularity (in $f$)} at $t=\lambda_{1}$ . Hence let
$P\geqq 0$ be arbitrarily fixed, and suppose that the statements of the PropositiOn hOld
for every index matrix of “modulus” $p$, and that additionally the derivative with
respect to $\rho$ is always absolutely integrable at $t=\lambda_{1}$ . Then for arbitrarily fixed $P$

with $|P|=P+1$ , we may differentiate (1.12) with respect to $\rho$ to obtain that
$g^{\langle k)}(t;\rho, P)$ (for arbitrarily fixed $k,$ $1\leqq k\leqq n$) is analytic with respect Vo $\rho$, for $\rho$

as in (2.3), and its’derivative again is absolutely integrable at $t=\lambda_{1}$ . Furthermore,
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we $nclude$ from Proposition 1 and (2.3) that

$(t-\lambda_{1})^{\lambda_{1^{\prime}}-\rho-1}g^{(j)}(t;\rho+1, P-E_{1j})\rightarrow 0$ as $t\rightarrow\lambda_{1}$ , $2\leqq!\leqq n$ .
Hence we may integrate by parts to obtain (for $k=1,$ $\cdots,$ $n$ , fixed)

$(\rho+1-\lambda_{k}^{\prime})\sum_{j\neq k}\int_{\lambda_{1}}^{\iota}(u-\lambda_{k})^{\lambda_{k^{\prime}}-\rho-2}g^{(j)}(u;\rho+1, P-E_{kj})du$

$=-\sum_{\dot{g}\neq k}(t-\lambda_{k})^{\lambda_{k^{\prime}}-\rho-1}g^{(j)}(t;\rho+1, P-E_{kj})$

$+\sum_{j\neq k}\int_{\lambda_{1}}^{\ell}(u-\lambda_{k})^{\lambda_{k^{\prime}}-\rho-1}g^{(j)}(u;\rho, P-E_{kj})du$

(since by induction hypothesis, (2.4) holds for $P-E_{kj}$ in place of $P$). Then from
(1.12), with $\rho+1$ instead of $\rho$, we conclude that

$\frac{d}{dt}g^{(k)}(t;\rho+1, P)=-(t-\lambda_{k})^{-1}\sum_{j\neq k}g^{(j)}(t;\rho+1, P-E_{kj})$

$-(\rho+1-\lambda_{k}^{\prime})(t-\lambda_{k})^{\rho-\lambda_{k^{\prime}}}\sum_{j\neq k}\int_{\lambda}^{\ell_{1}}(u-\lambda_{k})^{\lambda_{k^{\prime}}-\rho-2}g^{(j)}(u;\rho+1, P-E_{kj})du$

$=g^{(k)}(t;\rho, P)$ .
Remark 2.1. Property (2.4) may be used to analytically continue (with respect

to $\rho$) the functions $g(t;\rho, P)$ to arbitrary values of $\rho$ , hence we observe that
$g(t;\rho, P)$ , for fixed $t$ in the cut plane and arbitrary index matrix $P$, is an entire
function of $\rho$ . By differentiation (with respect to t) of (2.1), (2.2) one finds that
Proposition 1 holds for arbitrary values of $\rho$ ; in fact, if $\rho-\lambda_{\iota^{\prime}}$ is a negative
integer, we may strengthen (2.1), (2.2) for those values of $q$ for which the exponent
of $(t-\lambda_{1})$ is negative to read

$g(t;\rho, P)=reg(t-\lambda_{1})$ if $|P|=2q+1$ , $0\leqq q\leqq\lambda_{1}^{\prime}-\rho-2$ ,

resp.

$g(t;\rho, P)=reg(t-\lambda_{1})$ if $|P|=2q$ , $0\leqq q\leqq\lambda_{1}^{\prime}-\rho-1$ .
Using (2.4) and Proposition 1, one can also see that for arbitrary $\rho,$ $(1.12)$ remains
valid provided $|P|$ is sufficiently large to ensure the existence of the integrals.
This will be of use later.

3. Estimates of the coefficient functions

In order to establish the $nvergence$ of (1.10), we are going to give estimates
upon the growth of $g(t;\rho, P)$ with respect to $|P|$ . To do so, we denote by $M(K, \delta)$ ,
for arbitrarily fixed positive reals $K$ and $\delta$ , the set of all $t$ in the cut plane, for
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which

$|t-\lambda_{1}|\leqq K$ , $|t-\lambda_{j}|\geqq\delta$ , $2\leqq;\leqq n$ .
Proposition 3. Under our basic assumPtions, let $\rho$ be arbitrarily given, and

$\beta={\rm Re}(\rho-\lambda_{1}^{\prime})$ . Then for arbitrarily fixed positive real constants $K$ and $\delta$ , there
exists a positive constant $K_{1}$ (independent of $P$ and t) such that for every index
matrix $P$ and every $t\in M(K, \delta)$ (with nonnegative integer q)

(3.1) $|g^{(k)}(t;\rho, P)|\leqq K_{1}^{2q+2}|t-\lambda_{1}|^{l+q+1}/\Gamma(\beta+q+2)$ , $1\leqq k\leqq n$

if $|P|=2q+1;$ resPectively

(3.2) $|g^{(k)}(t;\rho, P)|\leqq K_{1}^{2q+1}|t-\lambda_{1}|^{\prime+q+1}/\Gamma(\beta+q+2)$ , $2\leqq k\leqq n$

and

(3.3) $|g^{(1)}(t;\rho, P)|\leqq K_{\iota^{2q+1}}|t-\lambda_{1}|^{\prime+q}/\Gamma(\beta+q+1)$

if $|P|=Pq$ .
Proof. We proceed by induction with respect to $q$ : For finitely many $q$, the

estimates are certainly correct, due to Proposition 1 resp. Remark 2.1, if we only

take $K_{1}$ sufficiently large. Therefore, as an induction assumption we suppose that
(3.2), (3.3) hold for arbitrary index matrices with “modulus” $2q$, for some fixed
$q\geqq\max\{0, -\beta\}$ . Then for arbitrarily fixed $P$ with $|P|=2q+1$ , the integrals in
(1.12) exist, hence according to Remark 2.1, the coefficient $g(t;\rho, P)$ is given by
(1.12). Without loss in generality, let $K$ be sufficiently large and $\delta$ be sufficiently
small, such that $M(K, \delta)$ is simply $nnected$ . In order to estimate (1.12), we fix
a path of integration from $\lambda_{1}$ to $t$ , which lies in $M(K, \delta)$ and may be parametrized as

$u:[0, L_{l}]\rightarrow M(K, \delta)$ , $u(O)=\lambda_{1}$ , $u(L_{\ell})=t$ ,

and the parameter $s$ may be the arc length parameter. Since for $t$ close to $\lambda_{1}$ ,

we may always integrate along a line segment, it is clear that we may always
pick a path for which

(3.4) $L,\leqq K_{2}|t-\lambda_{1}|$ for every $t\in M(M, \delta)$ ,

for some positive constant $K_{2}$ independent of $t$ and $q$ . Therefore (with suitable
$c>0$, independent of $t$ and q)

$|g^{(1)}(t;\rho, P)|\leqq c|t-\lambda_{1}|^{\prime}\sum_{j=2}^{n}\int_{0}^{L_{t}}|u(s)-\lambda_{1}|^{-\prime-1}|g^{(j)}(u(s);\rho, P-E_{kj})|ds$

$\leqq|t-\lambda_{1}|^{\prime}\sum_{j=2}^{n}\frac{cK_{1}^{2q+1}}{\Gamma(q+2+\beta)}\int_{0}^{L_{\ell}}|u(s)-\lambda_{1}|^{q}ds$ .
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Observing $|u(s)-\lambda_{1}|\leqq s$ and (3.4), we obtain

$|g^{(1)}(t;\rho, P)|\leqq(n-1)\frac{K_{1}^{2q+1}cK_{2}}{(q+1)\Gamma(q+2+\beta)}|t-\lambda_{1}|^{q+1+\beta}$ ,

hence (3.1) (for $ k=l\rangle$ follows, if we take

$K_{1}\geqq(n-1)cK_{l}\geqq\frac{n-1}{q+1}cK_{2}$ .
For $k=2,$ $\cdots,$ $n$ , we have

$|(t-\lambda_{k})^{\rho-\lambda_{k^{\prime}}}(u-\lambda_{k})^{\lambda_{k^{\prime}}-\rho-1}|\leqq K_{8}$ for every $u,$ $teM(K, \delta)$ ,

with a suitable constant $K_{8}>0$ (independent of $u,$ $t$), hence

$|g^{(k)}(t;\rho, P)|\leqq K_{8}K_{1}^{2q+1}\int_{0}^{L_{t}}\{\frac{|u(s)-\lambda_{1}|^{q+\prime}}{\Gamma(q+1+\beta)}+(n-2)\frac{|u(s)-\lambda_{1}|^{q+1+\prime}}{\Gamma(q+2+\beta)}\}ds$

$\leqq K_{3}K_{\iota^{2q+1}}K_{2}\{1+\frac{n-2}{q+2+\beta}|t-\lambda_{1}|\}\frac{|t-\lambda_{1}|^{q+1+\prime}}{\Gamma(q+2+\beta)}$ ,

and (3.1) (for $k=2,$ $\cdots,$ $n$) follows if

$K_{1}\geqq K_{\theta}K_{2}\{1+\frac{n-2}{2}K\}\geqq K_{3}K_{2}\{1+\frac{n-2}{q+2+\beta}|t-\lambda_{1}|\}$ .

lf we now fix $P$with $|P|=2q+2$, then by quite the same arguments one can prove
(3.2), (3.3) (with $q+1$ in place of $q$). This completes the proof.

Bemark 3.1. It is easily seen from the foregoing proof that the estimates
(3.1), (3.2), (3.3) remain valid for $t$ in arbitrary compact sets not having $\lambda_{2},$

$\cdots,$
$\lambda_{n}$

as boundary points and having the property that every $t$ can be connected to $\lambda_{1}$

by a path for which the quotient of the length of the path divided by $|t-\lambda_{1}|$ remains
bounded. Therefore, if we continue $g(t;\rho, P)$ across the cut arg $(t-\lambda_{k})=\eta$ (for

arbitrarily fixed $k,$ $1\leqq h\leqq n$) in the positive sense, say, then the estimates (with some-
what enlarged $K_{1}$) hold for the analytic continuation of $g(t;\rho, P)$ for every $t$ with

$|t-\lambda_{k}|=\delta$ , $\eta<\arg(t-\lambda_{k})<\eta+2\pi$ .
This will be of use later.

As a consequence of Proposition 3, we obtain

Theorem 1. In addition to our basic assumptions, let $\rho$ satisfy (1.2). Then
the series

$\sum_{P}\{(t-\lambda_{1})^{\lambda_{1^{\prime}}-\rho}g(t;p, P)\}A^{P}$

converges absolutely and uniformly for $t\in^{c}M\langle K,$ $\delta$) (with arbitrarily fixed $K,$ $\delta>0$)
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and

$|a_{jk}|\leqq c$ , $j\neq k$ , $1\leqq j,$ $k\leqq n$ ,

(with arbitrarily given $c>0$). Furthermore,

(3.5) $y(t;\rho, A)=\sum_{P}g(t;\rho, P)A^{P}$ .
Proof. To establish the convergence of (3.5), let

$\Vert A||_{\infty}=\max|a_{jk}|j\neq k$ ;

then

$|A^{P}|\leqq\Vert A\Vert_{\infty}^{p}\leqq c^{p}$ , $P=|P|$ .
For fixed non-negative integer $p$ , the number of index sets $P$ satisfying $|P|=P$ is
not larger than the number of index sets satisfying $0\leqq P_{jk}\leqq p,$ $1\leqq;,$ $h\leqq n,$ $j\neq k$,
and the latter is equal to

$(p+1)^{n(n-1)}$ .
Hence, according to Proposition3,

$\sum_{P}|t-\lambda_{1}|^{-\beta}|g(t;\rho, P)||A^{P}|\leqq\sum_{p=0}^{\infty}c^{p}\sum_{|P|=p}|g(t;\rho, P)||t-\lambda_{1}|^{-p}$

$\leqq\sum_{p=0}^{\infty}c^{p}(p+1)^{n(n-1)}c_{1}^{p}/\Gamma(1+p/2)$ ,

for some sufficiently large positive constant $c_{1}$ , depending upon $K$ and $\delta$, but
independent of $t$ and $p$, as long as $t\in M(K, \delta)$ . This shows the convergence as
stated. If we for the moment make (3.5) the definition of $y(t;\rho, A)$ , then it
follows that $y(t;\rho, A)$ is analytic with respect to $t$ in the cut t-plane, and for
${\rm Re}(\rho-\lambda_{1}^{\prime})>-1$ we obtain from (1.11), (1.12) that $y(t;\rho, A)$ satisfies (1.4) (if $y^{(k)}(t)$

is the $k^{t\hslash}$ component of $y(t;\rho, A),$ $1\leqq k\leqq n$). This in turn shows that $y(t;\rho, A)$ is
a solution of (1.1), and according to Proposition 1 it is of the form

$y(t;\rho, A)=(t-\lambda_{1})^{\rho-\lambda_{1^{\prime}}}\{\delta_{1}/\Gamma(1+\rho-\lambda_{1}^{\prime})+reg_{0}(t-\lambda_{1})\}$

i.e. is the unique solution of (1.2) satisfying (1.3) for $k=1$ . Using (2.4) resp.
Remark 2.1, it is then easy to see that the restriction ${\rm Re}(\rho-\lambda_{1}^{\prime})>-1$ may be
omitted.

4. The nature of the singularities of the coeflicient fundiom

While the behavior of $g(t;\rho, P)$ at $t=\lambda_{1}$ has been explainedl in Proposition 1,
we are now going to investigate the nature of its singularities at the points
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$\lambda_{2},$

$\cdots,$
$\lambda_{n}$ .

Proposition 4. Additionally to our basic assumptions, let $\rho$ satisfy (1.2). Then
for arbitrarily fixed $\mu,$

$2\leqq\mu\leqq n$ , and every index matrix $P$, there exist unique
vectors

$a_{\mu}(t;\rho, P)$ and $b_{\mu}(t;\rho, P)$

being analytic in the cut Plane, such that (with scalar $d_{\mu}(\rho,$ $P)$)

(4.1) $a_{\mu}(t;\rho, P)=d_{\mu}(\rho, P)\delta_{\mu}+reg_{0}(t-\lambda_{\mu})$ ,

(4.2) $b_{\mu}(t;\rho, P)=reg(t-\lambda_{\mu})$ ,

(4.3) $g(t;\rho, P)=a_{\mu}(t;\rho, P)(t-\lambda_{\mu})^{\rho-\lambda_{\mu}^{\prime}}+b_{\mu}(t;\rho, P)$ .
Proof. SuPpose that the existenoe of $a_{\mu}(t;\rho, P)$ and $b_{\mu}(t;\rho, P)$ with (4.1),

(4.2), (4.3) had been shown. Then, if $\tilde{g}(t. \rho, P)$ denotes the analytic continuation
of $g(t;\rho, P)$ across the $\mu^{th}$ cut in the positive sense, we obtain

(4.4) $\tilde{g}(t;\rho, P)-g(t;\rho, P)=(e^{2\pi\ell(\rho-\lambda_{\mu^{\prime)}}}-1)a_{\mu}(t;\rho, P)(t-\lambda_{\mu})^{\rho-\lambda_{\mu^{\prime}}}$

Since $e^{2s\ell(\rho-\lambda_{\mu^{\prime)}}}\neq 1$ , according to (1.2), we may solve (4.4) for $a_{\mu}(t;\rho, P)$ , which
shows the uniqueness of $a_{\mu}(t;\rho, P)$ , and $b_{\mu}(t;\rho, P)$ .

For an existence $prf$ , we may assume that additionally ${\rm Re}(\rho-\lambda_{1}^{\prime})>-1$ (for

the generalization to arbitrary $\rho$ with (1.2) use (2.4)), and for these $\rho$ we proceed
by induction with respect to $|P|=p$ .

For $P=0$, the Proposition holds for $a_{\mu}(t;\rho, 0)=0,$ $b_{\mu}(t;\rho, O)=g(t;\rho, 0)$ , hence
we may assume it to hold for every index matrix of ”modulus” $p$ (with $P\geqq 0$

fixed). If $P$ is arbitrarily given with $|P|=P+1$ , then according to (1.12), for
arbitrarily fixed $k,$ $1\leqq k\leqq n$ ,

$g^{(k)}(t;\rho, P)=-(t-\lambda_{k})^{\rho-\lambda_{k^{\prime}}}\sum_{j\neq k}\{c_{j}(t_{0})+\int_{t_{0}}^{\ell}(u-\lambda_{k})^{\lambda_{k^{\prime}}-\rho-1}g^{(j)}(u;\rho, P-E_{kj})du\}$ ,

where $t_{0}$ may be taken close to $\lambda_{\mu}$ (in the cut plane), and

$c_{j}(t_{0})=|_{\lambda_{1}}^{\ell_{0}}(u-\lambda_{k})^{\lambda_{k^{\prime}}-\rho-1}g^{(j)}(u;\rho, P-E_{kj})du$ .

If $a_{\mu}^{(j)}(u;\rho, P-E_{kj})$ , resp. $b_{\mu}^{(j)}(u;\rho, P-E_{kj})$ are the components of $a_{\mu}(u;\rho, P-E_{kj})$ ,
resp. $b_{\mu}(u;\rho, P-E_{kj})$ , then expanding them as power series in $u-\lambda_{\mu}$ and integrating
termwise yields for $ k\neq\mu$ and $j\neq k,$ $1\leqq j\leqq n$

$\int_{0}^{\ell}(u-\lambda_{k})^{\lambda_{k^{\prime}}-\rho-1}b_{\mu}^{(j)}(u;\rho, P-E_{kj})du=reg(t-\lambda_{\mu})$ ,
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$\int_{\ell_{0}}^{t}(u-\lambda_{k})^{\lambda_{k^{\prime}}-\rho-1}(u-\lambda_{\mu})^{\rho-\lambda_{\mu^{\prime}}}a_{\mu}^{(j)}(u;\rho, P-E_{kj})du=(t-\lambda_{\mu})^{\rho-\lambda}\mu^{\prime+1}$ reg $(t-\lambda_{\mu})+constant$ ,

hence
$g^{(k)}(t;\rho, P)=(t-\lambda_{\mu})^{\rho-\lambda_{u^{\prime}}+1}$ reg $(t-\lambda_{\mu})+reg(t-\lambda_{\mu})(k\neq\mu)$ .

Similarly, for $ k=\mu$ and $j\neq\mu,$ $1\leqq j\leqq n$

$\int_{l_{0}}^{\ell}(u-\lambda_{\mu})^{\lambda_{\mu^{\prime}}-\rho-1}b_{\mu}^{(j)}(u;\rho, P-E_{kj})du=(t-\lambda_{\mu})^{\lambda_{\mu^{\prime}}-\rho}$ reg $(t-\lambda_{\mu})+nstant$ ,

and (compare (4.1))

$\int_{0}^{\ell}(u-\lambda_{\mu})^{\lambda_{\mu^{\prime}}-\rho-1}a_{\mu}^{(j)}(u;\rho, P-E_{kj})(u-\lambda_{\mu})^{\rho\sim\lambda}\mu^{\prime}du=reg(t-\lambda_{\mu})$ ,

hence
$g^{(\mu)}(t;\rho, P)=(t-\lambda_{\mu})^{\rho-\lambda_{\mu^{\prime}}}$ reg $(t-\lambda_{\mu})+reg(t-\lambda_{\mu})$ .

Altogether, this shows (4.1), (4.2), and (4.3) for every $P$ with $|P|=p+1$ .
As a main result, we now show

Theorem 2. Under our basic assumPtions, let $\rho$ additionally satisfy (1.2).

Then for every $\mu,$ $2\leqq\mu\leqq n$, and every sufficiently small $\delta>0$ , the series

(4.5) $\sum_{P}a_{\mu}(t;\rho, P)A^{P}=e_{\mu}(t;\rho, A)$

and

(4.6) $\sum_{P}b_{\mu}(t;\rho, P)A^{P}=f_{\mu}(t;\rho, A)$

both are absolutely and uniformly convergent for
$|t-\lambda_{\mu}|\leqq\delta$ , $\Vert A||_{\infty}\leqq c$

(with arbitrary $c\geqq 0$), and

(4.7) $e_{\mu}(t;\rho, A)=c_{\mu}(\rho, A)\delta_{\mu}+reg_{0}(t-\lambda_{\mu})$ ,

(4.8) $f_{\mu}(t;\rho, A)=reg(t-\lambda_{\mu})$ ,

where the scalar constant $c_{\mu}(\rho, A)$ is given by the power series

(4.9) $c_{\mu}(\rho, A)=\sum_{P}d_{\mu}(\rho, P)A^{P}$

(converging absolutely and uniformly for $\Vert A\Vert_{\infty}\leqq c$).

Proof. For every $t$ in the cut plane with $|t-\lambda_{\mu}|=\delta$ we have, according to
(4.4), with $c>0$ sufficiently large (independent of t)
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$|a_{\mu}(t;\rho, P)|\leqq c\delta^{{\rm Re}(\lambda_{\mu^{\prime}}-\rho)}\{|\tilde{g}(t;\rho, P)|+|g(t;\rho, P)|\}$ ,

and from Proposition 3 and Remark 3.1 we obtain for $t$ as above (with $P=|P|$ )

$|g(t;\rho, P)|\leqq\frac{K^{p}\sim}{\Gamma(1+p/2)}$ ,

$|\tilde{g}(t;\rho, P)|\leqq\frac{K^{p}}{\Gamma(1+p/2)}$ ,

with sufficiently large constant $K>0$, independent of $P$, for every index matrix $P$,
Hence (if $K\geqq c\delta^{{\rm Re}(\lambda_{\mu^{\prime}}-\rho)}$ )

$|a_{\mu}(t;\rho, P)|\leqq\frac{2K^{p+1}}{\Gamma(1+p/2)}$

for $|t-\lambda_{\mu}|=\delta$, and, due to the Maximum Modulus Theorem, the same $esti^{\prime}mate$

holds for $|t-\lambda_{\mu}|\leqq\delta$ . This implies the uniform and absolute ccnvergence of (4.5)
(compare the proof of Theorem 1), and therefore (4.7) follows from (4.1). If we
take $t=\lambda_{\mu}$ , then (4.9) follows from (4.5), (4.7), and (4.1). Finally, to establish the
convergence of (4.6) (as stated in the Theorem), we solve (4.3) for $b_{\mu}(t;\rho, P)$ and
estimate $b_{\mu}(t;\rho, P)$ , first for $|t-\lambda_{\mu}|=\delta$, and then apply again the Maximum
Modulus Theorem. Due to the uniform convergence, (4.8) is then obvious.

Remark 4.1. Due to (4.3), we obtain, using (4.5), (4.6), and (3.5) (under the‘
assumptions of Theorem 2)

(4.10) $y(t;\rho, A)=e_{\mu}(t;\rho, A)(t-\lambda_{\mu})^{\rho-\lambda_{j}^{\prime}}+f_{\mu}(t;\rho, A)$

for $|t-\lambda_{\mu}|\leqq\delta$ , and analogous to (4.4), one can express $e_{\mu}(t;\rho, A)$ in terms of $y(t;\rho, A)$

and its analytic continuation across the $\mu^{\ell h}$ cut (which exiSts, according to (4.10)).

Therefore $e_{\mu}(t;\rho, A)$ is analytic for $t$ in the cut plane, and so is $f_{\mu}(t;\rho, A)$ , and
(4.10) then holds for every $t$ in the cut plane.

5. Power series expansions for the Birkhofr invariants

Additionally to our basic assumptions, let again $\rho$ satisfy (1.2). If $y_{1}(t),$
$\cdots,$ $y.(t)$

are the vector solutions of (1.1) satisfying (1.3), then it has been shown in [1],
[2] (compare also the Introduction) that there exist unique constants $c_{\mu j}$ with

(5.1) $y_{j}(t)=y_{\mu}(t)c_{\mu j}+reg(t-\lambda_{\mu})(1^{\prime}\leqq j, \mu\leqq n)$ .
For $j=1$ , we find (since $y_{1}(t)=y(t;\rho,$ $A)$):

$Propo\epsilon ltionb$. In addition to our basic assumptions, fet $\rho$ satisfy (1.2).

Then for every $\mu,$ $2\leqq\mu\leqq n$ ,
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(5.2) $y_{\mu}(t)c_{\mu 1}=(t-\lambda_{\mu})^{\rho-\lambda_{\mu}^{\prime}}e_{\mu}(t;\rho, A)$

$=(t-\lambda_{\mu})^{\rho-\lambda_{\mu^{\prime}}}\sum_{P}a_{\mu}(t;\rho, P)A^{P}$ ,

(5.3)
$c_{\mu 1}/\Gamma(1+\rho-\lambda_{\mu}^{\prime})=c_{\mu}(\rho, A)=\sum_{P}d_{\mu}(\rho, P)A^{P}$

Proof. From (5.1), resp. (4.10), we conclude that both $y_{\mu}(t)c_{\mu 1}$ and $(t-\lambda_{1})^{\rho-\lambda_{\mu^{\prime}}}\times$

$e_{\mu}(t;\rho, A)$ are equal to
$\{\tilde{y}(t;\rho, A)-y(t;\rho, A)\}(e^{2\pi\ell(\rho-\lambda_{\mu^{\prime}})}-1)^{-1}$ ,

if $\tilde{y}(t;\rho, A)$ denotes the analytic continuation of $y(t;\rho, A)$ (in the positive sense)

across the $\mu^{th}$ cut. Hence (5.2) follows, and multiplying both sides of (5.2) by
$(t-\lambda_{1})^{\lambda_{\mu^{\prime}}-\rho}$ , taking the limit $t\rightarrow\lambda_{\mu}$ and observing (1.3), (4.7), and (4.9), we obtain
(5.3).

Remark 5.1. Proposition5 shows how the constants $c_{\mu 1}(2\leqq\mu\leqq n)$ can be
written as $nvergent\infty wer$ series in $A$ (i.e. in the variables $a_{jk},$ $j\neq k,$ $1\leqq j$,
$h\leqq n)$ . Similar series can easily be derived for $c_{\mu\nu}(\nu\neq\mu)$ (compare the discussion
in Section 1), and by definition $c_{\mu\mu}=1,1\leqq\mu\leqq n$ . Since the quantities

$\lambda_{1},$

$\cdots,$
$\lambda_{n}$ , $\lambda_{1}^{\prime},$

$\cdots,$
$\lambda_{n}^{\prime}$ , $c_{\mu\nu}$ , $1\leqq\mu,$ $\nu\leqq n$

form a comllete system of Birkhoff invariants for (0.1) (c.f. [11), we therefore may
think of calculating these invariants by means of the power series derived here.
It is obvious that in principle the coefficients in (5.3) only depend upon $\lambda_{1},$

$\cdots,$
$\lambda_{n}$,

$\lambda_{1}^{\prime},$

$\cdots,$
$\lambda_{n}^{\prime}$ , however to calculate them, there is, so far, no other way than first

calculating the coefficient functions via the recursion formulas (1.11), (1.12), and
then ”evaluating” them at the points $\lambda_{2},$

$\cdots,$
$\lambda_{n}$ . In a second part of this Paper, we

will try and find more direct means to calculate the the coefficients; for example,
one may do better by $nsidering$ only some elements of $A$ as variables, in order
to find simpler series.
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