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ABSTBACT. This note aims at giving characterizations for certain classes of
topological algebras, namely for the m.barrelled and countably m-barrelled
algebras, by means of appropriate dual subsets and in analogy with the situ.
ation one encounters in the case of barrelled topological vector spaces. It
also gives a characterization for spectrally barrelled algebras, using a structural
property of these algebras and in analogy with the case of countably barrelled
spaces. Furthermore, we examine the role of the above classes of topological
algebras within the frame of certain problems appearing in the general theory

of topological algebras.

Introduction

Spectrally barrelled algebras were defined and studied by [17], [18]. They

have been proved to be, for many purposes in the whole theory, a convenient
class of topological algebras (cf. A. Mallios: “On a convenient category of topolo-

gcal algebras” I, II, Prakt. Akad. $Ath\overline{e}n\overline{o}n,$ $ 5\theta$ (1975), $45k477;51$ (1976), 245-
263), respecting the most important properties shared by their genuine subclasses
of m-barrelled and barrelled algebras. The purpose of this note is, on one hand,

to point out some further similarities in the behavior of m-barrelled and $soectral1_{Y}$

barrelled algebras (cf. Proposition 2.3, Corollary 2.3) and on the other, to confirm
a new their importance, by showing that in many cases (e.g. open mapping-closed
graph theorems, coincidence of $\mathfrak{M}(E)$ and $\mathfrak{M}(\hat{E}))$ they can adequately replace the
classical topological algebras (cf. Propositions 2.4, 2.6 and Corollary 2.1). The
above is essentially the content of Section 2, while Section 1 points towards the
direction of the Silov’s point of view, i.e. the characterization of the structure
(geometry’) of an algebra by means of topological properties of its spectrum

This is the aim of Theorem 1.3, which leads to a lacking geometric definition.
since spectrally barrelled algebras are defined ”spectrally”, by isolating a crucial
spectral property of m-barrelled algebras, while Theorem 1.1, conceming m-bar-
relled algebras, is antipodal to the above, since these algebras are defined geo-
metrically and thus it settles a question raised in [18]. Furthermore, a charac-
terisation of countable $m\cdot brrelleiess$, introduced by [10], is given in Theorem
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1.2 which is the analogon of ([81, Theorem 1, p. 131) for countable barrelledness.
This characterization of countable m-barrelledness permits to answer affirmatively
a conjecture of [101, p. 186 (cf. Proposition 1.1). Also, as a consequence of the
above, we obtain a class of countably m-barrelled algebras, for which, the normed
algebras appearing in their Arens-Michael decomposition, are complete (cf. Corol-
lary 2.6, 2.7, 2.8).

Definitions and Notations

A toPological algebra $E$ is an algebra ( $=associative$ , complex linear algebra)

and a Hausdorff topological vector space, such that ring multiplication is separately
continuous.

A topological algebra is called locally convex, metrizable barrelled, $\sigma- complete$,
Fr\’echet, Pt\’ak, nuclear, if the underlying topological vector space is such, respec-
tively.

Accordingly to Arens, a locally convex algebra $E$ is locally m-convex (locally
multiplicatively convex) if it has a local basis at $0$ consisting of closed, circled
and m-convex ( $=idempotent$ and convex) subsets of $E$ .

A topological algebra is called m.barrelled if every m-barrel $(=absorbing$,
balanced, convex indempotent and closed subset) is a O-neighborhood.

A topological algebra $E$ is called m-infrabarrelled if it is a locally convex
algebra such that every m-bornivorous ( $=a$ subset of $E$ that absorbs every idem-
potent and bounded ( $=m$ -bounded) subset of it), m-barrel is a O-neighborhood.

Accordingly to [10], a topological algebra is called countably m-barrelled if it
is locally convex and every m-barrel which is the countable intersection of closed,
circled and convex O-neighborhoods, is itself a O-neighborhood.

The spectrum of a topological algebra $E$, is the set of all non-zero, continu-
ous, scalar-valued morphisms $(=characters)$ of $E$, denoted (if it is not empty) by
$\mathfrak{M}(E)$ and carrying the relative topology from the weak dual E.’ of $E$.

Now, a topological algebra is sPectrally barrelled [181, if every (weakly)

bounded subset of $\mathfrak{M}(E)$ is equicontinuous.
The cmpletion\^E of a topological algebra $E$ with (jointly) continuous ring

multiplication, is the $mpletion$ of the underlying topological vector space and
$\hat{E}$ is a (complete) topological algebra with continuous multiplication. Accordingly
to [211, a locally convex algebra $E$ with continuous multiplication is called B-
complete (resp. $B_{r^{-}}compIete$) if every continuous (resp. continuous one-to-one) and
almost open (algebra) morphism from $E$ onto any topological algebra, is open.

The Gel‘fand maP of a topological algebra $E$, is the map:
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$E\rightarrow C_{c}(\mathfrak{M}(E)):x\mapsto\theta:\theta:\mathfrak{M}(E)\rightarrow C:f-,\theta(f):=f(x)$ ,

where $c$ denotes the topology of compact convergence on the algebra of all con-
tinuous, complex-valued mappings on $\mathfrak{M}(E)$ .

The topological algebra $E$ is called full if the Gel’fand map is surjective.
The spectrum $\mathfrak{M}(E)$ of a topological algebra $E$, is called locally equicontinuous,

if every element in $\mathfrak{M}(E)$ has an equicontinuous neighborhood.
Given a completely regular space $X$, we call $X$ a Nachbin-Shirota space if

any closed and relatively PrecomPact subset $A$ of $X$ (i.e., such that every element
of $C(X)$ is bounded on $A$), is compact (cf. [20], [23]). Since $X$ is equal within a
homeomorphism to the spectrum of $C_{\epsilon}(X)$ (cf. e.g. [16], p. 478, 4.), we can say
that $X$ is a Nachbin-Shirota space if, and only if, the (weakly) bounded and the
(weakly) relatively compact subsets of the spectrum of $C_{c}(X)$ coincide (cf. [17],

p. 104, 2. or [24], p. 272, 3.).

Finally we recall that, accordingly to Arens, a topological space is hemi-
compact, if there exists a countable family of compact subsets, such that every
compact subset is contained in some member of the family.

1. Characterizations

We begin with the following:

Theorem 1.1. A locally convex algebra $E$ is m-barrelled if, and only if, the
bounded subsets of its weak dual, whose polars are idemPotent subsets of $E$, are
equicontinuous.

Proof. Let $B$ be an m-barrel in $E$ . Then its polar $B^{0}$ is weakly bounded
and its bipolar $B^{00}=B$ is idempotent. Thus $B^{0}$ is equicontinuous and $B^{00}=B$ is
therefore a O-neighborhood in $E$ . It follows that $E$ is m-barrelled, by the very
definition of an m-barrelled algebra.

Conversely, let $E$ be m-barrelled and $B$ a bounded subset of its weak dual E.’
such that $B^{0}$ be idempotent. Then, $B^{0}$ is also balanced, absorbing, convex and
$\sigma(E, E^{\prime})$ -closed and hence closed in the initial topology of $E$, that is, $B^{0}$ is an
m-barrel in $E$ and hence a O-neighborhood. Thus, $B\subseteqq B^{00}$ is equicontinuous and
the proof is completed.

Concerning countably m-barrelled algebras we have, on the other hand, the
following characterization:

Theorem 1.2. $E$ is countably m-barrelled if, and only if, every bounded sub-
set $B$ of E.’ which is the countable union of equicontinuous subsets and with
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idemPotent Polar $B^{0}$ , is itself equicontinuous.

Proof. $SuppoeeE$ is countably m-barrelled and let $B$ be a bounded subset
of E.’ such that:

i) $ B=U_{1}H_{n}\infty$ , where $H_{n}\subseteqq E_{*}^{\prime}$ are equicontinuous for every $n=1,2,$ $\cdots$ .
ii) $B^{0}$ is idempotent.

We show that $B$ is equicontihuous. In fact, $B^{0}$ is also balanced, absorbing, con-
vex $\sigma(E, E^{\prime})$ -closed and hence closed in the initial topology of $E$, that is $B^{0}$ is an
m-barrel and

$B^{0}=\bigcap_{1}^{\infty}H_{n^{0}}$ ,

where $H_{n}^{0}$ is balanced, convex $\sigma(E, E^{\prime})$ -closed and hence closed in the initial topology
of $E$, for every $n=1,2,$ $\cdots$ . Besides, $H_{n^{0}}$ is a O-neighborhood, since $H_{n}$ is equi-
continuous for every $n=1,2,$ $\cdots$ . Therefore, $B^{0}$ is a O-neighborhood, by hypothesis
on $E$ and thus $B\subseteqq B^{00}$ is $equintinuous$ .

Conversely, suppose that now $B$ is an m-barrel in $E$ with $B=\bigcap_{1}^{\infty}V_{n}$ , where
$V_{n}$ are closed, balanced and convex O-neighborhoods, for every $n=1,2,$ $\cdots$ . We
show that $B$ is a O-neighborhood. $B^{0}$ is bounded. Besides, since

$\bigcup_{1}^{\infty}V_{n^{0}}\subseteqq B^{0}$

(cf. the proof of [8], Theorem 1, p. 131), it follows that $\bigcup_{1}^{\infty}V_{n^{0}}$ is a bounded subset
of $E_{*}^{\prime}$ , where each $V_{n^{0}}$ is $equintinuous$ . The relation:

$(\bigcup_{1}^{\infty}V_{n^{0}})^{0}=n_{1}^{\infty}V_{n^{00}}=\bigcap_{1}^{\infty}V_{n}=B$ ,

shows that $(\bigcup_{1}^{\infty}V_{n}^{0})^{0}$ is idempotent and the hypothesis, that $\bigcup_{1}^{\infty}V_{n}^{0}$ is equicontinu-

ous. Therefore $B$, being the polar of the $equintinuousU_{1\prime}V_{n}^{0}\infty$ , is a O-neighbor-
hood and the proof is completed.

Proposition 1.1. A metrizable countably m-barrelled algebra $E$ is m-barrelled.

Proof. Let $B$ be an m-barrel in $E$ . Then, $B^{0}$ is bounded in E.’. Since $E$

is metrizable, $E^{\prime}=\bigcup_{1}^{\infty}V_{n^{0}}$ , where $(V_{n})_{1\leqq n\leqq\infty}$ is a local basis at $0$ in $E$ . Now, $B^{0}=$

$\bigcup_{1}^{\infty}B_{n}$ , where $B_{n}\equiv B^{0}\cap V_{n}^{0}\subseteqq V_{n}^{0}$ is equicontinuous. Besides, $B^{00}=B$ is idempotent
in $E$ and thus, since $E$ is countably m-barrelled by hypothesis, the above
Theorem 1.2 applies, so that $B^{0}$ is equicontinuous. A fortiori then, $B=B^{00}$ is
a O-neighborhood, being the polar of the equicontinuous $B^{0}$ and the proof is
completed.
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Now, for spectrally barrelled algebras we have:

Theorem 1.3. A locally convex algebra $E$ is sPectrally barrelled if, and on $fy$

if, every m-barrel of $E$ which is the polar of a bounded subset of its sPectrum,
is $a$ O-neighborhood.

Proof. Let $E$ be spectrally barrelled and $B$ a bounded subset of $\mathfrak{M}(E)$ . Its
polar $B^{0}$ is a balanced, convex, closed, absorbing and idempotent subset of $E$, i.e.
an m-barrel of it. Since, by definition of $E,$ $B$ is also equicontinuous, it follows
that $B^{0}$ is a O-neighborhood (cf. e.g. [5], Proposition 4, p. 220).

Conversely, let $B$ be a bounded subset of $\mathfrak{M}(E)$ . To show that $E$ is spectrally
barrelled, we have to show that $B$ is also equicontinuous. Consider $B^{0}$ . Then,
$B^{0}$ is an m-barrel and therefore a O-neighborhood. Thus, $B\subseteqq B^{00}$ is equicontinu-
ous and the proof is completed.

By the above, we obtain a uniform way in defining barrelled, m-barrelled,
countably m-barrelled and spectrally barrelled algebras and in characterizing these
algebras with the help of dual subsets.

To give, now, a characterization of spectral barrelledness in the particular
case $E$ is a unital metrizable algebra, we need the following:

It is well known (cf. [17], p. 100) that if $\mathfrak{M}(E)$ is the spectrum of a topological
algebra $E$ and $(U_{\alpha})_{\alpha}$ , $I$ is a local base of $E$, then

(1.1)
$\mathfrak{M}(E)=\bigcup_{\alpha eI}\mathfrak{M}_{\alpha}(E)$ ,

where $\mathfrak{M}_{\alpha}(E)\equiv \mathfrak{M}(E)\cap U_{\alpha^{0}},$ $U_{\alpha^{0}}$ the polar of $U_{\alpha}$ in the weak dual E.’ of $E$. Now,
if $E$ is unital, $\mathfrak{M}(E)$ is closed in $E_{\epsilon}^{\prime}$ (cf. [19], Lemma 6.2(b), p. 25) and clearly
so is also $\mathfrak{M}_{\alpha}(E)$ for every $\alpha\in I$. Since $\mathfrak{M}_{\alpha}(E)\subseteqq U_{\alpha}$ , it follows that $\mathfrak{M}_{\alpha}(E)$ is equi-
continuous and therefore, by the Alaoglu-Bourbaki theorem, it is compact.

Lemma 1.1. The following assertions are equivalent:
i) Every compact subset of $\mathfrak{M}(E)$ is equicontinuous.

ii) For every $comPact$ subset $K$ of $\mathfrak{M}(E),$ $\exists\alpha\in I:K\subseteqq \mathfrak{M}_{\alpha}(E)$ .
Proof. It is clear from the preceding, that $ii$) $\Rightarrow i$). $i$) $\Rightarrow ii$). Since $K$ is an

equicontinuous subset of $\mathfrak{M}(E)$ (cf. [15], Theorem 3.1), it follows that $K^{0}$ is a
O-neighborhood and thus there is a $U_{\alpha}$ such that $U_{\alpha}\subseteqq K^{0}$ . Consequently $ K\subseteqq K^{00}\subseteqq$

$U_{\alpha^{0}}$ and therefore $K\subseteqq \mathfrak{M}_{\alpha}(E)$ . This completes the proof.

Lemma 1.2. Let $E$ be a unital metrizable algebra. Then, the $sPectrum$ of
$E$ is a Nachbin-Shirota sPace and the algebra $C_{\iota}(\mathfrak{M}(E))$ is barrelled.
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Proof. Since $E$ is metrizable, it has a countable local base $(U_{n})_{1Sn\leqq\infty}$ . Thus,

since $\mathfrak{U}l(E)=\bigcup_{1}^{\infty}\mathfrak{M}_{n}(E)$ (cf. (1.1)), it is a-compact and being completely regular, it
is a regular Lindel\"of space (cf. [91, $Y(b)$ , p. 172). So it is paracompact. But a
paracompact space is a Nachbin-Shirota space as it follows from ([20], p. 472),

so that $C_{\epsilon}(\mathfrak{M}(E))$ is barrelled by the Nachbin-Shirota theorem (cf. [20], Theorem 1,

or [23], Theorem 1). This $mpletes$ the proof.

Theorem 1.4. Let $E$ be a full unital metrizable algebra. Then, the following

assertions are equivalent:
i) $E$ is sPectrally barrelled.

ii) The Gel‘fand map of $E$ is continuous.
iii) $\mathfrak{M}(E)$ is hemicompact with respect to $(\mathfrak{M}_{n}(E))_{1\leq nS\infty}$ .
Proof. $ii$) $\approx iii$). The assertion follows from the above Lemma 1.1 and ([151,

Theorem 3.1, p. 305).
$i)\Leftrightarrow ii)$ . The Gel’fand map of every spectrally barrelled algebra is continuous

(cf. [17], Lemma 2.1, p. 105). Conversely, let $B$ be a bounded subset of $\mathfrak{M}(E)$ .
Then $\overline{B}$ is bounded too. Since $E$ is full, the relation

$\bigcup_{f\in\overline{B}}f(x)=\bigcup_{fe\overline{B}}\theta(f)=\bigcup_{fe\overline{B}}F_{f}(\theta)$

shows that the image of $\overline{B}$ under the evaluation map

$\omega;\mathfrak{M}(E)\rightarrow \mathfrak{M}(C_{c}(\mathfrak{M}(E))):f-F_{f}$ : $F_{f}(\phi)=\phi(f)$ ,

is a bounded subset of the spectrum of $C_{c}(\mathfrak{M}(E))$ . By applying Lemma 1.2, we
obtain that $C_{c}(\mathfrak{M}(E))$ is barrelled so that $\omega(\overline{B})$ is $mpact$ and thus so is $\overline{B}=$

$\omega^{-1}(\omega(\overline{B}))$ , since $\omega$ is a homeomorphism. By hypothesis the Gel’fand map is
continuous, so that $\overline{B}$ is equicontinuous and a fortiori $B\subseteqq\overline{B}$ too. This $mpletes$

the proof.

Note that if $E$ is unital metrizable, then $ii$) $\Rightarrow C_{c}(\mathfrak{M}(E))$ metrizable (cf. [24],

Theorem A).

2. Applications

Given a locally m-convex algebra, [13], p. 173 raised the question whether
or not $\mathfrak{M}(E)$ and M(\^E) coincide in general as topological spaces, where \^E denotes
the conlpletion of $E$ . This is answered in the negative for the general case (cf.

[6], p. 90; [3], p. 210), while local equicontinuity of $\mathfrak{M}(E)$ has been proved (cf.

[14], p. 103) to be a sufficient condition in order that the relation
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(2.1) $\mathfrak{M}(E)=\mathfrak{M}(\hat{E})$

to hold true within a homeomorphism.
The following proposition gives an equivalent condition to local equicontinuity

of $\mathfrak{M}(E)$ , for a certain class of topological algebras. That is we have:

Proposition 2.1. Let $E$ be a unital metrizable algebra. Then, the following
assertions are equivalent:

i) $\mathfrak{M}(E)$ is locally equicontinuous.
ii) $\mathfrak{M}(E)$ is locally compact.

Proof. Since always $i\Rightarrow ii$) (cf. [17], Theorem 3.2), the proof will be com-
pleted if we show that $ii$) $\Rightarrow i$). In fact since $\mathfrak{M}(E)=\bigcup_{1}^{\infty}\mathfrak{M}_{n}(E)$ (cf. the proof of
Lemma 1.2), it is a-compact and being by hypothesis locally compact, it is hemi-
compact (cf. e.g. [4], Ex. 3, p. 241). Let $f\in \mathfrak{M}(E)$ . Then, by local compactness,
there is a compact neighborhood $V$ of $f$ and, by hemicompactness, there is an $n$

such that the equicontinuous $\mathfrak{M}_{n}(E)$ contains $V$. Then, every $f\in \mathfrak{M}(E)$ has an
equicontinuous neighborhood.

Now, we proceed to derive another topological prooerty of $\mathfrak{M}(E)$ which, for a
certain class of topological algebras including spectrally barrelled algebras (hence

m-barrelled algebras), ensures the validity of (2.1) within a homeomorphism.
That is, we have the following:

Proposition 2.2. Let $E$ be a locally convex algebra, with continuous multi-
Plication, continuous Gel‘fand map and first countable spectrum $\mathfrak{M}(E)$ . Then,
$\mathfrak{M}(E)$ is homeomorphic to $\mathfrak{M}(\hat{E})$ .

Proof. It is well-known that the relation $\mathfrak{M}(E)=\mathfrak{M}(\hat{E})$ holds true within a
continuous bijection of the first space onto the second and we proceed to show
that, under the above hypothesis, the map

$\mathfrak{M}(E)\rightarrow \mathfrak{M}(\hat{E}):f-\rangle f$

is continuous too, where $\tilde{f}$ denotes the extension of $f$ on $\hat{E}$ . Let $f_{n}\rightarrow f$ be a
weakly convergent sequence of $\mathfrak{M}(E)$ . We must show that $\tilde{f}_{n}\rightarrow^{l}\tilde{f}$. The set $H$

formed by the $f_{n}$ and the limit $f$ is a compact subset of $\mathfrak{M}(E)$ . Therefore it is
equicontinuous by ([15], Theorem 3.1). Then, the set $\tilde{H}$ formed by the extensions
of the elements of $H$, is also equicontinuous (cf. [2], \S 2, No. 2, Proposition 4).

Now, the sequence $\tilde{f}_{n}\in\tilde{H}$ converges to $f\in\tilde{H}$, if we equip $\tilde{H}$ with the topology
of simple convergence on the finite subsets of $E$, since $\tilde{f}_{n}$ coincide with $f_{n}$ on $E$.
But since $E$ is dense in $\hat{E}$, the sequence $\tilde{f}_{n}$ will converge to $\tilde{f}$ also if we consider
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on $\tilde{H}$ the topology of simple convergence on the finite subsets of $\hat{E}$, since $\tilde{H}$ is
equicontinuous and the above two topologies coincide on $\tilde{H}$ (cf. e.g. [2], \S 2, No.
4, Theorem 1) and this completes the proof.

Corollary 2.1. Let $E$ be a sPectrally barrelled locally m-convex algebra, with
first countable spectrum $\mathfrak{M}(E)$ . Then, $\mathfrak{M}(E)$ is homeomorphic to M(\^E).

Proof. The Gel’fand map of $E$ is ccntinuous (cf. [171, Lemma 2.1), as well
as ring multiplication of $E$ (cf. [19], p. 10).

Concerning the completion $\hat{E}$ of a spectrally barrelled algebra $E$, we know
(cf. [18], p. 160, Remark) that it is an algebra of the same kind, when multipli-
cation is jointly continuous in $E$ . The same is true for an m-barrelled locally
convex algebra with continuous multiplication, as the following Proposition shows:

Proposition 2.3. The comPletion $\hat{E}$ of an m-barrelled locally convex algebra
$E$ with continuous multiplication, is a (complete) algebra of the same kind.

Proof. Since $E$ has continuous multiplication, $\hat{E}$ is a locally convex algebra
(with continuous multiplication). Let $B$ be a bounded subset of $(\hat{E})^{\prime}$ , such that
$B^{0}$ is an idempotent subset of $\hat{E}$ . Then ${}^{t}j(B)$ is a bounded subset of $E_{\iota}^{\prime}$ , where
${}^{t}j$ is the transpose of the canonical imbedding $j:E\rightarrow\hat{E}$, and $({}^{t}j(B))^{0}=j^{-1}(B^{0})$ is
idempotent in $E$, since the inverse image of an idempotent subset, under a mor-
phism, is an idempotent subset (cf. [191, Lemma 1.4 a), p. 9). Thus, by Theorem
1.1, ${}^{t}j(B)$ is an equicontinuous subset of $E^{\prime}$ , since $E$ is, by hypothesis, m-barrelled.
But ${}^{t}j(B)=\{\tilde{f}\circ j|\tilde{f}\in B\}$ and therefore the extensions of the elements of this set,
i.e. the elements of $B$, form an equicontinuous subset of $(\hat{E})^{\prime}$ (cf. [21, \S 2, No. 2,
Proposition 4). By Theorem 1.1, $\hat{E}$ is m-barrelled and the proof is completed.

Corollary 2.2. The completjon of an m-barrelled locally m-convex algebra is
$a$ (complete) algebra of the same kind.

Proof. By ([19], p. 10) multiplication is jointly continuous.

Corollary 2.3. Let $X$ be a completely regular (Hausdorff) $k$-space which is
also a Nachbin-Shirota $sPace$ and $E$ a unital complete nuclear algebra with con-
tinuous multiplicatiOn. Then, if $E$ is moreover m-barrelled ( $ resP\cdot$ sPectrally bar-
relled), the algebra $C_{e}(X, E)$ is a complete m-barrelled (resP. spectrally barrelled)

algebra with continuous multiPIication.
Proof. Since $X$ is as in the above hypothesis, the algebra $C_{t}(X)$ is a barrelled

locally m-convex algebra (cf. [201, Theorem 1, or [23], Theorem 1 and [17], $p$ .
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104, 2.). Since furthermore, $E$ is nuclear by hypothesis, it follows that

$C_{c}(X)\bigotimes_{\iota}E=C_{c}(X)\bigotimes_{\pi}E$

( $\epsilon$ and $\pi$ denote the biprojective and projective tensorial topology, $res\mu ctively\rangle$

(cf. [12], p. 23) and that this projective tensor product has also continuous ring

multiplication. Now, by ([16], Lemma 4.1) we have

$C_{\iota}(X, E)=C_{c}(X)\bigotimes_{\pi}^{\wedge}E$

within a topological and algebraic isomorphism and thus, by ([1] Lemma 3.1)

(resp. by [18], Lemma 4.3 and Remark p. 160), $C_{c}(X, E)$ is an m-barrelled (resp.

spectrally barrelled) complete locally convex algebra with continuous multiplication,

which finishes the proof.

We tum, now, to a discussion concerning the form the open-mapping and
closed graph theorems take, when morphisms of topological algebras are considered.
Thus, we have:

Proposition 2.4. Let $E$ be a locally m-convex algebn and $F$ an m-barrelled
algebra. Then, every surjective morphism $f:E\rightarrow F$ is almost oPen.

Proof. Let $U$ be a balanced, closed, m.convex O-neighborhood in $E$. Then,

$f(U)$ is an m-barrel in $F$. In fact, $f(U)$ is balanced and m-convex; it is also
absorbing, since $f$ is surjective and $U$ is absorbing. Therefore, $\overline{f(U)}$ is a closed,

balanced, absorbing and m-convex subset of $F$, i.e. an m-barrel and hence a
O-neighborhood, by hypothesis on $F$. This finishes the proof.

Corollary 2.4. Let $E$ be a locally m-convex algebra and $F$ a $\sigma- complete$.
m-infrabarrelled (resp. a metrizable countably m-barrelled) algebra. Then, every
surjective morphism $f:E\rightarrow F$ is almost open.

Proof. It follows by ([1], Lemma 1.1) (resp. by Proposition 1.1) that $\sigma$ -com-
pleteness (resp. metrizability) of $F$, implies m-barrelledness of $F,$ $F$ being m-
infrabarrelled (resp. countably m-barrelled) by hypothesis.

Corollary 2.5. Let $E$ be a B-comPlete $(resP\cdot B_{r^{-}}complete)$ locally m-convex
algebra and $F$ an m-barrelled locally convex algebra. Then, every continuous
surjective ($resP$ . bijective) morphjsm $f:E\rightarrow F$ is a strict morPhism ($ resP\cdot$ an iso-
morphism).

Proof. By the above Proposition 2.4, $f$ is almost open and thus, by definition
of a B-complete (resp. $B_{r}$-complete) algebra, it is a strict morphism (resp. an
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isomorphism).

We comment that since every Fr\’echet algebra is a B-complete algebra (cf.
[21], p. 200, (2)), the above corollary applies when $E$ is a Fr\’echet locally m-convex
algebra.

Proposition 2.5. Let $(E, (q_{\alpha})_{\alpha eI})$ be a countably m-barrelled locally m-convex
algebra. Then $E/q_{\alpha}^{-1}(0)$ is m-barrelled, where $q_{\alpha}$ is the gauge of an m-convex,
balanced O-neighborhood $V_{\alpha}$ .

Proof. We shall prove that $E_{a}\equiv E/q_{\alpha}^{-1}(0)$ is countably $m\cdot barrelled$ . Then,
the m-barrelledness of $E_{\alpha}$ will follow from Proposition 1.1. Let $T=\bigcap_{1}^{\infty}V_{n}$ be an
$m-N$-barrel in $E_{\alpha}$ . Sinoe the map $\phi_{\alpha}$ : $E\rightarrow E_{a}$ is a continuous morphism,

$\phi_{a}^{-1}(T)=\phi_{\alpha}^{-1}(\bigcap_{1}^{\infty}V_{n})=\bigcap_{1}^{\infty}\phi_{a}^{-1}(V_{n})$

is an $m-N$-barrel in $E$ (cf. [15], proof of Proposition 2.1, p. $\infty 3$) and hence a
O-neighborhood in the countably m-barrelled algebra $E$ . Therefore $(\phi_{\alpha}^{-1}(T))^{0}$ is
a weakly compact subset of $E^{\prime}$ . Consider now the relation:

(2.2) ${}^{t}\phi_{\alpha}^{-1}((\phi_{\alpha}^{-1}(T))^{0})=(\phi_{a}(\phi_{a}^{-1}(T)))^{0}$

(cf. [71, Proposition 2 (a), p. 255). Sinoe $\phi_{\alpha}$ is onto, the second member of (2.2)

is equal to $T^{0}$ . The transpose ${}^{t}\phi_{\alpha}$ of $\phi_{\alpha}$ is an injective strict morphism (cf. [7],

Corollary, p. 264). Thus, the first member of (2.2) is compact and so is $T^{0}$ .
Furthermore $T^{0}$ is balanced and convex. Thus, $T^{0}$ is strongly bounded in $E_{\alpha}^{\prime}$

(cf. [22], (5.1), p. 141). But since $E_{\alpha}$ is metrizable, $E_{a}^{\prime}$ has a fundamental se-
quence of strongly bounded subsets (cf. [111, (6), p. 394), which are the polars
$U_{n^{0}}$ of a base $ U_{1}\supseteqq U_{2}\supseteqq\cdots$ of a sequence of O-neighborhoods. Thus $T^{0}\subseteqq U^{0}$ ,
from which we obtain $U_{\iota^{00}}\subseteqq T^{00}$ , i.e. $U.\subseteqq T$. Therefore $T$ is a O-neighborhood
in $E_{\alpha}$ and $E_{\alpha}$ is countably m.barrelled. This completes the proof.

Corollary 2.6. Let $E$ be a Ptdk countably m-barrelled locally m-convex algebra.
Then, $E_{\alpha}$ is a Banach algebra.

Proof. We only have to prove that $E_{\alpha}$ is complete. The map $\phi_{a}$ is a $con$.
tinuous morphism onto $E_{\alpha}$ and also an almost open map $($cf. Proposition $2.4)_{:}$

since $E_{\alpha}$ is $m\cdot barrelled$ by the above Proposition 2.5. Thus, $E_{\alpha}$ is a Pt\’ak algebra
too (cf. [22], Corollary 2, p. 164) and hence complete (cf. [7], Proposition 3 (b),

p. 299).

Corollary 2.7. Let $E$ be a Fr\’echet locally m-convex algebra. Then, $E_{\alpha}$ is a
Banach algebra.
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Proof. $E$ is Pt\’ak and barrelled (cf. [7], Proposition 3 (a), p. 299 and Corol-
lary p. 214) and thus countably m-barrelled.

Corollary 2.8. Let $E$ be a Pt\’ak, countably m-barrelled locally m.convex alge $\cdot$

$bra$ . Then, for the Arens-Michael decompositi0n of $E$, we have: $E=\lim_{\leftarrow}E_{\alpha}$ (cf.

[19], Theorem 5.1, p. 20).

Now, we have the following:

Proposition 2.6. Let $E$ be an m-barrelled algebra and $F$ a locally m-convex
algebra. Then, every morphism $f:E\rightarrow F$ is almost continuous.

Proof. Let $V$ be a balanced m-convex O-neighborhood in $F$. Then, $f^{-1}(V)$

is a balanced, m.convex set and $\overline{f^{-1}(V)}$ a balanced, m-convex, closed set in $E$ .
$f^{-1}(V)$ is also absorbing, since $V$ is. Thus, $\overline{f^{-1}(V)}$ is an m-barrel and hence a
O-neighborhood, by hypothesis on $E$ . This completes the proof.

Corollary 2.9. Let $E$ be a $\sigma$-complete, m-infrabarrelled (resp. a metrizable,

countably m-barrelled) algebra and $F$ a locally m-convex algebra. Then, every
morphism $f:E\rightarrow F$ is almost continuous.

Proof. cf. the proof of Corollary 2.4.

Corollary 2.10. Let $E$ be an m-barrelled locally convex algebra, $F$ a $B_{r^{-}}$

complete locally m-convex algebra and $f:E\rightarrow F$ a morphism. If the graph $G$ of $f$

is closed in the product space $E\times F$ and $\overline{f(E)}=F$, then, $f$ is continuous.

Proof. The above Proposition 2.6 and ([21], Theorem 5.1, p. $\mathfrak{B}7$).

Again, the conclusion of the above corollary holds true if $F$ is a Fr\’echet

algebra. Note also that the above corollary is valid without the density assump $\cdot$

tion, if $F$ is a Pt\’ak locally m-convex algebra. In fact, in this case the proof

follows from Proposition 2.6 and ([7], Proposition 8, p. 302).

Corollary 2.11. Let $E$ be an m-barrelled locally convex algebra, $F$ a $B_{r^{-}}$

complete locally m.convex algebra with top0l0gy $\tau_{0}$ and $f:E\rightarrow F$ a morphism. Let
$\tau$ be a (Hausdorff) topol0gy on $F$ which is coarser than $\tau_{0}$ and supp0se that
$\overline{f(E)}=F_{\tau_{0}}$ . If $f$ is continuous for $\tau$ on $F$, then, it is also continuous for the
top0logy $\tau_{0}$ on $F$.

Proof. The graph of $f$ is closed in $E\times F$, if $F$ is equipped with $\tau$ and thus

a fortiori if $F$ is equipped with $\tau_{0}$ . The assertion follows from Corollary 2.10.
If $F$ is a Pt\’ak locally m-convex algebra, the above corollary is valid without

the density assumption.
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Concerning the continuity of a morphism between two topological algebras,
we also have the following, in the special case the morphism is the Gel’fand
map:

Corollary 2.12. Let $E$ be a unital metrizable algebra and suPpose that its
spectrum $\mathfrak{M}(E)$ is locally compact. Then, the Gel‘fand map of $E$ is continuous
and $C_{t}(\mathfrak{M}(E))$ is Fr\’echet.

Proof. The assertion on the Gel’fand map follows from ([17], Theorem 3.2,
p. 107) and Proposition 2.1. Concerning $C_{c}(\mathfrak{M}(E))$ ( $[24]$ , Theorem 2, p. 267) applies,
since a $\sigma$-compact, locally compact space is a hemicompact $k$-space (cf. [19], p. 25).
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