Yokohama Mathematical Journal Vol. 31, 1983

AUTOMORPHISMS AND COVARIANT IRREDUCIBLE REPRESENTATIONS

By

Ακιτακά Κιςηιμότο

(Received March 5, 1983)

1. Introduction.

Let A be a separable simple C*-algebra and α a continuous action of the circle group T, the group R of real numbers, or a countable discrete abelian group on A by automorphisms. If α is not inner, it has been shown in [6] that the action of α on the spectrum \hat{A} of A is not trivial. In this note, conversely, we want to study the problem of whether it has fixed points on \hat{A} .

In Section 2 we solve this problem affirmatively when the group is T, i.e., we show that the system has an α -invariant pure state. The same method can be applied to cyclic groups of prime order but not those of non-prime order. More precisely, in Section 3, we show that for a periodic automorphism α of the C^* -algebra A, (A, α) has a covariant irreducible representation if and only if $\gamma(\alpha)=1$, where $\gamma(\alpha)$ is an outer invariant of α , being defined by Connes [2] as follows: When $p_0(\alpha)$ is the outer period of α and the $p_0(\alpha)$ -th power of α is Ad u with u a unitary multiplier of A, $\gamma(\alpha)$ is the complex number defined by $\alpha(u)=\gamma(\alpha)u$.

In Section 4 we study the case that the group is R, and show the existence of a fixed point of \hat{A} under α when the crossed product of A by α is not simple. And we give an example where α fixes no points of \hat{A} and another example where α fixes points of \hat{A} , in case the crossed product is simple. The obstruction, in our example, for α having fixed points on \hat{A} is of the same kind as $\gamma(\alpha)$ not being 1 in Section 3.

In Section 5 we restrict ourselves to the separable nuclear C^* -algebras which admit unique tracial states. Using Ocneanu's result [8], we show that, for an action α of a countable discrete abelian group on the C^* -algebra with trace τ , if α induces a free action on $\pi_{\tau}(A)''$, then (A, α) has covariant irreducible representations. In particular we show that for any automorphism α of a UHF algebra there exists a positive integer n such that (A, α^n) has covariant irreducible representations.

Present Address: Department of Mathematics, College of General Education, Tohoku University, Sendai, Japan

2. Periodic one-parameter automorphism groups.

2.1. Theorem. Let A be a separable C*-algebra and α a continuous action of **T** on A. Suppose that α fixes each (closed two-sided) ideal of A. Then there exists an α -invariant pure state of A.

Let B be the crossed product $A \times_{\alpha} T$ of A by α and β the action $\hat{\alpha}$ of $Z = \hat{T}$ on B dual to α .

2.2. Lemma. Each β_n with $n \neq 0$ is freely acting.

Proof. First of all note [5, Lemma 3.2] that the strong Connes spectrum $\tilde{T}(\beta)$ of β is T, because each ideal of A is fixed under α . This implies, by the definition of \tilde{T} , that for each non-zero β -invariant hereditary C*-subalgebra D of B and for each non-empty open subset Ω of T, the closed linear span of x^*yz with $x, y, z \in D$, $Sp_{\beta}(x) \subset \Omega$, $Sp_{\beta}(z) \subset \Omega$, is the whole D.

Suppose that β_n with n > 0 is not freely acting (cf. [7], [9]). Then by definition there exists a non-zero β_n -invariant ideal I of B such that the Borchers spectrum of β_n restricted to I is trivial. It follows from [10] that for any $\varepsilon > 0$ there exists a non-zero β_n -invariant hereditary C^* -subalgebra D of I such that $Sp(\beta_n | D) \subset \Omega_{\varepsilon} \equiv \{\exp i\theta : |\theta| < \varepsilon\}$. Choose ε such that there exists a nonempty open subset Ω of T with

$$\bigcup_{k=1}^n \bar{\mathcal{Q}}^k \cap \mathcal{Q}_{\varepsilon} = \phi,$$

where $\overline{\Omega}$ is the closure of Ω , and let D_1 be the β -invariant hereditary C*-subalgebra generated by D, i.e., D_1 is the closed linear span of $\beta_k(D)B\beta_l(D)$ with $0 \le k, l \le n-1$. Then denoting by $R(\Omega)$ the set of $x \in D_1$ with $Sp_{\beta_n}(x) \subset \Omega$, and by (e_{λ}) an approximate identity of D, for any λ we can find, k_0, k_1, \dots, k_n in $\{0, 1, \dots, n-1\}$ with $k_0=0, \lambda_i \ge \lambda$, and $x_i \in R(\Omega)$ such that

$$\beta_{k_0}(e_{\lambda_0})x_1\beta_{k_1}(e_{\lambda_1})\cdots x_n\beta_{k_n}(e_{\lambda_n})\neq 0.$$

Hence there are at least two *i* and *j* with $k_i = k_j$. Since we may assume that $Sp_{\beta_n}(e_\lambda)$ shrinks to {1}, we can conclude that $DR(\Omega_1)^k D \neq (0)$ with k = |i-j| for any open set Ω_1 with $\Omega_1 \supset \overline{\Omega}$. Thus $Sp(\beta_n | D) \cap \overline{\Omega}^k \neq \phi$, which is a contradiction.

2.3. Lemma. Let $\{\sigma_n : n=1, 2, \dots\}$ be a countable set of freely acting automorphisms of B. Then there exists a pure state ϕ of B such that $\|\phi - \phi \circ \sigma_n\| = 2$ for $n=1, 2, \dots$.

Proof. See the proof of 2.1 in [6] as well as [7, 2.1] and [9, 6.6].

Note that we have not used the separability assumption so far. But we need it in the following.

Proof of 2.1. Let $\{u_k : k=1, 2, \cdots\}$ be a countable dense subset of the unitary group of the C*-algebra \tilde{B} obtained by adjoining an identity to B. By applying the above lemma to $\{Ad \ u_k \circ \beta_n : k, n=1, 2, \cdots\}$ we obtain a pure state ϕ of B such that ϕ is disjoint from $\phi \circ \beta_n$ for each non-zero n.

Let f be a state of $B \times_{\beta} \mathbb{Z}$ such that the restriction of f to B is ϕ . Let v be the canonical unitary multiplier of $B \times_{\beta} \mathbb{Z}$ which implements β_1 on B, and let e be a positive element of B with ||e||=1 such that for a state ψ of B, $\psi(e)=1$ if and only if $\psi=\phi$. Then for any unitary u of \tilde{B} and $n\neq 0$,

$$|f(uv^{n})| = |f(uv^{n}e^{k})| = |f(u\beta_{n}(e^{k})v^{n})| \leq |\phi(u\beta_{n}(e^{2k})u^{*})|^{1/2}$$

which converges to zero as k tends to infinity. Hence $f(xv^n)=0$, $x \in B$, $n \neq 0$, which implies that f is $\hat{\beta}$ -invariant. Thus f is a pure state since the $\hat{\beta}$ -invariant extension of ϕ is unique.

Now we use the duality for C*-crossed products due to Takai (cf. [10, 7.9.3]). $B \times_{\beta} \mathbb{Z}$ with $\hat{\beta}$ is covariantly isomorphic to $A \otimes K$ with $\alpha \otimes Ad \tilde{\lambda}$, where K is the compact operators $K(L^2(\mathbb{T}))$ on $L^2(\mathbb{T})$, and $\tilde{\lambda}$ is the right regular representation of \mathbb{T} on $L^2(\mathbb{T})$. Thus we may regard f as $\alpha \otimes Ad \tilde{\lambda}$ -invariant pure state of $A \otimes K$. Let p be a minimal projection of K such that $f | A \otimes p \neq 0$, and $Ad \tilde{\lambda}(p) = p$, and define a state ψ_p of $A \otimes K$ by

$$\psi_p(x) = f((1 \otimes p) x (1 \otimes p)) / f(1 \otimes p).$$

Then ϕ_p is an $\alpha \otimes Ad \tilde{\lambda}$ -invariant pure state of $A \otimes K$. Since $(1 \otimes p)A \otimes K(1 \otimes p)$ is naturally isomorphic to A, we may regard the restriction of ϕ_p to $(1 \otimes p)A \otimes K(1 \otimes p)$ as a state of A, which is apparently an α -invariant pure state.

2.4. Remark. One has a similar result to the above theorem for any finite cyclic group G of prime order instead of T. Because in this case any non-zero $n \in \hat{G}$ is a generator and so the counterpart to Lemma 2.2 holds trivially.

3. Finite cyclic group actions.

3.1. Theorem. Let A be a separable simple C*-algebra and α a periodic automorphism of A. Then $\gamma(\alpha)=1$ (cf. Sect. 1) if and only if (A, α) has a covariant irreducible representation.

Proof. Suppose that (A, α) has a covariant irreducible representation, say, (π, U) . Let p_0 be the outer period of α , i.e., the smallest positive integer n such that α^n is inner. Let v be a unitary multiplier of A with $\alpha^{p_0} = Ad v$. Then, since π is irreducible, $U_{p_0} = \lambda \pi(v)$ with $\lambda \in C$, $|\lambda| = 1$. Hence $\alpha(v) = v$, i.e., $\gamma(\alpha) = 1$.

Suppose that $\gamma(\alpha)=1$ and let p_0 and v be as above. Let e be a minimal projection of the finite-dimensional algebra generated by v. Then eAe is an α -invariant hereditary C*-subalgebra of A and $\alpha | eAe$ is periodic with period p_0 .

It suffices to show that there exists an α -invariant pure state of eAe.

Now we assume that p_0 is the period p of α . We only have to show that $\hat{\alpha}_k$, with $k \in \{1, \dots, p-1\}$ is outer on the (simple) crossed product $A \times_{\alpha} \mathbb{Z}_p$, where $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$. Suppose that $\hat{\alpha}_k$ is inner, say, Adv with v a unitary multiplier. Then v can be written as

$$\sum_{n=0}^{p-1} v_n \lambda(n)$$

where v_n is a multiplier of A and $\{\lambda(n)\}$ is the canonical unitary multipliers of $A \times_{\alpha} \mathbb{Z}_p$. Since v commutes with elements of A, one can conclude that α_n is inner if v_n is non-zero. This implies that v is a scalar, i.e., k=0.

3.2. Remark. For any $p=2, 3, \dots$ and $\gamma \in C$ with $\gamma^p=1$, there exists a periodic automorphism α of the UHF algebra of the type p^{∞} such that the outer period of α is p and $\gamma(\alpha)=\gamma$. (See [2].)

3.3. Remark. For the periodic automorphism α the least positive integer k with $\gamma(\alpha)^{*}=1$ is equal to the least number of the dimensions of $\pi(A)'$ with π covariant representations of (A, α) .

4. One-parameter automorphism groups.

4.1. Theorem. Let A be a separable C*-algebra and α a strongly continuous one-parameter automorphism group of A. Suppose tht α fixes each ideal of A and that the strong Connes spectrum $\tilde{R}(\alpha)$ of α is not R. Then (A, α) has a covariant irreducible representation.

Proof. Let π be an irreducible representation of $A \times_{\alpha} \mathbf{R}$ such that $P = \ker \pi$ is not $\hat{\alpha}$ -invariant. Then the intersection of $\hat{\alpha}_p(P)$, $p \in \mathbf{R}$, is equal to $J \times_{\alpha} \mathbf{R}$ for some ideal J of A. Denoting $\bar{\pi}$ the normal extension of π to a representation of the multiplier algebra of $A \times_{\alpha} \mathbf{R}$, J is given by $\ker \bar{\pi} | A$. For any ideal I of A, the support projection of $\bar{\pi}(I)$ is zero or the identity, since it should be in the center of $\pi(A \times_{\alpha} R)''$. Thus J is a prime ideal. Dividing A by J we may assume that A is prime.

Define an action γ of \mathbf{R} on $\bar{\pi}(A)'$ by $\gamma_t = Ad \bar{\pi}(\lambda(t))$. If $\bar{\pi} \mid A$ is not irreducible, the spectrum $Sp(\gamma)$ of γ is a non-trivial closed subgroup of \mathbf{R} since γ is ergodic. Since P is invariant under $\hat{\alpha}_p$ for $p \in Sp(\gamma)$ and P is not $\hat{\alpha}$ -invariant, $Sp(\gamma)$ should be of the form $p_0\mathbf{Z}$ with $p_0 > 0$, which implies that

$$P_{p_0} = \bigcap \{ \hat{\alpha}_q(P) : 0 \leq q \leq p_0 \}$$

is zero. Since P_{ε} is non-zero for sufficiently small $\varepsilon > 0$, and since

$$\bigcap_{n=0}^{k} \hat{\alpha}_{n\varepsilon}(P_{\varepsilon}) = (0)$$

for k with $k \varepsilon \ge p_0$, it follows that the crossed product is not prime, i.e., $\mathbf{R}(\alpha) \ne \mathbf{R}$.

If $R(\alpha)=(0)$, then (since A is prime) for any $n=1, 2, \cdots$, there exists a nonzero α -invariant hereditary C*-subalgebra D of A such that $Sp(\alpha|D) \cap [-n, n]$ $\subset [-1, 1]$ ([10]). Thus P is not invariant under any $\hat{\alpha}_p$ with $p \neq 0$, which is a contradiction. Hence if either $R(\alpha)=R$ or $R(\alpha)=(0)$, then $\bar{\pi} | A$ is irreducible (and covariant), which completes the proof in these cases.

The remaining case, i.e., the case $R(\alpha) = p_0 Z$ with $p_0 > 0$, can be reduced to that treated in 2.1. Because, in this case there exists a non-zero α -invariant hereditary C*-subalgebra B of A such that

$$Sp(\alpha | B) \subset p_0 Z + (-p_0/4, p_0/4).$$

Then perturbing $\alpha | B$ by the bounded derivation $-\text{Log}(\alpha_s | B)$ with $s=2\pi/p_0$ gives a periodic one-parameter automorphism group β of B with period s. Then 2.1 gives a β -invariant pure state ϕ of B, and π_{ϕ} is a covariant irreducible representation of $(B, \alpha | B)$. It easily follows that the unique extension of π_{ϕ} to an irreducible representation of A is covariant.

Incidentally we remark that for (A, \mathbf{R}, α) with A simple, if $\mathbf{\tilde{R}}(\alpha) \neq \mathbf{R}$ and $\mathbf{\tilde{R}}(\alpha)$ contains a non-zero subgroup of \mathbf{R} , then $\mathbf{\tilde{R}}(\alpha) = \mathbf{R}(\alpha)$. (First one shows that $\mathbf{R}(\alpha) \neq \mathbf{R}$ as in the second paragraph of the above proof. If $\mathbf{R}(\alpha) = p\mathbf{Z}$ we may assume that α is periodic with period $s = 2\pi/p$. Then regarding α as an action of $\mathbf{R}/s\mathbf{Z}$, one obtains that $\mathbf{\tilde{R}}(\alpha) = \mathbf{R}(\alpha)$ by a similar reasoning to that for $\mathbf{R}(\alpha) \neq \mathbf{R}$.)

4.2. Remark. There are examples of dynamical systems (A, R, α) which have covariant irreducible representations even if A is separable and simple and $\tilde{R}(\alpha) = R$. A may be chosen to be a Cuntz algebra. See Sections 4 and 5 in [5].

4.3. Remark. Let A_{θ} be the irrational rotation algebra with $\theta \in [0, 1] \setminus Q$, i.e., A_{θ} is generated by two unitaries u and v satisfying $uvu^*v^* = \exp 2\pi i\theta$. Let α be the one-parameter automorphism group of A defined by $\alpha_t(u) = e^{i2\pi t}u$, $\alpha_t(v) = e^{i2\pi \theta t}v$. Then α is ergodic in a strong sense, i.e., there are no non-trivial α -invariant hereditary C^* -subalgebras of A. Hence $\tilde{R}(\alpha) = Sp(\alpha) = R$. Since α_1 is inner, it easily follows that (A_{θ}, α) does not have a covariant irreducible representation, nor does $(A_{\theta}, \alpha_{1/n})$ with $n \ge 2$.

5. Countable discrete abelian group actions.

Let A be a separable nuclear C*-algebra with unique tracial state τ . Let G be a countable discrete abelian group and α a homomorphism of G into the automorphism group of A. Since τ is α -invariant, one can define a unitary representation W of G on the GNS representation space H_{τ} associated with τ by

$$W_{g}\pi_{\tau}(x)\Omega_{\tau}=\pi_{\tau}\circ\alpha_{g}(x)\Omega_{\tau}, \quad x\in A.$$

Thus one can define an action $\bar{\alpha}$ of G on $\pi_{\tau}(A)''$ by $\bar{\alpha}_g = AdW_g$, $g \in G$. Note that $\pi_{\tau}(A)''$ is a factor since τ is supposed to be a unique tracial state.

5.1. Proposition. In the above situation further suppose $\bar{\alpha}$ is free, i.e., for each non-zero $g \in G$, $\bar{\alpha}_g$ is an outer automorphism of $\pi_{\tau}(A)''$. Then (A, G, α) has covariant irreducible representations.

Proof. Let B be the crossed product of A by α and let β be the action of $\Gamma = \hat{G}$ on B dual to α . Let ϕ be the β -invariant extension of τ to a (tracial) state of B. Then $N \equiv \pi_{\phi}(A)''$ is isomorphic to $\pi_{\tau}(A)''$ and is the hyperfinite type II₁ factor ([1], [3]) (since it is not finite-dimensional due to the assumption on $\bar{\alpha}$). In passing we remark that $M \equiv \pi_{\phi}(B)''$ is the W*-crossed product of $\pi_{\tau}(A)''$ by $\bar{\alpha}$ and is a factor ([10], 8.9.4, 8.11.5).

Define a unitary representation V of Γ on H_{ϕ} by

$$V_t Q \Omega_{\phi} = \bar{\beta}_t(Q) \Omega_{\phi}, \quad Q \in M.$$

Let u be the canonical unitary group of multipliers of B which implements α on A and let $U_g = \pi_{\phi}(u_g)$ for $g \in G$. Denoting by $\overline{\alpha}$ also the inner action of G on M defined by $Ad U_g$, $g \in G$, define a unitary representation W of G on H_{ϕ} by

$$W_{g}Q \Omega_{\phi} = \bar{\alpha}_{g}(Q) \Omega_{\phi}, \quad Q \in M.$$

Then W_g and U_h commute with each other for any g, $h \in G$, and $\{W_g U_g^* : g \in G\}$ is a unitary group in the commutant M' of M, since W and U implement the same action $\bar{\alpha}$ of G on M.

Any two free actions of G on the hyperfinite type II₁ factor with separable predual are outer conjugate with each other [8]. We note

5.2. Lemma. There exists a free action γ of G on N such that the fixed point algebra N^{γ} of N under γ contains a maximal abelian subalgebra of N.

We shall give the proof of this later. Now we may assume that there exists a unitary cocycle X for $\bar{\alpha}$, i.e., $X_g \in N$, $g \in G$ with

$$X_{g+\hbar} = X_g \bar{\alpha}_g(X_\hbar)$$
,

such that N^{γ} for the action γ of G defined by $Ad X_g \circ \bar{\alpha}_g$, $g \in G$, contains a maximal abelian subalgebra of N, say C.

Let J be the canonical involution defined for (M, Ω_{ϕ}) , i.e., J is the conjugatelinear operator satisfying $JQ\Omega_{\phi} = Q^*\Omega_{\phi}$, $Q \in M$. Then JMJ = M' and $JW_g = W_g J$, $g \in G$. Set $Y_g = JX_g JW_g U_g^*$ for $g \in G$. Then $Y_g \in M'$, and

$$Y_{g}Y_{h} = JX_{g}W_{g}X_{h}W_{h}JU_{g}*U_{h}* = JX_{g}\alpha_{g}(X_{h})W_{g+h}JU_{g+h}*$$
$$=Y_{g+h}$$

and for $Q \in N$,

$$Y_{g}JQJY_{g}^{*}=JX_{g}W_{g}QW_{g}^{*}X_{g}^{*}J$$
$$=J\gamma_{g}(Q)J.$$

Thus for $Q \in N$, JQJ commute with Y_g , $g \in G$ if and only if $Q \in N^{\gamma}$.

Let C_1 be the von Neumann algebra generated by JCJ and Y_g , $g \in G$. Then since $C \subset N^r$, and Y is a representation of G, C_1 is abelian. We claim that $M' \cap \{V_t\}' = JNJ$ and that C_1 is a maximal abelian subalgebra of M'. The first part is obvious since M' is generated by JNJ and JU_gJ , $g \in G$. For the second part note that C_1 is invariant under $Ad V_t$, $t \in \Gamma$ since $V_t Y_g V_t^* = \langle \overline{g}, t \rangle Y_g$, and $JCJ \subset \{V_t\}'$. For any $Q \in M' \cap C_1'$ invariant under $Ad V_t$, $t \in \Gamma$, JQJ belongs to N, and so to C, since C is maximal in N. We next claim that $M' \cap (JCJ)' = C_1$. It is obvious that $M' \cap (JCJ)' \supset C_1$. Since $M' \cap (JCJ)'$ is invariant under the action Ad V, we may consider only an eigen-operator Q in $M' \cap (JCJ)'$ with eigenvalue $g \in G$. Then QY_g belongs to

$$M' \cap (JCJ)' \cap \{V_t\}' = JNJ \cap (JCJ)' = JCJ$$
,

which implies that $Q \in C_1$.

We now use Decomposition theory of states (cf. [11]). Let K_1 be the (compact) space of characters of C_1 with the probability measure coming from the state defined by Ω_{ϕ} . Then there exists a subset D_1 of measure one of K_1 whose elements correspond to pure states of B ([11], 3.1.16, 3.4.2). Here the state f_{χ} corresponding to $\chi \in K_1$ is given by

$$f_{\chi}(x) = \chi(e\pi_{\phi}(x)e), \quad x \in B,$$

where e is the projection onto $[C_1 \Omega_{\phi}]$ and the isomorphism of eC_1 with C_1 is used. Further there exists a subset D_2 of measure one of K_1 such that if $\chi \in D_2$, then f_{χ} is not zero on some $e\pi_{\phi}(Au_{g_1})e\pi_{\phi}(Au_{g_2})e\cdots e\pi_{\phi}(Au_{g_n})e$ with $g_1+g_2+\cdots$ $+g_n=g$ for each $g \in G$, because the weak closure of the algebra generated by $e\pi_{\phi}(B)e$ is eC_1 . Note that for $\chi \in D_2$, the set of $g \in G$ with $f_{\chi}|Au_g \neq 0$ generates G.

Similarly let K be the space of characters of JCJ with the canonical probability measure. Then there exists a subset D_3 of measure one of K such that each element of D_3 corresponds to a state of B whose restriction to A is pure, since JCJ is maximal abelian in $\pi_{\phi}(A)'$ when restricted to $[\pi_{\phi}(A)\Omega_{\phi}]$. Further there exists a subset D_4 of measure one of K such that each element of D_4 corresponds to a state f of B with the property that $\pi_f(B)'$ is commutative, since $\pi_{\phi}(B)' \cap (JCJ)'$ is commutative (cf. [11], 3.4, 3.2.12). Let F be the (continuous) map of K_1 onto K obtained by restriction. Then, since F maps the measure on K_1 to the oneon K, $F^{-1}(D_j)$, j=3, 4 have measure one.

Let $\chi \in D_1 \cap D_2 \cap F^{-1}(D_3) \cap F^{-1}(D_4)$ and let $f = f_{F(\chi)}$. Then, since JCJ is the

fixed point algebra of C_1 under AdV,

$$f = \int_{\Gamma} f_{\chi} \cdot \beta_t dt$$

where dt is the normalized Haar measure on Γ . Since f | A is pure, f is an extreme β -invariant state of B.

Let V be the unitary representation of Γ on the GNS representation space H_f defined by

$$V_t \pi_f(x) \mathcal{Q}_f = \pi_f \circ \beta_t(x) \mathcal{Q}_f, \quad x \in B.$$

Then we claim that every spectrum appears for the action Ad V of Γ on $\pi_f(B)'$. Let $g \in G$ be such that there exists $x \in A$ with $f_{\chi}(xu_g) \neq 0$. For Ω being a small open neighbourhood of $1 \in \Gamma$ with

$$\int_{\mathcal{Q}} \langle g, t \rangle dt \neq 0 ,$$

we have a positive operator T in $\pi_f(B)'$ such that

$$\langle \pi_f(xu_g) \mathcal{Q}_f, V_s T V_s^* \mathcal{Q}_f \rangle = \langle \overline{g, s} \rangle \int_{\mathcal{Q}} f_{\chi} \circ \beta_t(xu_g) dt.$$

Hence the Arverson spectrum of T with respect to AdV contains $-g \in G$. Since $\pi_f(B)'$ is commutative and so, is the center of $\pi_f(B)''$, and AdV acts ergodically on $\pi_f(B)'$, we have a commutative family $\{W_g : g \in G\}$ of unitaries in $\pi_f(B)'$ such that

$$V_t W_g V_t^* = \langle g, t \rangle W_g, \quad t \in \Gamma.$$

By arranging phase factors for $\{W_g\}$ we can assume that $\{W_g\}$ forms a unitary representation of G.

The rest of the proof procedes as that of 2.1. We have now the irreducible representation $\rho = \pi_f \times V$ of the crossed product $B \times_{\beta} \Gamma$ on H_f where AdW^* induces the dual action of G on $B \times_{\beta} \Gamma$. Then regarding this representation as that of $A \otimes K(1^2(G))$ by the duality, AdW^* induces the action $\alpha \otimes Ad\tilde{\lambda}$. Hence $\{\rho(1 \otimes \tilde{\lambda}(g)^*)W_g^*\}$ is a unitary representation of G and induces the action $\alpha \otimes 1$. Therefore by cutting down H_f by $\rho(1 \otimes p)$ with p a one-dimensional projection of $K(1^2(G))$, we obtain a covariant irreducible representation of (A, G, α) .

Proof of 5.2. We shall embed G into the direct product T^{∞} of countably infinitely many copies of the circle group T.

We write G as $\{g_1, g_2, \dots\}$ since G is countable. Let G_1 be the subgroup of G generated by g_1 . We define an injective homomorphism φ_1 of G_1 into **T** by $\varphi_1(g_1)=t_1$ where t_1 is irrational if G_1 is infinite and $t_1=1/n$ if G_1 is of order n. Now suppose that we have defined an injection φ_k of the group G_k generated by $\{g_1, \dots, g_k\}$ into T^k for $k \leq n$ such that $\varphi_k | G_{k-1}$ is φ_{k-1} composed with the natural embedding $T^{k-1} \rightarrow T^k$. Let $H = \{k \in \mathbb{Z} : kg_{n+1} \in G_n\}$, which is a sub-

group of Z. If H=(0), then define φ_{n+1} by $\varphi_{n+1}(g_{n+1})=\{0, t_{n+1}\}\in T^n\times T$ (and $\varphi_{n+1}(h)=\{\varphi_n(h), 0\}\in T^n\times T$) where t_{n+1} is irrational. If H=kZ with k>0, define φ_{n+1} by $\varphi_{n+1}(g_{n+1})=\{t, t_{n+1}\}\in T_n\times T$ where $kt=\varphi_n(kg_{n+1})$ and $t_{n+1}=1/k$. If H=Z, set $\varphi_{n+1}=\varphi_n$ (composed with the embedding of T^n into T^{n+1}). It is easy to show that φ_{n+1} satisfies the required properties. Then, having $\{\varphi_n\}$, define a map φ of G into T^{∞} by $\varphi(h)=\{\varphi_n(h), 0\}\in T^n\times T^{\infty}\cong T^{\infty}$, for $h\in G_n$, which gives the desired embedding.

Define an action of T on the UHF algebra of (2^{∞}) type by the infinite tensor product of

$$Ad \begin{pmatrix} 1 & 0 \\ 0 & \exp 2\pi it \end{pmatrix}, \quad t \in T$$

and define an action of T^{∞} on $A \cong A \otimes A \otimes \cdots$ by the tensor product of infinitely many copies of the action of T just obtained. Since there exists a shift automorphism of A which commutes the action of T, we also have a shift automorphism which commutes the action of T^{∞} . By using this shift, we can easily conclude that the action of G on $\pi_{\tau}(A)''$ is free, where τ is the unique tracial state of A. It is clear that the fixed point algebra of $\pi_{\tau}(A)''$ under G contains a maximal abelian subalgebra of $\pi_{\tau}(A)''$.

5.3. Remark. Since each χ of a dense subset of the non-atomic measure space K produces a state of B whose restriction to A is pure in the way that the states so obtained are mutually orthogonal, and since A is separable, one has uncountably many equivalence classes of covariant irreducible representations of (A, G, α) .

5.4. Proposition. Let A be a separable C*-algebra and α an automorphism of A. Let f be an α -invariant state of A and let $\overline{\alpha}$ be the automorphism of $\pi_f(A)''$ induced by α . If $\overline{\alpha}$ is inner, then (A, α) has a convariant irreducible representation.

Proof. Define a unitary U on H_f by $U\pi_f(x)\Omega_f = \pi_f \circ \alpha(x)\Omega_f$, $x \in A$. By the assumption there is a unitary V in $\pi_f(A)''$ such that $V^*U \equiv W \in \pi_f(A)'$. Let C be a maximal abelian subalgebra of $\pi_f(A)'$ containing W. Then, since $C \subset \pi_f(A)' \cap U'$, one can use Decomposition theory of states to conclude the existence of an α -invariant pure state of A.

5.5. Corollary. Let A be a UHF algebra and α an automorphism of A. Then the action of α on the spectrum \hat{A} of A has uncountably many finite orbits.

Incidentally we remark that there are at least countably infinitely many outer conjugacy classes of automorphisms of a UHF algebra A which are not outer periodic. To show this we just point out that whether or not an automorphism of A induces a weakly inner automorphism of $\pi_r(A)''$ is an outer invariant, where

 τ is the unique tracial state (cf. [4]).

5.6. Example. Let γ be the action of T^2 on the irrational rotation algebra A_{θ} (cf. 4.3) defined by

$$\gamma_{(t,s)}(u) = e^{2\pi i t} u$$
, $\gamma_{(t,s)}(v) = e^{2\pi i s} v$.

Then of course there are no T^2 -covariant pure states of A, since γ is ergodic. But for a countable subgroup G of T^2 such that $\gamma | G$ is free, i.e., γ_g is outer for any non-trivial $g \in G$, there are G-covariant pure states of A. To show this, since A is nuclear and has a unique tracial state, say, τ , it suffices to prove that if γ_g is outer with $g \in T^2$, then γ_g induces an outer automorphism of $\pi_{\tau}(A_{\theta})''$. But this follows by easy computations.

References

- [1] Choi, M.D. and Effros, E.G.: Separable nuclear C*-algebras and injectivity, Duke Math. J. 43 (1976), 309-322.
- [2] Connes, A.: Periodic automorphisms of the hyperfinite factor of type II₁, Acta Sci. Math. (Szeged) 39 (1977), 39-66.
- [3] Connes, A.: Classification of injective factors, Ann. Math. 104 (1976), 73-115.
- [4] Kishimoto, A.: On the fixed algebra of a UHF algebra under a periodic automorphism of product type, Publ. RIMS. Kyoto Univ. 13 (1977), 777-791.
- [5] Kishimoto, A.: Simple crossed products of C*-algebras by locally compact abelian groups, Yokohama Math. J. 28 (1980), 69-85.
- [6] Kishimoto, A.: Outer automorphisms and reduced crossed products of simple C*algebras, Commun. Math. Phys. 81 (1981), 429-435.
- [7] Kishimoto, A.: Freely acting automorphisms of C*-algebras, Yokohama. Math. J. 30 (1982), 39-47.
- [8] Ocneanu, A.: Actions of discrete amenable groups of factors, preprint.
- [9] Olesen, D. and Pedersen, G.K.: Applications of the Connes spectrum to C*-dynamical systems, III, J. Funct. Analysis.
- [10] Pedersen, G.K.: C*-algebras and their automorphism groups, Academic Press, London, 1979.
- [11] Sakai, S.: C*-algebras and W*-algebras, Springer, Berlin, 1971.

Department of Mathematics Yokohama City University Yokohama, Japan