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1. Introduction.

Let $A$ be a separable simple $c*$-algebra and $\alpha$ a continuous action of the
circle group $T$, the group $R$ of real numbers, or a countable discrete abelian
group on $A$ by automorphisms. If $\alpha$ is not inner, it has been shown in [6] that

the action of $\alpha$ on the spectrum $\hat{A}$ of $A$ is not trivial. In this note, conversely,

we want to study the problem of whether it has fixed points on $\hat{A}$ .
In Section 2 we solve this problem affirmatively when the group is $T,$ $i.e.$ ,

we show that the system has an $\alpha$-invariant pure state. The same method can
be applied to cyclic groups of prime order but not those of non-prime order.

More precisely, in Section 3, we show that for a periodic automorphism $\alpha$ of the
$c*$-algebra $A,$ $(A, \alpha)$ has a covariant irreducible representation if and only if
$\gamma(\alpha)=1$ , where $\gamma(\alpha)$ is an outer invariant of $\alpha$, being defined by Connes [2] as
follows: When $p_{0}(\alpha)$ is the outer period of $\alpha$ and the $p_{0}(\alpha)$-th power of $\alpha$ is
$Adu$ with $u$ a unitary multiplier of $A,$ $\gamma(\alpha)$ is the complex number defined by
$\alpha(u)=\gamma(\alpha)u$ .

In Section 4 we study the case that the group is $R$, and show the existence
of a fixed point of $\hat{A}$ under $\alpha$ when the crossed product of $A$ by $\alpha$ is not simple.

And we give an example where $\alpha$ fixes no points of $\hat{A}$ and another example

where $\alpha$ fixes points of $\hat{A}$ , in case the crossed product is simple. The obstruc-
tion, in our example, for $\alpha$ having fixed points on $\hat{A}$ is of the same kind as $\gamma(\alpha)$

not being 1 in Section 3.
In Section 5 we restrict ourselves to the separable nuclear $C^{*}$-algebras which

admit unique tracial states. Using Ocneanu’s result [8], we show that, for an
action $\alpha$ of a countable discrete abelian group on the $c*$-algebra with trace $\tau$,

if $\alpha$ induces a free action on $\pi_{\tau}(A)^{\prime}$ , then $(A, \alpha)$ has covariant irreducible rep-
resentations. In particular we show that for any automorphism $\alpha$ of a UHF
algebra there exists a positive integer $n$ such that $(A, \alpha^{n})$ has covariant irreducible
representations.
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2. Periodic one-parameter automorphism groups.

2.1. Theorem. Let $A$ be a separable $C^{*}$-algebra and $\alpha$ a continuous action
of $T$ on A. SuPpose that $\alpha$ fixes each (closed two-sided) ideal of A. Then there
exists an $\alpha$-invariant pure state of $A$ .

Let $B$ be the crossed product $A\times\alpha T$ of $A$ by $\alpha$ and $\beta$ the action $\hat{\alpha}$ of
$Z=\hat{T}$ on $B$ dual to $\alpha$ .

2.2. Lemma. Each $\beta_{n}$ with $n\neq 0$ is freely acting.

Proof. First of all note [5, Lemma 3.2] that the strong Connes spectrum
$\tilde{T}(\beta)$ of $\beta$ is $T$, because each ideal of $A$ is flxed under $\alpha$ . This implies, by the
definition of $\tilde{T}$, that for each non-zero $\beta$-invariant hereditary $c*$-subalgebra $D$ of
$B$ and for each non-empty open subset $\Omega$ of $T$, the closed Iinear span of $x^{*}yz$

with $x,$ $y,$ $z\in D,$ $Sp_{\beta}(x)\subset\Omega,$ $ Sp_{\beta}(z)\subset\Omega$, is the whole $D$ .
Suppose that $\beta_{n}$ with $n>0$ is not freely acting (cf. [7], [9]). Then by

definition there exists a non-zero $\beta_{n}$-invariant ideal $I$ of $B$ such that the Borchers
spectrum of $\beta_{n}$ restricted to $I$ is trivial. It follows from [10] that for any $\epsilon>0$

there exists a non-zero $\beta_{n}$-invariant hereditary $c*$-subalgebra $D$ of $I$ such that
$Sp(\beta_{n}|D)\subset\Omega_{\epsilon}\equiv\{\exp i\theta:|\theta|<\epsilon\}$ . Choose $\epsilon$ such that there exists a nonempty
open subset $\Omega$ of $T$ with

$\bigcup_{l=1}^{n}\overline{\Omega}^{k}\cap\Omega_{\epsilon}=\phi$ ,

where $\overline{\Omega}$ is the closure of $\Omega$ , and let $D_{1}$ be the $\beta$-invariant hereditary $C^{*}$-sub-
algebra generated by $D,$ $i.e.,$ $D_{1}$ is the closed linear span of $\beta_{\hslash}(D)B\beta_{\ell}(D)$ with
$0\leqq k,$ $l\leqq n-1$ . Then denoting by $R(\Omega)$ the set of $x\in D_{1}$ with $ Sp_{\beta_{n}}(x)\subset\Omega$, and
by $(e_{\lambda})$ an approximate identity of $D$ , for any $\lambda$ we can find, $k_{0},$ $k_{1},$ $\cdots$ , $k_{n}$ in
$\{0,1, \cdots , n-1\}$ with $k_{0}=0,$ $\lambda_{i}\geqq\lambda$, and $x_{i}\in R(\Omega)$ such that

$\beta_{k_{0}}(e_{\lambda_{0}})x_{1}\beta_{k_{1}}(e_{\lambda_{1}})\cdots x_{n}\beta_{k_{n}}(e_{\lambda_{n}})\neq 0$ .
Hence there are at least two $i$ and $j$ with $k_{\ell}=k_{j}$ . Since we may assume that
$Sp_{\beta_{n}}(e_{\lambda})$ shrinks to {1}, we can conclude that $DR(\Omega_{1})^{k}D\neq(0)$ with $k=|i-j|$ for
any open set $\Omega_{1}$ with $\Omega_{1}\supset\overline{\Omega}$ . Thus $ Sp(\beta_{n}|D)\cap\overline{\Omega}^{k}\neq\phi$, which is a contradiction.

2.3. Lemma. Let $\{\sigma_{n} ; n=1, 2, \}$ be a countable set of freely acting auto-
morphisms of B. Then there exists a pure state $\phi$ of $B$ such that $\Vert\phi-\phi^{\circ}\sigma_{n}\Vert=2$

for $n=1,2,$ $\cdots$

Proof. See the proof of 2.1 in [6] as well as [7, 2.1] and [9, 6.6].
Note that we have not used the separability assumption so far. But we

need it in the following.
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Proof of 2.1. Let $\{u_{k} : k=1, 2, \}$ be a countable dense subset of the
unitary group of the $c*$-algebra $\tilde{B}$ obtained by adjoining an identity to $B$ . By
applying the above lemma to $\{Adu_{k}\circ\beta_{n} : k, n=1, 2, \}$ we obtain a pure state
$\phi$ of $B$ such that $\phi$ is disjoint from $\phi^{\circ}\beta_{n}$ for each non-zero $n$ .

Let $f$ be a state of $B\times\beta Z$ such that the restriction of $f$ to $B$ is $\phi$ . Let $tf$

be the canonical unitary multiplier of $B\times\beta Z$ which implements $\beta_{1}$ on $B$ , and
let $e$ be a positive element of $B$ with $\Vert e\Vert=1$ such that for a state $\psi$ of $B,$ $\phi(e)=1$

if and only if $\psi=\phi$ . Then for any unitary $u$ of $\tilde{B}$ and $n\neq 0$,

$|f(uv^{n})|=|f(uv^{n}e^{k})|=|f(u\beta_{n}(e^{k})v^{n})|\leqq|\phi(u\beta_{n}(e^{2i})u^{*})|^{1/2}$

which converges to zero as $k$ tends to infinity. Hence $f(xv^{n})=0,$ $x\in B,$ $n\neq 0$,
which implies that $f$ is $\hat{\beta}$-invariant. Thus $f$ is a pure state since the $\hat{\beta}$-invariant
extension of $\phi$ is unique.

Now we use the duality for $c*$-crossed products due to Takai (cf. [10, 7.9.3]).
$B\times\rho Z$ with $\hat{\beta}$ is covariantly isomorphic to $A\otimes K$ with $\alpha\otimes Ad\tilde{\lambda}$, where $K$ is the
compact operators $K(L^{2}(T))$ on $L^{2}(T)$ , and $\tilde{\lambda}$ is the right regular representation
of $T$ on $L^{2}(T)$ . Thus we may regard $f$ as $\alpha\otimes Ad\tilde{\lambda}$-invariant pure state of $A\otimes K$.
Let $p$ be a minimal projection of $K$ such that $f|A\otimes p\neq 0$, and $Ad\tilde{\lambda}(p)=p$ , and
define a state $\psi_{p}$ of $A\otimes K$ by

$\phi_{p}(x)=f((1\otimes p)x(1\otimes p))/f(1\otimes p)$ .
Then $\psi_{p}$ is an $\alpha\otimes Ad\tilde{\lambda}$-invariant pure state of $A\otimes K$. Since $(1\otimes p)A\otimes K(1\otimes p\rangle$

is naturally isomorphic to $A$ , we may regard the restriction of $\psi_{p}$ to
$(1\otimes P)A\otimes K(1\otimes P)$ as a state of $A$ , which is apparently an a-invariant pure state.

2.4. Remark. One has a similar result to the above theorem for any finite
cyclic group $G$ of prime order instead of $T$. Because in this case any non-zero
$n\in\hat{G}$ is a generator and so the counterpart to Lemma 2.2 holds trivially.

3. Finite cyclic group actions.

3.1. Theorem. Let $A$ be a separable simple $C^{*}$-algebra and $\alpha$ a periodic auto-
morphim of A. Then $\gamma(\alpha)=1$ (cf. Sect. 1) if and only if $(A, \alpha)$ has a covariant
irreducible representation.

Proof. Suppose that $(A, \alpha)$ has a covariant irreducible representation, say,
$(\pi, U)$ . Let $p_{0}$ be the outer period of $\alpha,$

$i.e.$ , the smallest positive integer $n$

such that $\alpha^{n}$ is inner. Let $v$ be a unitary multiplier of $A$ with $\alpha^{p_{0}}=Adv$ . Then,
since $\pi$ is irreducible, $U_{p_{0}}=\lambda\pi(v)$ with $\lambda\in C,$ $|\lambda|=1$ . Hence $\alpha(v)=v,$ $i.e.,$ $\gamma(\alpha)=1$ .

Suppose that $\gamma(\alpha)=1$ and let $p_{0}$ and $v$ be as above. Let $e$ be a minimal
projection of the finite-dimensional algebra generated by $v$ . Then eAe is an
$\alpha$-invariant hereditary $c*$-subalgebra of $A$ and $\alpha|$ eAe is periodic with period $p_{0}$ .
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It suffices to show that there exists an $\alpha$-invariant pure state of $eAe$ .
Now we assume that $p_{0}$ is the period $P$ of $\alpha$ . We only have to show that

$\delta_{k}$ , with $k\in\{1, \cdots , p-1\}$ is outer on the (simple) crossed product $A\times.Z_{p}$ , where
$Z_{p}=Z/pZ$. Suppose that $\&_{k}$ is inner, say, $Adv$ with $v$ a unitary multiplier.

Then $v$ can be written as
$\sum_{n=0}^{p-1}v_{n}\lambda(n)$

where $v_{n}$ is a multiplier of $A$ and $\{\lambda(n)\}$ is the canonical unitary multipliers of
$A\times_{a}Z_{p}$ . Since $v$ commutes with elements of $A$ , one can conclude that $\alpha_{n}$ is
inner if $v_{n}$ is non-zero. This implies that $v$ is a scalar, $i.e.,$ $k=0$.

3.2. Remark. For any $p=2,3,$ $\cdots$ and $\gamma\in C$ with $\gamma^{p}=1$ , there exists a
periodic automorphism $\alpha$ of the UHF algebra of the type $p^{\infty}$ such that the outer
period of $\alpha$ is $p$ and $\gamma(\alpha)=\gamma$ . (See [2].)

3.3. Remark. For the periodic automorphism $\alpha$ the least positive integer $k$

with $r(a)^{k}=1$ is equal to the least number of the dimensions of $\pi(A)^{\prime}$ with $\pi$

covariant representations of $(A, \alpha)$ .

4. One-parameter automorphism groups.

4.1. Theorem. Let $A$ be a separable $C^{*}$-algebra and $\alpha$ a strongly continuous
one-parameter automorphim group of A. SuPpose tht $\alpha$ fixes each ideal of $A$ and
that the strong Connes spectrum $\tilde{R}(\alpha)$ of $\alpha$ is not R. Then $(A, \alpha)$ has a covariant
irreducible representation.

Proof. Let $\pi$ be an irreducible representation of $A\times aR$ such that $ P=ker\pi$

is not a-invariant. Then the intersection of $\delta_{p}(P),$ $p\in R$, is equal to $I\times aR$ for
some ideal $J$ of $A$ . Denoting $\overline{\pi}$ the normal extension of $\pi$ to a representation of
the multiplier algebra of $A$ $X_{\alpha}R,$ $J$ is given by ker $\overline{\pi}|A$ . For any ideal $I$ of $A$ ,
the support projection of $\overline{\pi}(I)$ is zero or the identity, since it should be in the
center of $\pi(AX_{\alpha}R)^{\prime\prime}$ . Thus $J$ is a prime ideal. Dividing $A$ by $J$ we may assume
that $A$ is prime.

Deflne an action $\gamma$ of $R$ on $\overline{\pi}(A)^{\prime}$ by $\gamma_{t}=Ad\overline{\pi}(\lambda(t))$ . If $\overline{\pi}|A$ is not irreducible,
the spectrum $Sp(\gamma)$ of $\gamma$ is a non-trivial closed subgroup of $R$ since $\gamma$ is ergodic.
Since $P$ is invariant under $\hat{\alpha}_{p}$ for $p\in Sp(\gamma)$ and $P$ is not d-invariant, $Sp(\gamma)$ should
be of the form $p_{0}Z$ with $p_{0}>0$, which implies that

$P_{p_{0}}=\cap\{\hat{\alpha}_{q}(P):0\leqq q\leqq p_{0}\}$

is zero. Since $P_{\epsilon}$ is non-zero for sufficiently small $\epsilon>0$ , and since

$\bigcap_{n=0}^{k}\hat{\alpha}_{n\epsilon}(P_{\epsilon})=(0)$
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for $k$ with $k\epsilon\geqq p_{0}$, it follows that the crossed product is not prime, $i.e.,$ $R(\alpha)\neq R$.
If $R(\alpha)=(O)$ , then (since $A$ is prime) for any $n=1,2,$ $\cdots$ , there exists a non-

$z$ero $\alpha$-invariant hereditary $c*$-subalgebra $D$ of $A$ such that $Sp(\alpha|D)\cap[-n, n]$

$\subset[-1,1]$ ([10]). Thus $P$ is not invariant under any $\hat{\alpha}_{p}$ with $p\neq 0$, which is a
contradiction. Hence if either $R(\alpha)=R$ or $R(\alpha)=(0)$ , then $\overline{\pi}|A$ is irreducible (and
covariant), which completes the proof in these cases.

The remaining case, $i.e.$ , the case $R(\alpha)=p_{0}Z$ with $p_{0}>0$, can be reduced to
that treated in 2.1. Because, in this case there exists a non-zero $\alpha$-invariant
hereditary $c*$-subalgebra $B$ of $A$ such that

$Sp(\alpha|B)\subset p_{0}Z+(-p_{0}/4, p_{0}/4)$ .
Then perturbing $\alpha|B$ by the bounded derivation $-{\rm Log}(\alpha_{s}|B)$ with $s=2\pi/p_{0}$

gives a periodic one-parameter automorphism group $\beta$ of $B$ with period $s$ . Then
2.1 gives a $\beta$-invariant pure state $\phi$ of $B$ , and $\pi_{\phi}$ is a covariant irreducible rep-
resentation of $(B, \alpha|B)$ . It easily follows that the unique extension of $\pi_{\phi}$ to an
irreducible representation of $A$ is covariant.

Incidentally we remark that for $(A, R, \alpha)$ with $A$ simple, if $\tilde{R}(\alpha)\neq R$ and
$\tilde{R}(\alpha)$ contains a non-zero subgroup of $R$, then $\tilde{R}(\alpha)=R(\alpha)$ . (First one shows that
$R(\alpha)\neq R$ as in the second paragraph of the above proof. If $R(\alpha)=pZ$ we may
assume that $\alpha$ is periodic with period $s=2\pi/p$ . Then regarding $\alpha$ as an action
of $R/sZ$, one obtains that $\tilde{R}(\alpha)=R(\alpha)$ by a similar reasoning to that for $R(\alpha)\neq R.)$

4.2. Remark. There are examples of dynamical systems $(A, R, \alpha)$ which
have covariant irreducible representations even if $A$ is separable and simple and
$\tilde{R}(\alpha)=R$ . $A$ may be chosen to be a Cuntz algebra. See Sections 4 and 5 in [5].

4.3. Remark. Let $A_{\theta}$ be the irrational rotation algebra with $\theta\in[0,1]\backslash Q$,
$i.e.$ , $A_{\theta}$ is generated by two unitaries $u$ and $v$ satisfying $ uvu^{*}v^{*}=\exp 2\pi i\theta$ .
Let $\alpha$ be the one-parameter automorphism group of $A$ defined by $\alpha_{t}(u)=e^{\ell 2\pi t}u$ ,
$\alpha_{t}(v)=e^{i2\pi\theta t}v$ . Then $\alpha$ is ergodic in a strong sense, $i.e.$ , there are no non-trivial
$\alpha$-invariant hereditary $c*$-subalgebras of $A$ . Hence $\tilde{R}(\alpha)=Sp(\alpha)=R$. Since $\alpha_{1}$

is inner, it easily follows that $(A_{\theta}, \alpha)$ does not have a covariant irreducible rep-
resentation, nor does $(A_{\theta}, \alpha_{1/n})$ with $n\geqq 2$ .

5. Countable discrete abelian group actions.

Let $A$ be a separable nuclear $c*$-algebra with unique tracial state $\tau$ . Let $G$

be a countable discrete abelian group and $\alpha$ a homomorphism of $G$ into the
automorphism group of $A$ . Since $\tau$ is $\alpha$-invariant, one can define a unitary
representation $W$ of $G$ on the GNS representation space $H_{\tau}$ associated with $\tau$ by

$W_{g}\pi_{r}(x)\Omega_{\tau}=\pi_{\tau^{o}}\alpha_{g}(x)\Omega_{\tau}$ , $x\in A$ .
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Thus one can define an action $\overline{a}$ of $G$ on $\pi_{\tau}(A)^{\prime\prime}$ by $\overline{a}_{g}=AdW_{g},$ $g\in G$ . Note
that $\pi_{\tau}(A)^{\prime\prime}$ is a factor since $\tau$ is supposed to be a unique tracial state.

5.1. Proposition. In the above situation further $suPPose$ $a$ is free, $i.e.$ , for
each non-zero $g\in G,$ $a_{g}$ is an outer automorphism of $\pi_{\tau}(A)^{\prime}$ . Then $(A, G, \alpha)$ has
covariant irreducible representations.

Proof. Let $B$ be the crossed product of $A$ by $\alpha$ and let $\beta$ be the action of
$\Gamma=\hat{G}$ on $B$ dual to $\alpha$ . Let $\phi$ be the $\beta$-invariant extension of $\tau$ to a (tracial)

state of $B$ . Then $N\equiv\pi_{\phi}(A)^{\prime\prime}$ is isomorphic to $\pi_{\tau}(A)^{\prime\prime}$ and is the hyperfinite type
$II_{1}$ factor ([1], [3]) (since it is not finite-dimensional due to the assumption on $\overline{\alpha}$).

In passing we remark that $M\equiv\pi_{\phi}(B)^{\prime\prime}$ is the $W^{*}$-crossed product of $\pi_{r}(A)^{\prime\prime}$ by di

and is a factor ([10], 8.9.4, 8.11.5).

Define a unitary representation $V$ of $\Gamma$ on $H_{\phi}$ by

$V_{t}Q\Omega_{\phi}=\overline{\beta}_{t}(Q)\Omega_{\phi}$ , $Q\in M$.
Let $u$ be the canonical unitary group of multipliers of $B$ which implements $\alpha$ on
$A$ and let $U_{g}=\pi_{\phi}(u)$ for $g\in G$ . Denoting by $\overline{a}$ also the inner action of $G$ on
$M$ deflned by $AdU_{g},$ $g\in G$ , define a unitary representation $W$ of $G$ on $H_{\phi}$ by

$W_{g}Q\Omega_{\phi}=\overline{\alpha}_{g}(Q)\Omega_{\phi}$ , $Q\in M$.

Then $W_{g}$ and $U_{h}$ commute with each other for any $g,$ $h\in G$ , and $\{W_{g}U_{s^{*}} : g\in G\}$

is a unitary group in the commutant $M^{\prime}$ of $M$, since $W$ and $U$ implement the

same action bl of $G$ on $M$.
Any two free actions of $G$ on the hyperfinite type $II_{1}$ factor with separable

predual are outer conjugate with each other [8]. We note

5.2. Lemma. There exists a free action $\gamma$ of $G$ on $N$ such that the fixed
point algebra $N^{\gamma}$ of $N$ under $\gamma$ contains a maximal abelian subalgebra of $N$.

We shall give the proof of this later. Now we may assume that there exists
a unitary cocycle $X$ for $\overline{\alpha},$ $i.e.,$ $X_{g}\in N,$ $g\in G$ with

$X_{g+h}=X_{g}\overline{\alpha}_{g}(X_{h})$ ,

such that $N^{\gamma}$ for the action $\gamma$ of $G$ defined by $AdX_{g}\circ\overline{a}_{g},$ $g\in G$ , contains a
maximal abelian subalgebra of $N$, say $C$.

Let $J$ be the canonical involution defined for $(M, \Omega_{\phi}),$ $i.e.,$ $J$ is the conjugate-
linear operator satisfying $JQ\Omega_{\phi}=Q^{*}\Omega_{\phi},$ $Q\in M$. Then $JMJ=M^{\prime}$ and $JW_{g}=W_{g}J$,

$g\in G$ . Set $Y_{g}=JX_{g}JW_{g}U_{g}^{*}$ for $g\in G$ . Then $Y_{g}\in M^{\prime}$, and

$Y_{g}Y_{h}=JX_{g}W_{g}X_{h}W_{h}JU_{s^{*}}U_{h^{*}}=JX_{g}\alpha_{g}(X_{h})W_{g+h}JU_{g+h^{*}}$

$=Y_{g+h}$
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and for $Q\in N$,
$Y_{g}JQJY_{s^{*}}=JX_{g}W_{g}QW_{g}^{*}X_{g}^{*}J$

$=Ir_{g}(Q)J$ .
Thus for $Q\in N$, JQJ commute with $Y_{g},$ $g\in G$ if and only if $Q\in N^{\gamma}$ .

Let $C_{1}$ be the von Neumann algebra generated by JCJ and $Y_{g},$ $g\in G$ . Then

since $C\subset N^{\gamma}$, and $Y$ is a representation of $G,$ $C_{1}$ is abelian. We claim that
$M^{\prime}\cap\{V_{t}\}^{\prime}=JNJ$ and that $C_{1}$ is a maximal abelian subalgebra of $M^{\prime}$ . The first

part is obvious since $M^{\prime}$ is generated by $JNJ$ and $JU_{g}J,$ $g\in G$ . For the second

part note that $C_{1}$ is invariant under $AdV_{t},$ $ t\in\Gamma$ since $V_{t}Y_{g}V_{t}^{*}=\langle\overline{g,t}\rangle Y_{g}$ , and
$JCJ\subset\{V_{t}\}^{\prime}$ . For any $Q\in M^{\prime}\cap C_{1}^{\prime}$ invariant under $AdV_{t},$ $t\in\Gamma,$ $JQJ$ belongs to
$N$, and so to $C$, since $C$ is maximal in $N$. We next claim that $M^{\prime}\cap(JCJ)^{\prime}=C_{1}$ .
It is obvious that $M^{\prime}\cap(JCJ)^{\prime}\supset C_{1}$ . Since $M^{\prime}\cap(JCJ)^{\prime}$ is invariant under the
action $AdV$ , we may consider only an eigen-operator $Q$ in $M^{\prime}\cap(JCJ)^{\prime}$ with
eigenvalue $g\in G$ . Then $QY_{g}$ belongs to

$M^{\prime}\cap(JCJ)^{\prime}\cap\{V_{t}\}^{\prime}=JNJ\cap(JCJ)^{\prime}=JCJ$ ,

which implies that $Q\in C_{1}$ .
We now use Decomposition theory of states (cf. [11]). Let $K_{1}$ be the

(compact) space of characters of $C_{1}$ with the probability measure coming from

the state defined by $\Omega_{\phi}$ . Then there exists a subset $D_{1}$ of measure one of $K_{1}$

whose elements correspond to pure states of $B$ ([11], 3.1.16, 3.4.2). Here the

state $f_{\chi}$ corresponding to $\chi\in K_{1}$ is given by

$f_{\chi}(x)=x(e\pi_{\phi}(x)e)$ , $x\in B$ ,

where $e$ is the projection onto $[C_{1}\Omega_{\phi}]$ and the isomorphism of $eC_{1}$ with $C_{1}$ is

used. Further there exists a subset $D_{2}$ of measure one of $K_{1}$ such that if $\chi\in D_{2}$ ,

then $f_{\chi}$ is not zero on some $e\pi_{\phi}(Au_{g_{1}})e\pi_{\phi}(Au_{g_{2}})e\cdots e\pi_{\phi}(Au_{g_{n}})e$ with $ g_{1}+g_{2}+\cdots$

$+g_{n}=g$ for each $g\in G$ , because the weak closure of the algebra generated by

$e\pi_{\phi}(B)e$ is $eC_{1}$ . Note that for $\chi\in D_{2}$ , the set of $g\in G$ with $f_{\chi}|Au_{g}\neq 0$ generates
$G$ .

Similarly let $K$ be the space of characters of JCJ with the canonical proba-

bility measure. Then there exists a subset $D_{3}$ of measure one of $K$ such that

each element of $D_{3}$ corresponds to a state of $B$ whose restriction to $A$ is pure,

since $JCJ$ is maximal abelian in $\pi_{\phi}(A)^{\prime}$ when restricted to $[\pi_{\phi}(A)\Omega_{\phi}]$ . Further

there exists a subset $D_{4}$ of measure one of $K$ such that each element of $D_{4}$

corresponds to a state $f$ of $B$ with the property that $\pi_{f}(B)^{\prime}$ is commutative,

since $\pi_{\phi}(B)^{\prime}\cap(JCJ)^{\prime}$ is commutative (cf. [11], 3.4, 3.2.12). Let $F$ be the (continu-

ous) map of $K_{1}$ onto $K$ obtained by restriction. Then, since $F$ maps the measure
on $K_{1}$ to the oneon $K,$ $F^{-1}(D_{j}),$ $j=3,4$ have measure one.

Let $\chi\in D_{1}\cap D_{2}\cap F^{-1}(D_{3})\cap F^{-1}(D_{4})$ and let $f=f_{F(\chi)}$ . Then, since JCJ is the
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fixed point algebra of $C_{1}$ under $AdV$ ,

$f=\int_{\Gamma}f_{\chi}\circ\beta_{t}dt$

where $dt$ is the normalized Haar measure on $\Gamma$ Since $f|A$ is pure, $f$ is an
extreme $\beta$ -invariant state of $B$ .

Let $V$ be the unitary representation of $\Gamma$ on the GNS representation space
$H_{f}$ defined by

$V_{t}\pi_{f}(x)\Omega_{f}=\pi_{f^{o}}\beta_{t}(x)\Omega_{f}$ , $x\in B$ .

Then we claim that every spectrum appears for the action $AdV$ of $\Gamma$ on $\pi_{f}(B)^{\prime}$ .
Let $g\in G$ be such that there exists $x\in A$ with $f_{\chi}(xu_{g})\neq 0$ . For $\Omega$ being a small
open neighbourhood of $ 1\in\Gamma$ with

$\int_{\Omega}\langle g, t\rangle dt\neq 0$ ,

we have a positive operator $T$ in $\pi_{f}(B)^{\prime}$ such that

$\langle\pi_{f}(xu_{g})\Omega_{f}, V_{s}TV_{s^{*}}\Omega_{f}\rangle=\langle\overline{g,s}\rangle\int_{\Omega}f_{\chi}\circ\beta_{t}(xu_{g})dt$ .

Hence the Arverson spectrum of $T$ with respect to $AdV$ contains $-g\in G$ .
Since $\pi_{f}(B)^{\prime}$ is commutative and so, is the center of $\pi_{f}(B)^{\prime\prime}$ , and $AdV$ acts
ergodically on $\pi_{f}(B)^{\prime}$ , we have a commutative family $\{W_{g} : g\in G\}$ of unitaries
in $\pi_{f}(B)^{\prime}$ such that

$V_{t}W_{g}V_{t^{*}}=\langle g, t\rangle W_{g}$ , $ t\in\Gamma$ .
By arranging phase factors for $\{W_{g}\}$ we can assume that $\{W_{g}\}$ forms a unitary
representation of $G$ .

The rest of the proof procedes as that of 2.1. We have now the irreducible
representation $\rho=\pi_{f}\times V$ of the crossed product $ B\times\beta\Gamma$ on $H_{f}$ where $AdW^{*}$

induces the dual action of $G$ on $ B\times\beta\Gamma$ Then regarding this representation as
that of $A\otimes K(1^{2}(G))$ by the duality, Ad W* induces the action $\alpha\otimes Ad\tilde{\lambda}$. Hence
$\{\rho(1\otimes\tilde{\lambda}(g)^{*})W_{s^{*}}\}$ is a unitary representation of $G$ and induces the action $\alpha\otimes 1$ .
Therefore by cutting down $H_{f}$ by $\rho(1\otimes p)$ with $p$ a one-dimensional projection
of $K(1^{2}(G))$ , we obtain a covariant irreducible representation of $(A, G, \alpha)$ .

Proof of 5.2. We shall embed $G$ into the direct product $T^{\infty}$ of countably
infinitely many copies of the circle group $T$.

We write $G$ as $\{g_{1}, g_{2}, \}$ since $G$ is countable. Let $G_{1}$ be the subgroup
of $G$ generated by $g_{1}$ . We define an injective homomorphism $\varphi_{1}$ of $G_{1}$ into $T$

by $\varphi_{1}(g_{1})=t_{1}$ where $t_{1}$ is irrational if $G_{1}$ is infinite and $t_{1}=1/n$ if $G_{1}$ is of order
$n$ . Now suppose that we have deflned an injection $\varphi_{k}$ of the group $G_{k}$ gener-
ated by $\{g_{1}, \cdots , g_{k}\}$ into $T^{k}$ for $k\leqq n$ such that $\varphi_{k}|G_{k-1}$ is $\varphi_{k-1}$ composed with
the natural embedding $T^{k-1}\rightarrow T^{k}$ . Let $H=\{k\in Z:kg_{n+1}\in G_{n}\}$ , which is a sub-
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group of $Z$ . If $H=(O)$ , then define $\varphi_{n+1}$ by $\varphi_{n+1}(g_{n+1})=\{0, t_{n+1}\}\in T^{n}\times T$ (and

$\varphi_{n+1}(h)=\{\varphi_{n}(h), 0\}\in T^{n}\times T)$ where $t_{n+1}$ is irrational. If $H=kZ$ with $k>0$,

define $\varphi_{n+1}$ by $\varphi_{n+1}(g_{n+1})=\{t, t_{n+1}\}\in T_{n}\times T$ where $kt=\varphi_{n}(kg_{n+1})$ and $t_{n+1}=1/k$ .
If $H=Z$, set $\varphi_{n+1}=\varphi_{n}$ (composed with the embedding of $T^{n}$ into $T^{n+1}$). It is
easy to show that $\varphi_{n+r}$ satisfles the required properties. Then, having $\{\varphi_{n}\}$ ,

deflne a map $\varphi$ of $G$ into $T^{\infty}$ by $\varphi(h)=\{\varphi_{n}(h), 0\}\in T^{n}\times T^{\infty}\cong T^{\infty}$, for $h\in G_{n}$ ,

which gives the desired embedding.
Deflne an action of $T$ on the UHF algebra of $(2^{\infty})$ type by the inflnite tensor

product of
$Ad\left(\begin{array}{ll}1 & 0\\0 & exp2\pi it\end{array}\right)$ , $t\in T$

and define an action of $T^{\infty}$ on $ A\cong A\otimes A\otimes\cdots$ by the tensor product of infinitely many

copies of the action of $T$ just obtained. Since there exists a shift automorphism

of $A$ which commutes the action of $T$, we also have a shift automorphism which
commutes the action of $T^{\infty}$. By using this shift, we can easily conclude that
the action of $G$ on $\pi_{\tau}(A)^{\prime}$ is free, where $\tau$ is the unique tracial state of $A$ . It
is clear that the fixed point algebra of $\pi_{\tau}(A)^{\prime\prime}$ under $G$ contains a maximal
abelian subalgebra of $\pi_{\tau}(A)^{\prime\prime}$ .

5.3. Remark. Since each $\chi$ of a dense subset of the non-atomic measure
space $K$ produces a state of $B$ whose restriction to $A$ is pure in the way that
the states so obtained are mutually orthogonal, and since $A$ is separable, one has
uncountably many equivalence classes of covariant irreducible representations of
$(A, G, \alpha)$ .

5.4. Proposition. Let $A$ be a separable $c*$-algebra and $\alpha$ an automorphism

of A. Let $f$ be an $\alpha$-invariant state of $A$ and let cr be the automorPhism of
$\pi_{f}(A)^{\prime}$ induced by $\alpha$ . If $\overline{\alpha}$ is inner, then $(A, \alpha)$ has a convariant irreducible
representation.

Proof. Define a unitary $U$ on $H_{f}$ by $U\pi_{f}(x)\Omega_{f}=\pi_{f}\circ a(x)\Omega_{f},$ $x\in A$ . By the
assumption there is a unitary $V$ in $\pi_{f}(A)^{\prime\prime}$ such that $V^{*}U\equiv W\in\pi_{f}(A)^{\prime}$ . Let $C$ be

a maximal abelian subalgebra of $\pi_{f}(A)^{\prime}$ containing $W$ . Then, since $C\subset\pi_{f}(A)^{\prime}\cap U^{\prime}$ ,

one can use Decomposition theory of states to conclude the existence of an
$\alpha$-invariant pure state of $A$ .

5.5. Corollary. Let $A$ be a UHF algebra and $\alpha$ an automorphism of $A$ .
Then the action of $\alpha$ on the spectrum $\hat{A}$ of $A$ has uncountably many finite orbits.

Incidentally we remark that there are at least countably infinitely many outer

conjugacy classes of automorphisms of a UHF algebra $A$ which are not outer

periodic. To show this we just point out that whether or not an automorphism

of $A$ induces a weakly inner automorphism of $\pi_{\tau}(A)^{\prime\prime}$ is an outer invariant, where
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$\tau$ is the unique tracial state (cf. [4]).

5.6. Example. Let $\gamma$ be the action of $T^{2}$ on the irrational rotation algebra
$A_{\theta}$ (cf. 4.3) defined by

$\gamma_{(\ell.s)}(u)=e^{2\pi it}u$ , $\gamma_{(t.s)}(v)=e^{2\pi is}v$ .
Then of course there are no $T^{2}$-covariant pure states of $A$ , since $\gamma$ is ergodic.
But for a countable subgroup $G$ of $T^{2}$ such that $\gamma|G$ is free, $i.e.,$ $\gamma_{g}$ is outer for
any non-trivial $g\in G$ , there are G-covariant pure states of $A$ . To show this,
since $A$ is nuclear and has a unique tracial state, say, $\tau$, it suffices to prove that
if $\gamma_{g}$ is outer with $g\in T^{2}$, then $\gamma_{g}$ induces an outer automorphism of $\pi_{\tau}(A_{\theta})^{\prime\prime}$ .
But this follows by easy computations.
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