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1. Introduction.

Let A be a separable simple C*-algebra and « a continuous action of the
circle group T, the group R of real numbers, or a countable discrete abelian
group on A by automorphisms. If « is not inner, it has been shown in [6] that
the action of a on the spectrum A of A is not trivial. In this note, conversely,
we want to study the problem of whether it has fixed points on A.

In Section 2 we solve this problem affirmatively when the group is 7, i.e.,
we show that the system has an a-invariant pure state. The same method can
be applied to cyclic groups of prime order but not those of non-prime order.
More precisely, in Section 3, we show that for a periodic automorphism a of the
C*-algebra A, (A, a) has a covariant irreducible representation if and only if
r(@)=1, where 7(a) is an outer invariant of a, being defined by Connes as
follows: When pola) is the outer period of a and the po(a)-th power of « is
Ad u with u a unitary multiplier of A, y(«) is the complex number defined by
a(uw)=r(a)u.

In Section 4 we study the case that the group is R, and show the existence
of a fixed point of A under a when the crossed product of A by a is not simple.
And we give an example where a fixes no points of A and another example
where « fixes points of A, in case the crossed product is simple. The obstruc-
tion, in our example, for a having fixed points on A is of the same kind as y(a)
not being 1 in Section 3.

In Section 5 we restrict ourselves to the separable nuclear C*-algebras which
admit unique tracial states. Using Ocneanu’s result we show that, for an
action a of a countable discrete abelian group on the C*-algebra with trace z,
if « induces a free action on x.(A4)”, then (A, @) has covariant irreducible rep-
resentations. In particular we show that for any automorphism « of a UHF
algebra there exists a positive integer n such that (4, a™) has covariant irreducible
representations.
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2. Periodic one-parameter automorphism groups.

2.1. Theorem. Let A be a separable C*-algebra and a a continuous action
of T on A. Suppose that a fixes each (closed two-sided) ideal of A. Then there
exists an a-invariant pure state of A.

Let B be the crossed product AX,T of A by a and B the action & of
Z=T on B dual to .

2.2. Lemma. FEach B, with n#0 is freely acting.

Proof. First of all note [5, Lemma 3.2] that the strong Connes spectrum
T(B) of B is T, because each ideal of A is fixed under @. This implies, by the
definition of 7, that for each non-zero B-invariant hereditary C*-subalgebra D of
B and for each non-empty open subset 2 of 7, the closed linear span of x*yz
with x, y, z€D, Spa(x)CR2, Sps(z)C R, is the whole D.

Suppose that B, with n>0 is not freely acting (cf. [9)). Then by
definition there exists a non-zero S,-invariant ideal 7 of B such that the Borchers
spectrum of 8, restricted to I is trivial. It follows from that for any ¢>0
there exists a non-zero fS,-invariant hereditary C*-subalgebra D of I such that

Sp(Ba|D)CR2.={expif: 0| <e}. Choose e such that there exists a nonempty
open subset £ of T° with

where 2 is the closure of 2, and let D, be the B-invariant hereditary C*-sub-
algebra generated by D, i.e., D, is the closed linear span of 84(D)BB,(D) with
0<%k, I=n—1. Then denoting by R(Q) the set of x=D, with Sps,(x)C8, and
by (e;) an approximate identity of D, for any A we can find, ko, By, -, By in
0,1, -+, n—1} with £,=0, 2;=4, and x,=R(2) such that

Broler)x1Br,er,) =+ xnBr,(€2,)#0.

Hence there are at least two 7 and ; with 2,=%,. Since we may assume that
Sps,(ez) shrinks to {1}, we can conclude that DR(2,)*D=+(0) with k=|;—j| for
any open set 2, with 2,02. Thus Sp(8.|D)"2*+#¢, which is a contradiction.

23. Lemma. Let {0,: n=1, 2, -~} be a countable set of freely acting auto-
morphisms of B. Then there exists a pure state ¢ of B such that lp—deo,|=2
for n=1,2, ---,

Proof. See the proof of 2.1 in [6] as well as [7, 2.1] and [9, 6.6].
Note that we have not used the separability assumption so far. But we
need it in the following.
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Proof of 2.1. Let {u,: k=1, 2, ---} be a countable dense subset of the
unitary group of the C*-algebra B obtained by adjoining an identity to B. By
applying the above lemma to {Ad u,°8,: k, n=1, 2, --:} we obtain a pure state
¢ of B such that ¢ is disjoint from ¢-B, for each non-zero n.

Let f be a state of BX3Z such that the restriction of f to B is ¢. Let v
be the canonical unitary multiplier of BX;Z which implements 8; on B, and
let ¢ be a positive element of B with |e|=1 such that for a state ¢ of B, ¢(e)=1
if and only if ¢=¢. Then for any unitary = of B and n+0,

| fuv™) | = fuv™e®*)|=|f(uBale* ™) | = | d(uBale**)u*) |12

which converges to zero as k tends to infinity. Hence f(xv™®)=0, x=B, n+0,
which implies that f is B-invariant. Thus f is a pure state since the E-invariant
extension of ¢ is unique.

Now we use the duality for C*-crossed products due to Takai (cf. [10, 7.9.3]).
BXgZ with B is covariantly isomorphic to AQK with a®Ad i, where K is the
compact operators K(L%T)) on L¥T), and 4 is the right regular representation
of T on L¥T). Thus we may regard f as a®Ad i-invariant pure state of AQK.
Let p be a minimal projection of K such that f|A®p+0, and Ad i(p)=p, and
define a state ¢, of AQK by

()= ((1QP)x(1Qp))/ F1&QP) -

Then ¢, is an a®Ad i-invariant pure state of AQK. Since (1Qp)ARKIRQp)
is naturally isomorphic to A, we may regard the restriction of ¢, to
(1IRXPARK(1Rp) as a state of A, which is apparently an a-invariant pure state. -

2.4. Remark. One has a similar result to the above theorem for any finite
cyclic group G of prime order instead of T. Because in this case any non-zero
neG is a generator and so the counterpart to Lemma 2.2 holds trivially.

3. Finite cyclic group actions.

3.1. Theorem. Let A be a separable simple C*-algebra and a a periodic auto-
morphism of A. Then y(a)=1 (c¢f. Sect. 1) if and only if (A, a) has a covariant
irreducible representation.

Proof. Suppose that (A, ) has a covariant irreducible representation, say,
(z, U). Let p, be the outer period of a, i.e., the smallest positive integer n
such that a” is inner. Let v be a unitary multiplier of A with a?*=Ad v. Then,
since = is irreducible, U, ,=4n(v) with A C, |2|=1. Hence a(v)=v, i.e., r(a)=1.

Suppose that y(a)=1 and let p, and v be as above. Let ¢ be a minimal
projection of the finite-dimensional algebra generated by v. Then e¢Ae is an
a-invariant hereditary C*-subalgebra of A and a|eAe is periodic with period p,.
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It suffices to show that there exists an a-invariant pure state of eAe.

Now we assume that p, is the period p of . We only have to show that
@&, with e {l, ---, p—1} is outer on the (simple) crossed product AX .Z,, where
Z,=Z/pZ. Suppose that &, is inner, say, Adv with v a unitary multiplier.
Then v can be written as '

p-1
3 vaA(n)

where v, is a multiplier of A and {i(n)} is the canonical unitary multipliers of
AX,Z, Since v commutes with elements of A, one can conclude that a, is
inner if v, is non-zero. This implies that v is a scalar, i.e., 2=0.

3.2. Remark. For any p=2,3, --- and y=C with y?=1, there exists a
periodic automorphism a of the UHF algebra of the type p* such that the outer
period of a is p and y(a)=7. (See [2])

3.3. Remark. For the periodic automorphism « the least positive integer 2
with 7(a)*=1 is equal to the least number of the dimensions of n(A)" with =
covariant representations of (A4, a).

4. One-parameter automorphism groups.

4.1. Theorem. Let A be a separable C*-algebra and a a strongly continuous
one-parameter automorphism group of A. Suppose tht « fixes each ideal of A and
that the strong Connes spectrum R(a) of a is not R. Then (A, &) has a covariant
irreducible representation.

Proof. Let = be an irreducible representation of AX R such that P=ker =
is not a-invariant. Then the intersection of &,(P), pR, is equal to JX.R for
some ideal J of A. Denoting # the normal extension of = to a representation of
the multiplier algebra of AX.R, J is given by ker #|A. For any ideal I of A,
the support projection of #(I) is zero or the identity, since it should be in the
center of w(AX.R)”. Thus J is a prime ideal. Dividing A by J we may assume
that A is prime.

Define an action 7 of R on z(A) by 7.=Ad #(At)). If #|A is not irreducible,
the spectrum Sp(y) of 7 is a non-trivial closed subgroup of R since 7 is ergodic.
Since P is invariant under &, for p=Sp(y) and P is not a-invariant, Sp(y) should
be of the form p,Z with p,>0, which implies that

Ppy=n{aP): 0=¢=p}

is zero. Since P, is non-zero for sufficiently small ¢>0, and since

() éne(PI=(0)
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for & with ke=p,, it follows that the crossed product is not prime, i.e., R(a)#R.

If R(a)=(0), then (since A is prime) for any n=1, 2, ---, there exists a non-
zero a-invariant hereditary C*-subalgebra D of A such that Sp(a|D)N[—n, n]
C[—1, 1] 1I0]. Thus P is not invariant under any &, with p#0, which is a
contradiction. Hence if either R(a)=R or R(a)=(0), then #|A is irreducible (and
covariant), which completes the proof in these cases.

The remaining case, i.e., the case R(a)=p,Z with p,>0, can be reduced to
that treated in 2.1. Because, in this case there exists a non-zero a-invariant
hereditary C*-subalgebra B of A such that

Spla| B)YC poZ +(—po/4, po/4).

Then perturbing «|B by the bounded derivation —Log(a;|B) with s=2z/p,
gives a periodic one-parameter automorphism group 8 of B with period s. Then
2.1 gives a B-invariant pure state ¢ of B, and 74 is a covariant irreducible rep-
resentation of (B, a|B). It easily follows that the unique extension of r4 to an
irreducible representation of A is covariant.

Incidentally we remark that for (4, R, a) with A simple, if R(a)+R and
R(a) contains a non-zero subgroup of R, then R(a)=R(a). (First one shows that
R(a)#R as in the second paragraph of the above proof. If R(a)=pZ we may
assume that a is periodic with period s=27r/ p. Then regarding a« as an action
of R/sZ, one obtains that I?(a):R(a) by a similar reasoning to that for R(a)+#R.)

4.2. Remark. There are examples of dynamical systems (4, R, «) which
have covariant irreducible representations even if A is separable and simple and
R(a)=R. A may be chosen to be a Cuntz algebra. See Sections 4 and 5 in [5].

4.3. Remark. Let Ay be the irrational rotation algebra with 6<[0, 11\Q,
i.e., Ay is generated by two unitaries u and v satisfying uvu*v*=exp 2x:6.
Let a be the one-parameter automorphism group of A defined by a,(u)=e*ty,
a,(v)=e""%y. Then a is ergodic in a strong sense, i.e., there are no non-trivial
a-invariant hereditary C*-subalgebras of A. Hence R(a)=Sp(a)=R. Since a,
is inner, it easily follows that (44, a) does not have a covariant irreducible rep-
resentation, nor does (Ay, ay,,) with n=>2.

5. Countable discrete abelian group actions.

Let A be a separable nuclear C*-algebra with unique tracial state z. Let G
be a countable discrete abelian group and a a homomorphism of G into the
automorphism group of A. Since 7 is a-invariant, one can define a unitary
representation W of G on the GNS representation space H, associated with z by

Wen(x)2:=mea,(x)2:, x€A.
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Thus one can define an action @ of G on #.(A)” by a,=AdW, g€G. Note
that =.(A)” is a factor since z is supposed to be a unique tracial state.

5.1. Proposition. In the above situation further suppose & is free, i.e., for
each non-zero g€G, @&, is an outer automorphism of n(A)”. Then (A, G, a) has
covariant irreducible representations.

Proof. Let B be the crossed product of A by a and let 8 be the action of
I'=G on B dual to a. Let ¢ be the B-invariant extension of z to a (tracial)
state of B. Then N=z4(A)” is isomorphic to 7.(A)” and is the hyperfinite type
I, factor (1] (since it is not finite-dimensional due to the assumption on &).
In passing we remark that M=r4(B)” is the W*-crossed product of =.(A) by &
and is a factor 8.9.4, 8.11.5).

Define a unitary representation V of I on Hy by

VtQQ¢=1§t(Q)Q¢ , QeM.

Let u be the canonical unitary group of multipliers of B which implements « on
A and let U,=mr4(u,) for gG. Denoting by & also the inner action of G on
M defined by Ad U,, geG, define a unitary representation W of G on Hy by

WEQQ¢=&E(Q)‘Q¢ , QeM.

Then W, and U, commute with each other for any g, h€G, and {W,U*: g<G}
is a unitary group in the commutant M’ of M, since W and U implement the
same action & of G on M.

Any two free actions of G on the hyperfinite type II, factor with separable
predual are outer conjugate with each other [8] We note

5.2. Lemma. There exists a free action v of G on N such that the fixed
point algebra N7 of N under v contains a maximal abelian subalgebra of N.

We shall give the proof of this later. Now we may assume that there exists

a unitary cocycle X for @, i.e., X,€N, g€G with

Xg+h=XgC-l’g(Xh) )
such that N7 for the action 7 of G defined by Ad X,-&,, g=G, contains a
maximal abelian subalgebra of N, say C.

Let J be the canonical involution defined for (M, £2y), i.e., J is the conjugate-
linear operator satisfying JQR2;,=Q*%2,, Qe M. Then JMJ=M" and JW,=W,],
geG. Set Y,=JX,JW,U,* for g&G. Then Y,eM’, and

YgYh=fXgWanWh]Ug*Uh*:JXgag(Xh)Wg+h]Ua+h*

:Yg+h
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and for Q= N,
Yg]Q]Yg*:]XgWgQWg*Xg*j

=JrQ)J.

Thus for Q= N, JQJ commute with Y,, g&G if and only if QeN’.

Let C, be the von Neumann algebra generated by JCJ and Y,, g€G. Then
since CCN7, and Y is a representation of G, C; is abelian. We claim that
M’'A{V.}'=JNJ and that C; is a maximal abelian subalgebra of M’. The first
part is obvious since M’ is generated by JNJ and JU,J, g<G. For the second
part note that C, is invariant under Ad V., tel’ since V.Y, V*=(g, )Y, and
JCjc{V}’. For any Qe M’'NC, invariant under AdV,, tel, JQJ belongs to
N, and so to C, since C is maximal in N. We next claim that M’'N\(JCJ) =C,.
It is obvious that M’/A(JCJ)YDC, Since M’N(JCJ) is invariant under the
action AdV, we may consider only an eigen-operator @ in M’\( JCJ) with
eigenvalue geG. Then QY , belongs to

M’ NJCTY NV =ININUJCT) =JCT

which implies that Q@ €C,.

We now use Decomposition theory of states (cf. [11]. Let K, be the
(compact) space of characters of C, with the probability measure coming from
the state defined by £2,. Then there exists a subset D, of measure one of K;
whose elements correspond to pure states of B ([11], 3.1.16, 3.4.2). Here the
state fy corresponding to XK, is given by

fr(x)=A(emy(x)e), xEB,

where e is the projection onto [C,£2,4] and the isomorphism of eC, with C, is
used. Further there exists a subset D, of measure one of K, such that if XxeD,,
then fy is not zero on some emg(Aug )ems(Augye - emy(Aug,)e With g1+ge+ -
+g.=g for each geG, because the weak closure of the algebra generated by
ery(B)e is eC,. Note that for X D,, the set of g<G with fy]Au,+#0 generates
G.

Similarly let K be the space of characters of JCJ with the canonical proba-
bility measure. Then there exists a subset Ds of measure one of K such that
each element of D, corresponds to a state of B whose restriction to A is pure,
since JCJ is maximal abelian in w4(A)’ when restricted to [74(A)24]. Further
there exists a subset D, of measure one of K such that each element of D,
corresponds to a state f of B with the property that =,(B)’' is commutative,
since w4(B)’'N\(JCJ) is commutative (cf. 3.4, 3.2.12). Let F be the (continu-
ous) map of K, onto K obtained by restriction. Then, since F maps the measure
on K, to the oneon K, F-%D;), =3, 4 have measure one.

Let X D,AD.AF-(D)NF~D,) and let f=fra. Then, since JCJ is the
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fixed point algebra of C, under Ad V,
f={ Frepuat

where dt is the normalized Haar measure on I. Since f|A is pure, f is an
extreme f-invariant state of B.
Let V be the unitary representation of I on the GNS representation space
H, defined by
Virs(2)Q2;=nseB(x)2,, xEB.

Then we claim that every spectrum appears for the action Ad V of I" on = ,(B)".
Let g=G be such that there exists xe A with fy(xu,)*0. For £ being a small
open neighbourhood of 1=/ with

Sg<g, t5dt=+0,
we have a positive operator T in n,(B)’ such that
<r euQy, VTV 2= 5| freBuxugdt.

Hence the Arverson spectrum of T with respect to Ad V contains —geG.
Since = ;(B)’ is commutative and so, is the center of n,(B)”, and AdV acts
ergodically on z,(B)’, we have a commutative family {W,: g=G} of unitaries
in 7;(B)’ such that

VW,V *x=<(g, OW,, tel.

By arranging phase factors for {W,} we can assume that {/W,} forms a unitary
representation of G.

The rest of the proof procedes as that of 2.1. We have now the irreducible
representation p=x,XV of the crossed product BXgl' on H, where Ad W*
induces the dual action of G on BXzl. Then regarding this representation as
that of AQK(1%G)) by the duality, Ad W* induces the action a®Ad i. Hence
{o(1Q4(g)*W *} is a unitary representation of G and induces the action a®l.
Therefore by cutting down H,; by p(1&®p) with p a one-dimensional projection
of K(1*%(G)), we obtain a covariant irreducible representation of (4, G, a).

Proof of 5.2. We shall embed G into the direct product 7= of countably
infinitely many copies of the circle group T. ,

We write G as {g,, g», -~} since G is countable. Let G, be the subgroup
of G generated by g,. We define an injective homomorphism ¢, of G, into T
by ¢.(g:)=t, where ¢, is irrational if G, is infinite and t,=1/n if G, is of order
n. Now suppose that we have defined an injection ¢, of the group G, gener-
ated by {gi, -, g«} into T* for £=n such that ¢,|Gs-, is ps-, composed with
the natural embedding T**—>T* Let H={k€Z: kg,..=G,}, which is a sub-
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group of Z. If H=(0), then define ¢n+1 by @ni1(ga+)=1{0, tas} €T*XT (and
Qnsi(h)={pa(h), 0 €T"X T) where t,,, is irrational If H=kZ with k>0,
define @n4+1 by g0n+1(gn+1)={t, thi ET2XT where kl‘=90n(kgn+1) and t,,,=1/k.
If H=Z, set ¢n+;=¢, (composed with the embedding of T into T**). It is
easy to show that ¢,y satisfies the required properties. Then, having {p.},
define a map ¢ of G into T by ¢(h)={pn(h), 0} €T"X T>=T=, for heG,,
which gives the desired embedding.

Define an action of T on the UHF algebra of (2°) type by the infinite tensor
product of

1 0
Ad(O exp2m’t)’ teT

and define an action of 7= on A= AR AR --- by the tensor product of infinitely many
copies of the action of T just obtained. Since there exists a shift automorphism
of A which commutes the action of T, we also have a shift automorphism which
commutes the action of 7. By using this shift, we can easily conclude that
the action of G on 7. (A)” is free, where r is the unique tracial state of A. It
is clear that the fixed point algebra of =.(A)” under G contains a maximal
abelian subalgebra of x.(A4)”.

5.3. Remark. Since each X of a dense subset of the non-atomic measure
space K produces a state of B whose restriction to A is pure in the way that
the states so obtained are mutually orthogonal, and since A is separable, one has
uncountably many equivalence classes of covariant irreducible representations of
(4, G, a).

5.4. Propositidn. Let A be a separable C*-algebra and a an automorphism
of A. Let f be an a-invariant state of A and let & be the automorphism of
;(A)” induced by «. If @ is inner, then (A, a) has a convariant irreducible
representation.

Proof. Define a unitary U on H, by Ur(x)R2,=nsa(x)2s, x€A. By the
assumption there is a unitary V in n(A)” such that V*U=Wer 7(A). Let C be
a maximal abelian subalgebra of = ;(A)’ containing W. Then, since CCrn (AYNU’,
one can use Decomposition theory of states to conclude the existence of an
a-invariant pure state of A.

5.5. Corollary. Let A be a UHF algebra and a an automorphism of A.
Then the action of a on the spectrum A of A has uncountably many finite orbits.

Incidentally we remark that there are at least countably infinitely many outer
conjugacy classes of automorphisms of a UHF algebra A which are not outer
periodic. To show this we just point out that whether or not an automorphism
of A induces a weakly inner automorphism of z.(A)” is an outer invariant, where
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7 is the unique tracial state (cf. [4].

5.6. Example. Let 7 be the action of 7% on the irrational rotation algebra
Ay (cf. 4.3) defined by

TaoW)=e*"u, 7, )=e*"*p.

‘Then of course there are no T*-covariant pure states of A, since y is ergodic.
But for a countable subgroup G of T? such that 7|G is free, i.e., 7, is outer for
any non-trivial g€G, there are G-covariant pure states of A. To show this,
since A is nuclear and has a unique tracial state, say, 7, it suffices to prove that
if 7, is outer with g&T? then 7, induces an outer automorphism of z.(A,)”.
But this follows by easy computations.
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