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1. Introduction.

Throughout this paper we suppose that $X(t, \omega)$ is a measurable $ 2\pi$-periodic

stochastic process of $L^{\tau}(T\times\Omega)$ for some $r\geqq 1$ , where $T=[-\pi, \pi]$ and $(\Omega, \mathcal{F}, P)$

is the probability space:

(1.1) $\Vert|X(t, \omega)\Vert|_{r}\equiv(\frac{1}{2\pi}\int_{-\pi}^{\pi}E|X(t, \omega)|^{r}dt)^{1/r}<\infty$ ,

and

(1.2) $\Vert X(t+2\pi, \omega)-X(t, \omega)\Vert_{1}=0$ ,

for every $t\in R^{1}$ . We generally write $\Vert X(\omega)\Vert_{r}=(E|X(\omega)|^{r})^{1/r}$. We also write

$D_{h}X(t, \omega)=\frac{1}{h}[X(t+h, \omega)-X(t, \omega)]$ .

If there exists an $X_{H}^{\prime}(t, \omega)\in L^{r}(T\times\Omega)$ such that

(1.3) $\Vert|D_{h}X(t, \omega)-X_{K}^{\prime}(t, \omega)\Vert|_{r}\rightarrow 0$ ,

as $h\rightarrow 0$, then $X(t, \omega)$ is said to have the mean derivative $X_{r}^{\prime}(t, \omega)$ in $L^{r}(T\times\Omega)$ .
If $X(t, \omega)$ has the mean derivative $X_{r}^{\prime}(t, \omega)$ in $L^{r}(T\times\Omega)$ and furthermore

X\’i(t, $\omega$) has the mean derivative $X_{r}^{\prime\prime}(t, \omega)$ in $L^{r}(T\times\Omega)$, then we say that $X(t, n))$

has the second mean derivative $X_{r}^{\prime\prime}(t, \omega)$ in $L^{r}(T\times\Omega)$ . In a similar way we
successively define the k-th mean derivative $X_{H}^{(t)}(t, \omega)$ in $L^{r}(T\times\Omega)$ .

Let the Fourier series of $X(t, \omega)\in L^{1}(T\times\Omega)$ be

(1.4) $X(t, \omega)\sim\sum_{n=-\infty}^{\infty}C_{n}(\omega)e^{in\ell}$ ,

where

(1.5) $C_{n}(\omega)=\frac{1}{2\pi}\int_{-g}^{\pi}X(t, \omega)e^{-\ell nt}dt$ .
The author recently has studied the almost sure convergence of
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(1.6) $\sum_{n=-\infty}^{\infty}|n|^{k+\alpha}|C_{n}(\omega)|$ , $(0\leqq\alpha<1)$ ,

$k$ being a {nonnegative: integer, when $X(t, \omega)$ has the k-th mean derivative in
$L^{r}(T\times\Omega),$ $1<r\leqq 2$ . In this paper we aim at giving some ‘sufficient condition for
the almost sure convergence of (1.6) when $X(t, \omega)$ has the le th mean derivative
in $L^{1}(T\times\Omega)$ and not necessarily in $L^{r}(T\times\Omega),$ $r>1$ .

2. Variation of a stochastic process.

Let $X(t, \omega)$ be of $L^{1}(T\times\Omega)$ . Suppose moreover for each $t,$ $X(t, \omega)\in L^{r}(\Omega)$

for some $r\geqq 1$ . If

(2.1) $\sup_{D}\sum_{j=1}^{n}\Vert X(t_{j}, \omega)-X(t_{j-1}, \omega)\Vert_{r}=V_{r}(X)<\infty$ ,

where sup is taken over all the divisions $D$ of $T,$ $ D:-\pi\leqq t_{0}<t_{1}<\ldots<t_{n}\leqq\pi$ ,
then $X(t, \omega)$ is said to be of bounded variation in $L^{r}(\Omega)$ . This was deflned in
[3]. $V_{r}(X)$ is called the total variation of $X$ in $L^{r}(\Omega)$ .

Lemma 1. SuppOse that $X(t, \omega)\in L^{1}(T\times\Omega)$ and has the mean derivative
$X_{u}^{\prime}(t, \omega)$ in $L^{1}(T\times\Omega)$ . SuPpose also that for each $t,$ $X(t, \omega)$ and $X_{H}^{\prime}(f, \omega)$ belong
to $L^{\dagger}(\Omega)$ for some $r\geqq 1$ with $\Vert X_{M}^{\prime}(t, \omega)\Vert_{r}\in L^{1}(T)$ and $X(t, \omega)$ is continuous in $L^{r}(\Omega)$

as a function of $t$ :

(2.2) $\Vert X(t+h, \omega)-X(t, \omega)\Vert_{r}\rightarrow 0$

as $h\rightarrow 0$, then $X(t, \omega)$ is of bounded variation in $ L^{r}(\Omega)\hslash$ and

(2.3) $V_{r}(X)\leqq\int_{-k}^{\pi}\Vert X_{H}^{\prime}(t, \omega)\Vert_{r}dt$ .

Proof. From [3] (Lemma 2), for each fixed $h$ ,

$X(t+h, \omega)-X(t, \omega)=\int_{t}^{t+h}X_{H}^{\prime}(u, \omega)du$

for almost all $(t, \omega)$ in $ T\times\Omega$ . Hence for each $h$ ,

(2.4) $||X(t+h, \omega)-X(t, \omega)\Vert_{r}=\Vert\int_{t}^{\ell+h}X_{-}^{\prime}(u, \omega)du\Vert_{r}$

holds for almost all $t\in T$ . Namely there is a subset $H(h)$ of $T$ with $ mH(h)=2\pi$ ,
generally depending on $h$ , such that, for $u\in H(h),$ $(2.4)$ with $t=u$ holds good. $m$

is the Lebesgue measure.
Let $t_{1}<t_{2}$ be numbers in $T$ and fix them. Take $h=t_{2}-t_{1}$ and write

$H=H(h)$ . For any $e>0$, choose $\delta$ in such a way that

(2.5) $\int_{s}\Vert X_{H}^{\prime}(t, \omega)\Vert_{r}dt<\epsilon$ ,
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for $ mS<\delta$, and for $|v|<\delta$

(2.6) $\Vert X(t+v, \omega)-X(t, \omega)\Vert_{r}<\epsilon$ , $t\in T$ .
Choose $u_{1}\in H$ so that

(2.7) $|t_{1}-u_{1}|<\delta$ .
This implies

(2.8) $|t_{8}-(u_{1}+h)|<\delta$ .
Using (2.4) we then have

$\Vert X(t_{g}, \omega)-X(t_{1}, \omega)\Vert_{r}\leqq\Vert X(t_{1}, \omega)-X(u_{1}, \omega)\Vert_{r}$

$+\Vert X(u_{1}, \omega)-X(u_{1}+h, \omega)\Vert_{r}+\Vert X(u_{1}+h, \omega)-X(f_{8}, \omega)\Vert_{r}$

$\leqq 2\epsilon+\Vert X(u_{1}, \omega)-X(u_{1}+h, \omega)\Vert_{r}$

$=2\epsilon+\int_{u_{1}}^{u_{1}+h}\Vert X_{H}^{\prime}(t, \omega)\Vert_{r}dt$

which is, because of (2.5), (2.7) and (2.8)

$\leqq 2\epsilon+2\epsilon+\int_{t_{1}}^{t_{2}}\Vert X_{H}^{\prime}(t, \omega)\Vert_{r}dt$ .
This gives us

(2.9) $\Vert X(t_{2}, \omega)-X(t_{1}, \omega)\Vert_{r}\leqq\int_{t_{1}}^{\iota_{2}}\Vert X_{r}^{\prime}(t, \omega)\Vert_{r}dt$ .

Now for any division $-\pi\leqq t_{0}\leqq t_{1}\leqq\ldots\leqq t_{n}\leqq\pi$ , we have, from (2.9)

$\sum_{j=1}^{n}\Vert X(t_{j}, \omega)-X(t_{j-1}, \omega)\Vert_{r}\leqq\int_{-\pi}^{\pi}\Vert X_{H}^{\prime}(t, \omega)\Vert_{r}dt$

which shows (2.3).

We shall prove the following lemma just for completeness, although we do
not use it in this paper.

Lemma 2. Let $r\geqq 1$ . Suppose $X(t, \omega)$ is of $L^{r}(T\times\Omega)$ and is continuous in
$L^{r}(\Omega)$ as a function of $t$ . If $X(f, \omega)$ has the mean derivative in $L^{r}(T\times\Omega)$ , then
$X(t, \omega)$ is of bounded variation in $L^{r}(\Omega)$ and

(2.10) $V_{r}(X)=\int_{-\pi}^{\pi}\Vert Xth(t, \omega)\Vert_{r}dt$ .

Proof. In view of Lemma 1 it is sufficient to show the reverse inequality

of (2.3). Let $h=2\pi/n,$ $n$ being any positive integer.

$\int_{-\pi}^{\pi}\Vert$ Xfi $(t, \omega)\Vert_{r}dt\leqq\int_{-n}^{\pi}$ Il $D_{h}X(t, \omega)-X_{r}^{\prime}(t, \omega)\Vert_{r}df+\int_{-\pi}^{\pi}$ II $D_{h}X(t, \omega)\Vert_{r}dt$ .
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The first of the right hand side converges to zero as $ n\rightarrow\infty$ . The second is

$\int_{-*}^{\pi}\Vert\frac{1}{h}[X(t+h, \omega)-X(t, \omega)\Vert_{r}dt$

$=\frac{n}{2\pi}\sum_{j=1}^{n}\int_{-\pi+8\pi(j- 1)/n}^{-\pi+2\pi j/n}\Vert X(t+\frac{2\pi}{n},$ $\omega)-X(t, \omega)\Vert_{r}dt$

$=\frac{n}{2\pi}\sum_{j=1}^{n}\int_{-\pi}^{-fl+2\pi/n}\Vert X(t+\frac{2\pi j}{n},$ $\omega)-X(t+\frac{2\pi(j-1)}{n},$ $\omega)\Vert_{r}dl$

$\leqq\frac{n}{2\pi}\int_{-\pi}^{-\pi+2\pi/n}V_{r}(X)dt=V_{r}(X)$ .
We remark that the condition that $X(t, \omega)$ has the mean derivative in

$L^{r}(T\times\Omega)$ can be replaced by the slightly more general condition that

\langle 2.11) $\int_{-n}^{\pi}\Vert D_{h}X(t, \omega)-X_{r}^{\prime}(t, \omega)\Vert_{r}dt\rightarrow 0,$ $h\rightarrow 0$.

3. Almost sure absolute convergence of the Fourier series of a stochastic
process.

Let $X(t, \omega)$ be a $ 2\pi$-periodic stochastic process of $L^{1}(T\times\Omega)$ and have the
mean derivative $X_{K}^{\prime}(t, \omega)$ in $L^{1}(T\times\Omega)$ . Let the Fourier series of $X(t, \omega)$ be
given by (1.4). Furthermore we impose the following conditions:

(i) $X(t, \omega)\in L^{r}(\Omega)$ for each $f$ and as a function of $t,$ $X(t, \omega)$ is continuous
in $L^{r}(\Omega)$ on $T$, for some $r>1$ .

(ii) $X_{K}^{\prime}(t, \omega)\in L^{r}(\Omega)$ for each $t$ and as a function of $t,$ $||X_{H}^{\prime}(t, \omega)\Vert_{r}\in L^{1}(T)$ .
Because of (i), $X(t, \omega)$ actually belongs to $L^{r}(T\times\Omega)$ . However we are sup-

posing that $X_{r}^{\prime}(t, \omega)$ exists merely in $L^{1}(T\times\Omega)$ . As a matter of fact, we do not
assume that $\Vert X_{r}^{\prime}(t, \omega)\Vert_{r}\in L^{r}(T)$ . This is the point in what follows. If this were
assumed, $Threm1$ below we are going to show is just a special case of [3]
$(Threm2)$ .

For $X(t, \omega)\in L^{r}(T\times\Omega),$ $1<r\leqq 2$, we write

(3.1) $M_{r}^{*}(X, \delta)=\sup_{|h|}\delta\int_{-\pi}^{x}E|X(t+h, \omega)-X(t, \omega)|^{r}dt$ .
We here mention the following $threm$ which is a special case of [2] (The-

orem 3.1).

Theorem A. Let $X(t, \omega)\in L^{r}(T\times\Omega),$ $1<r\leqq 2$. If, for $0\leqq\alpha<1$ ,

(3.2) $\sum_{n\approx 1}^{\infty}n^{-(1-1/r)+a}M_{r}^{*}(X, 1/n)<\infty$ ,

then
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(3.3) $\sum_{n=-\infty}^{\infty}|n|^{a}|C_{n}(\omega)|<\infty$ ,

almost surely.

We shall prove the following theorem.

Theorem 1. Let $2\geqq r>1$ . SuPpose $X(t, \omega)\in L^{r}(T\times\Omega)$ and has the mean
derivative $X_{r}^{\prime}(t, \omega)$ in $L^{1}(T\times\Omega)$ . SuPpose (i) and (ii) above. If
(3.4) $\int_{-\pi}^{\pi}\Vert X_{H}^{\prime}(t, \omega)\Vert_{r}\log^{+}\Vert X_{K}^{\prime}(t, \omega)\Vert_{r}dt<\infty$ ,

then (3.3) with $\alpha=0$ holds almost surely.

This theorem is thought of as an analogue of the well known theorem of
Zygmund [1] (Theorem 2, p. 162), [2] (Theorem 3.9, p. 242) that the Fourier
series of $f(t)$ which is absolutely continuous and satisfies

(3.5) $\int_{-\#}^{\pi}|f^{\prime}(t)|\log^{+}|f^{\prime}(t)|dt<\infty$ ,

is absolutely convergent. The proof of Theorem 1 is carried out based on the
arguments used by Wik [4] who made a detailed study on the above Zygmund
theorem.

In proving Theorem 1, we note that because of Lemma 1, $X(t, \omega)$ is of
bounded variation in $L^{r}(\Omega)$ . We use the following lemma employed by Wik [4].

Lemma 3. Let $\phi(t)\in L^{1}(T)$ . Write $V_{n}=V_{n}(\phi)=\int_{|\phi|>n}|\phi(t)|dt$. Then for any
$a>1$ ,

(3.6) $\int_{-lt}^{\pi}|\phi(t)|\log^{+}|\phi(t)|dt<\infty$

is equivalent to

(3.7) $\sum_{q=1}^{\infty}V_{a^{q}}<\infty$ .

Proof of Theorem 1. From (2.4)

$M_{r}^{*}(X, 1/n)=\sup_{IhI\leq 1/n}(\frac{1}{2\pi}\int_{-n}^{\pi}E|\int_{t}^{\ell+\hslash}X_{r}^{\prime}(s, \omega)ds|^{r}dt)^{1\prime\prime}$

which is, by Minkowski inequality,

$\leqq\sup_{n|h|\leq 1\prime}[\frac{1}{2\pi}\int_{-\pi}^{n}(\int_{\ell}^{t+h}\Vert X_{r}^{\prime}(s, \omega)\Vert_{r}ds)^{\tau}]^{1/f}$

Writing

$Y(t)=\int_{-\pi}^{\ell}\Vert X_{r}^{\prime}(s, \omega)\Vert_{r}ds$ ,
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we have

(3.8) $M_{r}^{*}(X, 1/n)\leqq\sup_{Ih|\leq 1/n}\{\frac{1}{2\pi}\int_{-\pi}^{\pi}|Y(t+h)-Y(t)|^{r}dt\}^{1/r}$

$\leqq\{\frac{1}{2\pi}\int_{-n}^{\pi}[Y(t+1/n)-Y(t)]^{r}dt\}^{1/r}$

$+\{\frac{1}{2\pi}\int_{-\#}^{\pi}[Y(t)-Y(t-1/n)]^{r}dt\}^{1\prime r}$

$=I_{1}+I_{2}$ ,

say. Now let us write
$E_{n}=\{t\in T, \Vert X_{H}^{\prime}(t, \omega)\Vert_{r}\geqq n\}$

and let $N$ be any positive integer. We write

$Y(f+1/n)-Y(t)=\int_{E_{N}\cap(t.t+1/n)}\Vert X_{\kappa}^{\prime}(s, \omega)\Vert_{r}ds$

$+\int_{B_{N}^{c}\cap(\ell.t+1/n)}\Vert X_{H}^{\prime}(s, \omega)\Vert_{r}ds$

$=I_{1.1}+I_{1,2}$ ,
say. Then

(3.9) $I_{1.1}\leqq\int_{E_{N}}\Vert X_{H}^{\prime}(s, \omega)\Vert_{r}ds=W_{N}$

say, and defining $ Z_{n}(s)=\Vert X_{K}^{\prime}(s, \omega)\Vert$ , for $s\in E_{n}$ and $=0$, for $s\in E_{n}^{c}$ , we have

(3.10) $\frac{1}{2\pi}\int_{-\pi}^{\pi}I_{1.1}dt=\frac{1}{2\pi}\int_{-\pi}^{\pi}\int_{t}^{\ell+1/n}Z_{N}(s)dsdt$

$\leqq\frac{1}{2n\pi}\int_{-\pi}^{\pi+1/n}Z_{N}(s)ds=\frac{1}{2n\pi}\int_{E_{N}}\Vert X_{K}^{\prime}(s, \omega)\Vert_{r}ds$

$=\frac{1}{2n\pi}W_{N}$ .

Hence using (3.9) and (3.10), we have

(3.11) $(\frac{1}{2\pi}\int_{-\pi}^{\pi_{I_{1.1}^{r}dt}})^{1/r}=(\frac{1}{2\pi}\int_{-\kappa}^{\pi_{I_{1.1}^{r-1}\cdot I_{1.1}dt}})^{1/r}$

$\leqq W_{N}^{1-1/r}(\frac{1}{2\pi}\int_{-\pi}^{\pi}I_{1.1}dt)^{1/r}\leqq\frac{1}{(2n\pi)^{1/r}}W_{V}$ .

Now

$I_{1.2}\leqq\int_{E_{N}^{c}\cap(t.\ell+1\prime n)}\Vert X_{H}^{\prime}(s, \omega)\Vert_{r}ds\leqq\frac{N}{n}$ .
Hence as in (3.11) and (3.10),
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(3.12) $(\frac{1}{2\pi}\int_{-\pi}^{\pi_{I_{1.2}^{r}dt}})^{1/r}\leqq(\frac{1}{2\pi}\int_{-\pi}^{\pi_{I_{1,2}^{r-1}\cdot I_{1.f}dt}})^{1/r}$

$\leqq(\frac{N}{n})^{1- 1/r}\frac{C}{(2n\pi)^{1/r}}=\frac{CN^{1-1/r}}{(2\pi)^{1/r}n}$ , $C=\int_{-\pi}^{\pi}\Vert X_{H}^{\prime}(t, \omega)\Vert_{r}dt$ .
Therefore from (3.11) and (3.12)

$(\frac{1}{2\pi}\int_{-\pi}^{\pi_{I_{1}^{r}dt}})^{1/r}\leqq(\frac{1}{2\pi}\int_{-\pi}^{\pi_{If_{1}dt}},)^{1/r}+(\frac{1}{2\pi}\int_{-\pi}^{\pi_{I_{1.8}^{r}dt}})^{1/r}$

$\leqq(\frac{1}{2\pi})^{1/r}(\frac{W_{N}}{n^{1/r}}+\frac{CN^{1-1/r}}{n})$ .

The same thing is true for $(\frac{1}{2\pi}\int_{-\pi}^{\pi}I_{2}^{r}dt)^{1/r}$ and we have

(3.13) $M_{r}^{*}(X, 1/n)\leqq C_{r}(\frac{W_{N}}{n^{1/r}}+\frac{N^{1-1/r}}{n})$ ,

where $C_{r}$ is a constant depending only on $r$ .
Now take $n=2^{q},$ $q$ being a positive integer and $N=a^{q},$ $1<a<2$ . By mono-

toneness of $n^{1/r-1}$ and $M_{r}(1/n),$ $(3.3)$ with $\alpha=0$ in Theorem $B$ is equivalent to

the convergence of $\sum_{q=1}^{\infty}2^{q/r}M_{r}(X, 2^{-q})$ . From (3.13) the last series converges when

$\sum_{q=1}^{\infty}W_{a^{q}}+\sum_{q=1}^{\infty}(\frac{a}{2})^{q-q/r}$

converges. The second series obviously converges and the first series also con-
verges by Lemma 3. Hence in view of Theorem $B$ the proof of Theorem 1 is
complete.

4. More results.

Let $X(t, \omega)$ be a $ 2\pi$-periodic stochastic process of $L^{1}(T\times\Omega)$ . Let its Fourier
series be given by (1.4). Suppose $X(t, \omega)$ has the mean derivative $X_{K}^{\prime}(t, \omega)$ in
$L^{1}(T\times\Omega)$ . Then the Fourier series of $X_{H}^{\prime}(t, \omega)$ is given by

(4.1) $\sum_{n=-\infty}^{\infty}(-in)C_{n}(\omega)e^{int}$ .
Actually the Fourier coefficient $C_{n}^{\prime}(\omega)$ of $X_{M}^{\prime}(t, \omega)$ is $(-in)C_{n}(\omega)$ for all $n$ , almost
surely. Because

$\Vert C_{n}^{\prime}(\omega)-\frac{1}{2\pi}\int_{-\pi}^{\pi}D_{h}X(t, \omega)e^{-lnt}dt\Vert_{1}\leqq\Vert|X_{K}^{\prime}(t, \omega)-D_{h}X(t, \omega)\Vert|_{1}\rightarrow 0$ ,

as $h\rightarrow 0$ and

$\Vert\frac{1}{2\pi}\int_{-\pi}^{\pi}D_{h}X(t, \omega)e^{-int}dt+\frac{in}{2\pi}\int_{-\pi}^{\pi}X(t, \omega)e^{-int}dt\Vert_{1}$
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$=|\frac{1}{h}(e^{-\ell nh}-1+in)|\cdot\Vert C_{n}(\omega)\Vert\rightarrow 0$

as $h\rightarrow 0$, and from these we see that $\Vert C_{n}^{\prime}(\omega)-(-in)C_{n}(\omega)\Vert=0$. Hence $C_{n}^{\prime}(\omega)=$

$-inC_{n}(\omega)$ almost surely for each $n$ , from which this holds for all $n$ , almost
surely.

More generally if $X(t, \omega)$ has the k-th mean derivative $X_{H}^{(k)}(t, \omega)$ in $L^{1}(T\times\Omega)$,
then the Fourier series of $X_{H}^{(k)}(t, \omega)$ is given by

(4.2) $\sum_{n=-\infty}^{\infty}(-in)^{k}C_{n}(\omega)e^{n\ell}$ .

From Theorem 1 with $X_{M}^{\langle k)}(t, \omega)$ in place of $X(t, \omega)$ , we have the following
theorem.

Theorem 2. SuppOse a $ 2\pi$-Periodic stochastic prOcess $X(t, \omega)\in L^{1}(T\times\Omega)$ has
the $k+1- st$ mean derivative in $L^{1}(T\times\Omega)$ . Assume that there is an $\hat{X}_{K}^{(k)}(t, \omega)$ such
that $X_{H}^{(k)}(t, \omega)\in L^{r}(\Omega)$ for some $1<r\leqq 2$ , for each $t$ and is continuous in $L^{r}(\Omega)$ on
$T$, and $\hat{X}_{H}^{\langle k)}(t, \omega)=X_{M}^{(k)}(t, \omega)$ in $L^{1}(T\times\Omega)$ . Moreover suppose $X_{M}^{(k+1)}(t, \omega)\in L^{r}(\Omega)$

for each $t$ and $\Vert X_{K}^{(k+1)}(t, \omega)\Vert_{r}\in L^{1}(T)$ . If

(4.3) $\int_{-\pi}^{\pi}\Vert X_{M}^{(k+1)}(t, \omega)\Vert_{r}\log^{+}\Vert X_{H}^{(k+1)}(t, \omega)\Vert_{r}dt<\infty$ ,

then

(4.4) $\sum_{n=-\infty}^{\infty}|n|^{k}|C_{n}(\omega)|<\infty$ ,

almost surely.

We also have the following theorem.

Theorem 3. Let $1<r\leqq 2,1/r+1/r^{\prime}=1$ . We assume all the conditions in
Theorem 2 with

(4.5) $\int_{-\pi}^{\pi}\Vert X_{H}^{(k+1)}(t, \omega)\Vert_{r}^{1+\alpha}dt<\infty$

for some $0<\alpha<r-1$ in place of (4.3), then for every $\beta$ such that $0\leqq\beta<\alpha/(1+\alpha r^{\prime})$,

(4.6) $\sum_{n=-\infty}^{\infty}|n|^{k+\beta}|C_{n}(\omega)|<\infty$ ,

almost surely.

If $\alpha=r-1$ and hence $xk^{k+1)}(t, \omega)\in L^{r}(T\times\Omega)$ , and $X(t, \omega)$ has the $k+1-st$

derivative in $L^{r}(T\times\Omega)$, then for $\beta<1/r^{\prime},$ $(4.6)$ holds almost surely [3] (Corollary

1). Our theorem for $\alpha<r-1$ is not covered by this corollary.
We also note that the condition for $\beta$ implies $\beta<1/r^{\prime}$. For the case $\beta=1/\gamma^{\prime}$

the theorem is not necessarily true. See the remark given for [3] (Corollary 1).
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Proof of Theorem 3. From (3.13) with $X_{M}^{(k)}(t, \omega)$ in place of $X(t, \omega)$ , we
see that

(4.7) $n^{\beta}M_{r}(X_{K}^{(k)}, 1/n)\leqq C_{r}(\frac{W_{N}}{n^{1/r-\beta}}+\frac{N^{1-1/r}}{n^{1-\beta}})$ ,

where

$W_{N}=\int_{E_{N}}\Vert X_{H}^{(k+1)}(t, \omega)\Vert_{r}dt$ ,

and
$E_{N}=\{t\in T, \Vert X_{r}^{(k+1)}(t, \omega)\Vert_{r}\geqq N\}$ .

Choose $a$ so that $2^{1- r^{r}\beta}\geqq a>2^{\beta/\alpha}$ . This is possible. Take $n=2^{q},$ $N=a^{q}$ in (4.7),

$q=1,2,$ $\cdots$ The convergence of

(4.8) $\sum_{n=1}^{\infty}n^{\beta-1/r^{\prime}}M_{r}^{*}(X_{M}^{(k)}, 1/n)$

is equivalent to the convergence of

(4.9) $\sum_{q\Rightarrow 1}^{\infty}2^{q(\beta+1/r)}M_{r}^{*}(X_{M}^{(k)}, 2^{-q})$ .

From (4.7), this converges if

(4.10) $\sum_{q=1}^{\infty}V_{a^{q}}2^{\beta q}+\sum_{q=1}^{\infty}a^{q/r^{\prime}}/2^{(1/r^{\prime}-\beta)q}<\infty$ .

Since $ a^{1/r^{\prime}}<2^{1/r}‘-\beta$ the second series of (4.9) converges.
Now

$2^{\beta q}V_{a^{q}}=2^{\beta q}\int_{E_{N}}\Vert X_{K}^{(k+1)}(t, \omega)\Vert_{r}dt$

$\leqq 2^{\beta q}a^{-aq}\int$ $\Vert X_{M}^{(k+1)}(t, \omega)\Vert_{r}^{1+a}dt$

$\leqq C(2^{\beta}/a^{\alpha})^{q}$ ,

where $C$ is a constant independent of $q$ .
Since $2^{\beta}/a^{\alpha}<1$ , the first series of (4.10) is convergent. Thus (4.9) converges

and the proof is complete.

5. Sample properties of a periodic stochastic process.

In [2] and [3] it was shown that the almost sure absolute convergence of
the Fourier series of a stochastic process immediately yields some sample Prop-

erties of the process. By the same argument used there, we readily have the
following theorem.

Theorem 4. (i) Let $X(t, \omega)\in L^{1}(T\times\Omega)$ be stochastically continuous. If all
the conditions in Theorem 1 are satisfied, then there exists a modification $X_{0}(t, \omega)$
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of $X(t, \omega)$ which is almost surely continuous.
(ii) If all the conditions in Theorem 2 are satisfied, then there exists a

modification $X_{0}(t, \omega)$ of $X(t, \omega)$ which has almost surely the k-th contindous deri-
vative.

(iii) If all the conditions in Theorem 3 are satisfied, then there exists a
modification $X_{0}(t, \omega)$ of $X(t, \omega)$ which has almost surely the k-th derivative belonging
to Lipschitz class $\Lambda_{\beta}$ of order $\beta$ .
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