NOTES ON THE ALMOST SURE ABSOLUTE CONVERGENCE OF THE FOURIER SERIES OF A STOCHASTIC PROCESS

By

TATSUO KAWATA

(Received March 1, 1983)

1. Introduction.

Throughout this paper we suppose that $X(t, \omega)$ is a measurable 2π -periodic stochastic process of $L^r(T \times \Omega)$ for some $r \ge 1$, where $T = [-\pi, \pi]$ and (Ω, \mathcal{F}, P) is the probability space:

(1.1)
$$|||X(t, \omega)|||_{r} \equiv \left(\frac{1}{2\pi}\int_{-\pi}^{\pi} E |X(t, \omega)|^{r} dt\right)^{1/r} < \infty,$$

and

(1.2)
$$\|X(t+2\pi, \omega)-X(t, \omega)\|_{1}=0,$$

for every $t \in \mathbb{R}^1$. We generally write $||X(\omega)||_r = (E |X(\omega)|^r)^{1/r}$. We also write

$$D_h X(t, \omega) = \frac{1}{h} [X(t+h, \omega) - X(t, \omega)].$$

If there exists an $X'_{\mathcal{M}}(t, \omega) \in L^{\tau}(T \times \Omega)$ such that

(1.3)
$$||D_h X(t, \omega) - X'_{\mathcal{M}}(t, \omega)||_r \rightarrow 0,$$

as $h \to 0$, then $X(t, \omega)$ is said to have the mean derivative $X'_{\mathcal{M}}(t, \omega)$ in $L^{r}(T \times \Omega)$.

If $X(t, \omega)$ has the mean derivative $X'_{\mathfrak{M}}(t, \omega)$ in $L^{r}(T \times \Omega)$ and furthermore $X'_{\mathfrak{M}}(t, \omega)$ has the mean derivative $X''_{\mathfrak{M}}(t, \omega)$ in $L^{r}(T \times \Omega)$, then we say that $X(t, \omega)$ has the second mean derivative $X''_{\mathfrak{M}}(t, \omega)$ in $L^{r}(T \times \Omega)$. In a similar way we successively define the k-th mean derivative $X''_{\mathfrak{M}}(t, \omega)$ in $L^{r}(T \times \Omega)$.

Let the Fourier series of $X(t, \omega) \in L^1(T \times \Omega)$ be

(1.4)
$$X(t, \omega) \sim \sum_{n=-\infty}^{\infty} C_n(\omega) e^{int},$$

where

(1.5)
$$C_n(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(t, \omega) e^{-int} dt.$$

The author recently has studied the almost sure convergence of

(1.6)
$$\sum_{n=-\infty}^{\infty} |n|^{k+\alpha} |C_n(\omega)|, \quad (0 \leq \alpha < 1),$$

k being a nonnegative integer, when $X(t, \omega)$ has the k-th mean derivative in $L^r(T \times \Omega)$, $1 < r \leq 2$. In this paper we aim at giving some sufficient condition for the almost sure convergence of (1.6) when $X(t, \omega)$ has the k-th mean derivative in $L^1(T \times \Omega)$ and not necessarily in $L^r(T \times \Omega)$, r > 1.

2. Variation of a stochastic process.

Let $X(t, \omega)$ be of $L^1(T \times \Omega)$. Suppose moreover for each $t, X(t, \omega) \in L^r(\Omega)$ for some $r \ge 1$. If

(2.1)
$$\sup_{D} \sum_{j=1}^{n} \|X(t_{j}, \omega) - X(t_{j-1}, \omega)\|_{r} = V_{r}(X) < \infty,$$

where sup is taken over all the divisions D of T, $D: -\pi \leq t_0 < t_1 < \cdots < t_n \leq \pi$, then $X(t, \omega)$ is said to be of bounded variation in $L^r(\Omega)$. This was defined in [3]. $V_r(X)$ is called the total variation of X in $L^r(\Omega)$.

Lemma 1. Suppose that $X(t, \omega) \in L^1(T \times \Omega)$ and has the mean derivative $X'_{\mathbf{M}}(t, \omega)$ in $L^1(T \times \Omega)$. Suppose also that for each t, $X(t, \omega)$ and $X'_{\mathbf{M}}(t, \omega)$ belong to $L^r(\Omega)$ for some $r \ge 1$ with $||X'_{\mathbf{M}}(t, \omega)||_r \in L^1(T)$ and $X(t, \omega)$ is continuous in $L^r(\Omega)$ as a function of t:

$$||X(t+h, \omega) - X(t, \omega)||_{t} \rightarrow 0$$

as $h \rightarrow 0$, then $X(t, \omega)$ is of bounded variation in $L^r(\Omega)$ and

(2.3)
$$V_r(X) \leq \int_{-\pi}^{\pi} \|X'_{\mathcal{M}}(t, \omega)\|_r dt.$$

Proof. From [3] (Lemma 2), for each fixed h,

$$X(t+h, \omega) - X(t, \omega) = \int_{t}^{t+h} X'_{M}(u, \omega) du$$

for almost all (t, ω) in $T \times \Omega$. Hence for each h,

(2.4)
$$\|X(t+h, \omega) - X(t, \omega)\|_{r} = \left\|\int_{t}^{t+h} X'_{\mathcal{M}}(u, \omega) du\right\|_{r}$$

holds for almost all $t \in T$. Namely there is a subset H(h) of T with $mH(h)=2\pi$, generally depending on h, such that, for $u \in H(h)$, (2.4) with t=u holds good. m is the Lebesgue measure.

Let $t_1 < t_2$ be numbers in T and fix them. Take $h=t_2-t_1$ and write H=H(h). For any $\varepsilon > 0$, choose δ in such a way that

(2.5)
$$\int_{S} \|X'_{M}(t, \omega)\|_{r} dt < \varepsilon,$$

for $mS < \delta$, and for $|v| < \delta$

(2.6)
$$\|X(t+v, \omega)-X(t, \omega)\|_r < \varepsilon, \quad t \in T.$$

Choose $u_1 \in H$ so that

 $(2.7) |t_1-u_1| < \delta.$

This implies

(2.8) $|t_2-(u_1+h)| < \delta.$

Using (2.4) we then have

$$\|X(t_{2}, \omega) - X(t_{1}, \omega)\|_{r} \leq \|X(t_{1}, \omega) - X(u_{1}, \omega)\|_{r}$$

+ $\|X(u_{1}, \omega) - X(u_{1} + h, \omega)\|_{r} + \|X(u_{1} + h, \omega) - X(t_{2}, \omega)\|_{r}$
$$\leq 2\varepsilon + \|X(u_{1}, \omega) - X(u_{1} + h, \omega)\|_{r}$$

= $2\varepsilon + \int_{u_{1}}^{u_{1} + h} \|X'_{M}(t, \omega)\|_{r} dt$

which is, because of (2.5), (2.7) and (2.8)

$$\leq 2\varepsilon + 2\varepsilon + \int_{t_1}^{t_2} \|X'_{\mathcal{M}}(t, \omega)\|_r dt.$$

This gives us

(2.9)
$$\|X(t_2, \omega) - X(t_1, \omega)\|_r \leq \int_{t_1}^{t_2} \|X'_{\mathfrak{M}}(t, \omega)\|_r dt.$$

Now for any division $-\pi \leq t_0 \leq t_1 \leq \cdots \leq t_n \leq \pi$, we have, from (2.9)

$$\sum_{j=1}^{n} \|X(t_{j}, \omega) - X(t_{j-1}, \omega)\|_{r} \leq \int_{-\pi}^{\pi} \|X'_{\mathcal{M}}(t, \omega)\|_{r} dt$$

which shows (2.3).

We shall prove the following lemma just for completeness, although we do not use it in this paper.

Lemma 2. Let $r \ge 1$. Suppose $X(t, \omega)$ is of $L^{r}(T \times \Omega)$ and is continuous in $L^{r}(\Omega)$ as a function of t. If $X(t, \omega)$ has the mean derivative in $L^{r}(T \times \Omega)$, then $X(t, \omega)$ is of bounded variation in $L^{r}(\Omega)$ and

(2.10)
$$V_{r}(X) = \int_{-\pi}^{\pi} \|X'_{M}(t, \omega)\|_{r} dt.$$

Proof. In view of Lemma 1 it is sufficient to show the reverse inequality of (2.3). Let $h=2\pi/n$, n being any positive integer.

$$\int_{-\pi}^{\pi} \|X'_{M}(t, \omega)\|_{r} dt \leq \int_{-\pi}^{\pi} \|D_{h}X(t, \omega) - X'_{M}(t, \omega)\|_{r} dt + \int_{-\pi}^{\pi} \|D_{h}X(t, \omega)\|_{r} dt.$$

The first of the right hand side converges to zero as $n \rightarrow \infty$. The second is

$$\begin{split} & \int_{-\pi}^{\pi} \left\| \frac{1}{h} [X(t+h, \omega) - X(t, \omega)] \right\|_{r} dt \\ &= \frac{n}{2\pi} \sum_{j=1}^{n} \int_{-\pi+2\pi(j-1)/n}^{-\pi+2\pi(j-1)/n} \left\| X \Big(t + \frac{2\pi}{n}, \omega \Big) - X(t, \omega) \right\|_{r} dt \\ &= \frac{n}{2\pi} \sum_{j=1}^{n} \int_{-\pi}^{-\pi+2\pi/n} \left\| X \Big(t + \frac{2\pi j}{n}, \omega \Big) - X \Big(t + \frac{2\pi(j-1)}{n}, \omega \Big) \right\|_{r} dt \\ &\leq \frac{n}{2\pi} \int_{-\pi}^{-\pi+2\pi/n} V_{r}(X) dt = V_{r}(X). \end{split}$$

We remark that the condition that $X(t, \omega)$ has the mean derivative in $L^r(T \times \Omega)$ can be replaced by the slightly more general condition that

(2.11)
$$\int_{-\pi}^{\pi} \|D_h X(t, \omega) - X'_{\mathcal{M}}(t, \omega)\|_r dt \to 0, \quad h \to 0.$$

3. Almost sure absolute convergence of the Fourier series of a stochastic process.

Let $X(t, \omega)$ be a 2π -periodic stochastic process of $L^1(T \times \Omega)$ and have the mean derivative $X'_{\mathcal{M}}(t, \omega)$ in $L^1(T \times \Omega)$. Let the Fourier series of $X(t, \omega)$ be given by (1.4). Furthermore we impose the following conditions:

(i) $X(t, \omega) \in L^{r}(\Omega)$ for each t and as a function of t, $X(t, \omega)$ is continuous in $L^{r}(\Omega)$ on T, for some r > 1.

(ii) $X'_{\mathfrak{M}}(t, \omega) \in L^{r}(\Omega)$ for each t and as a function of t, $\|X'_{\mathfrak{M}}(t, \omega)\|_{r} \in L^{1}(T)$.

Because of (i), $X(t, \omega)$ actually belongs to $L^r(T \times \Omega)$. However we are supposing that $X'_{\mathbf{M}}(t, \omega)$ exists merely in $L^1(T \times \Omega)$. As a matter of fact, we do not assume that $\|X'_{\mathbf{M}}(t, \omega)\|_r \in L^r(T)$. This is the point in what follows. If this were assumed, Theorem 1 below we are going to show is just a special case of [3] (Theorem 2).

For $X(t, \omega) \in L^r(T \times \Omega)$, $1 < r \le 2$, we write

(3.1)
$$M_r^*(X, \delta) = \sup_{|h| \leq \delta} \int_{-\pi}^{\pi} E |X(t+h, \omega) - X(t, \omega)|^r dt.$$

We here mention the following theorem which is a special case of [2] (Theorem 3.1).

Theorem A. Let
$$X(t, \omega) \in L^r(T \times \Omega)$$
, $1 < r \leq 2$. If, for $0 \leq \alpha < 1$.

(3.2)
$$\sum_{n=1}^{\infty} n^{-(1-1/r)+\alpha} M_r^*(X, 1/n) < \infty,$$

then

(3.3)
$$\sum_{n=-\infty}^{\infty} |n|^{\alpha} |C_n(\omega)| < \infty,$$

almost surely.

We shall prove the following theorem.

Theorem 1. Let $2 \ge r > 1$. Suppose $X(t, \omega) \in L^r(T \times \Omega)$ and has the mean derivative $X'_{\mathbf{M}}(t, \omega)$ in $L^1(T \times \Omega)$. Suppose (i) and (ii) above. If

(3.4)
$$\int_{-\pi}^{\pi} \|X'_{M}(t, \omega)\|_{r} \log^{+} \|X'_{M}(t, \omega)\|_{r} dt < \infty,$$

then (3.3) with $\alpha = 0$ holds almost surely.

This theorem is thought of as an analogue of the well known theorem of Zygmund [1] (Theorem 2, p. 162), [2] (Theorem 3.9, p. 242) that the Fourier series of f(t) which is absolutely continuous and satisfies

(3.5)
$$\int_{-\pi}^{\pi} |f'(t)| \log^+ |f'(t)| dt < \infty,$$

is absolutely convergent. The proof of Theorem 1 is carried out based on the arguments used by Wik [4] who made a detailed study on the above Zygmund theorem.

In proving Theorem 1, we note that because of Lemma 1, $X(t, \omega)$ is of bounded variation in $L^{r}(\Omega)$. We use the following lemma employed by Wik [4].

Lemma 3. Let $\phi(t) \in L^1(T)$. Write $V_n = V_n(\phi) = \int_{|\phi|>n} |\phi(t)| dt$. Then for any a > 1,

(3.6)
$$\int_{-\pi}^{\pi} |\phi(t)| \log^+ |\phi(t)| dt < \infty$$

is equivalent to

(3.7)

 $\sum_{q=1}^{\infty} V_a < \infty.$

Proof of Theorem 1. From (2.4)

$$M_{r}^{*}(X, 1/n) = \sup_{|h| \leq 1/n} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} E \left| \int_{t}^{t+h} X_{M}'(s, \omega) ds \right|^{r} dt \right)^{1/r}$$

which is, by Minkowski inequality,

$$\leq \sup_{|h|\leq 1/n} \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\int_{t}^{t+h} \|X'_{\mathcal{M}}(s, \omega)\|_{r} ds \right)^{r} \right]^{1/r}.$$

Writing

$$Y(t) = \int_{-\pi}^{t} \|X'_{\boldsymbol{M}}(s, \boldsymbol{\omega})\|_{\tau} ds,$$

we have

(3.8)
$$M_{r}^{*}(X, 1/n) \leq \sup_{|h| \leq 1/n} \left\{ \frac{1}{2\pi} \int_{-\pi}^{\pi} |Y(t+h) - Y(t)|^{r} dt \right\}^{1/r} \\ \leq \left\{ \frac{1}{2\pi} \int_{-\pi}^{\pi} [Y(t+1/n) - Y(t)]^{r} dt \right\}^{1/r} \\ + \left\{ \frac{1}{2\pi} \int_{-\pi}^{\pi} [Y(t) - Y(t-1/n)]^{r} dt \right\}^{1/r} \\ = I_{1} + I_{2},$$

say. Now let us write

$$E_n = \{t \in T, \|X'_{M}(t, \omega)\|_r \ge n\}$$

and let N be any positive integer. We write

$$Y(t+1/n) - Y(t) = \int_{E_N \cap (t, t+1/n)} \|X'_{\mathbf{M}}(s, \omega)\|_r ds$$
$$+ \int_{E_N^c \cap (t, t+1/n)} \|X'_{\mathbf{M}}(s, \omega)\|_r ds$$
$$= I_{1,1} + I_{1,2},$$

say. Then

(3.9)
$$I_{1,1} \leq \int_{E_N} \|X'_{\mathsf{M}}(s, \omega)\|_r ds = W_N$$

say, and defining $Z_n(s) = ||X'_M(s, \omega)||$, for $s \in E_n$ and =0, for $s \in E_n^c$, we have

(3.10)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} I_{1,1} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{t}^{t+1/n} Z_{N}(s) ds dt$$
$$\leq \frac{1}{2n\pi} \int_{-\pi}^{\pi+1/n} Z_{N}(s) ds = \frac{1}{2n\pi} \int_{E_{N}} \|X'_{M}(s, \omega)\|_{\tau} ds$$
$$= \frac{1}{2n\pi} W_{N}.$$

Hence using (3.9) and (3.10), we have

(3.11)
$$\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}I_{1,1}^{r}dt\right)^{1/r} = \left(\frac{1}{2\pi}\int_{-\pi}^{\pi}I_{1,1}^{r-1}\cdot I_{1,1}dt\right)^{1/r} \\ \leq W_{N}^{1-1/r}\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}I_{1,1}dt\right)^{1/r} \leq \frac{1}{(2n\pi)^{1/r}}W_{N}.$$

Now

$$I_{1,2} \leq \int_{E_N^c \cap (t,t+1/n)} \|X'_{\mathcal{M}}(s,\omega)\|_r ds \leq \frac{N}{n}.$$

Hence as in (3.11) and (3.10),

154

(3.12)
$$\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}I_{1,2}^{r}dt\right)^{1/r} \leq \left(\frac{1}{2\pi}\int_{-\pi}^{\pi}I_{1,2}^{r-1}\cdot I_{1,2}dt\right)^{1/r} \\ \leq \left(\frac{N}{n}\right)^{1-1/r}\frac{C}{(2n\pi)^{1/r}} = \frac{C}{(2\pi)^{1/r}}\cdot\frac{N^{1-1/r}}{n}, \quad C = \int_{-\pi}^{\pi}\|X'_{M}(t,\omega)\|_{r}dt$$

Therefore from (3.11) and (3.12)

$$\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}I_{1}^{r}dt\right)^{1/r} \leq \left(\frac{1}{2\pi}\int_{-\pi}^{\pi}I_{1,1}^{r}dt\right)^{1/r} + \left(\frac{1}{2\pi}\int_{-\pi}^{\pi}I_{1,2}^{r}dt\right)^{1/r} \\ \leq \left(\frac{1}{2\pi}\right)^{1/r} \left(\frac{W_{N}}{n^{1/r}} + \frac{CN^{1-1/r}}{n}\right).$$

The same thing is true for $\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}I_{2}^{\tau}dt\right)^{1/r}$ and we have

(3.13)
$$M_r^*(X, 1/n) \leq C_r \Big(\frac{W_N}{n^{1/r}} + \frac{N^{1-1/r}}{n} \Big),$$

where C_r is a constant depending only on r.

Now take $n=2^{q}$, q being a positive integer and $N=a^{q}$, 1 < a < 2. By monotoneness of $n^{1/r-1}$ and $M_r(1/n)$, (3.3) with $\alpha=0$ in Theorem B is equivalent to the convergence of $\sum_{q=1}^{\infty} 2^{q/\tau} M_r(X, 2^{-q})$. From (3.13) the last series converges when

$$\sum_{q=1}^{\infty} W_{a^{q}} + \sum_{q=1}^{\infty} \left(\frac{a}{2}\right)^{q-q/r}$$

converges. The second series obviously converges and the first series also converges by Lemma 3. Hence in view of Theorem B the proof of Theorem 1 is complete.

4. More results.

Let $X(t, \omega)$ be a 2π -periodic stochastic process of $L^1(T \times \Omega)$. Let its Fourier series be given by (1.4). Suppose $X(t, \omega)$ has the mean derivative $X'_{M}(t, \omega)$ in $L^{1}(T \times \Omega)$. Then the Fourier series of $X'_{M}(t, \omega)$ is given by

(4.1)
$$\sum_{n=-\infty}^{\infty} (-in)C_n(\omega)e^{int}.$$

Actually the Fourier coefficient $C'_n(\omega)$ of $X'_{\mathcal{M}}(t, \omega)$ is $(-in)C_n(\omega)$ for all n, almost surely. Because

$$\left\|C'_{n}(\omega) - \frac{1}{2\pi} \int_{-\pi}^{\pi} D_{h} X(t, \omega) e^{-int} dt\right\|_{1} \leq \left\|X'_{M}(t, \omega) - D_{h} X(t, \omega)\right\|_{1} \to 0,$$

as $h \to 0$ and

$$\left\|\frac{1}{2\pi}\int_{-\pi}^{\pi}D_{h}X(t,\,\omega)e^{-int}dt+\frac{in}{2\pi}\int_{-\pi}^{\pi}X(t,\,\omega)e^{-int}dt\right\|_{1}$$

T. KAWATA

$$= \left|\frac{1}{h}(e^{-inh} - 1 + in)\right| \cdot \|C_n(\omega)\| \to 0$$

as $h \to 0$, and from these we see that $\|C'_n(\omega) - (-in)C_n(\omega)\| = 0$. Hence $C'_n(\omega) = -inC_n(\omega)$ almost surely for each *n*, from which this holds for all *n*, almost surely.

More generally if $X(t, \omega)$ has the k-th mean derivative $X_{\mathcal{M}}^{(k)}(t, \omega)$ in $L^{1}(T \times \Omega)$, then the Fourier series of $X_{\mathcal{M}}^{(k)}(t, \omega)$ is given by

(4.2)
$$\sum_{n=-\infty}^{\infty} (-in)^{k} C_{n}(\omega) e^{int}.$$

From Theorem 1 with $X_{M}^{(k)}(t, \omega)$ in place of $X(t, \omega)$, we have the following theorem.

Theorem 2. Suppose a 2π -periodic stochastic process $X(t, \omega) \in L^1(T \times \Omega)$ has the k+1-st mean derivative in $L^1(T \times \Omega)$. Assume that there is an $\hat{X}_{\mathcal{M}}^{(k)}(t, \omega)$ such that $\hat{X}_{\mathcal{M}}^{(k)}(t, \omega) \in L^{\tau}(\Omega)$ for some $1 < r \leq 2$, for each t and is continuous in $L^{\tau}(\Omega)$ on T, and $\hat{X}_{\mathcal{M}}^{(k)}(t, \omega) = X_{\mathcal{M}}^{(k)}(t, \omega)$ in $L^1(T \times \Omega)$. Moreover suppose $X_{\mathcal{M}}^{(k+1)}(t, \omega) \in L^{\tau}(\Omega)$ for each t and $\|X_{\mathcal{M}}^{(k+1)}(t, \omega)\|_r \in L^1(T)$. If

(4.3)
$$\int_{-\pi}^{\pi} \|X_{M}^{(k+1)}(t, \omega)\|_{\tau} \log^{+} \|X_{M}^{(k+1)}(t, \omega)\|_{\tau} dt < \infty,$$

then

(4.4)
$$\sum_{n=-\infty}^{\infty} |n|^{k} |C_{n}(\omega)| < \infty,$$

almost surely.

We also have the following theorem.

Theorem 3. Let $1 < r \le 2$, 1/r + 1/r' = 1. We assume all the conditions in Theorem 2 with

(4.5)
$$\int_{-\pi}^{\pi} \|X_{M}^{(k+1)}(t, \omega)\|_{r}^{1+\alpha} dt < \infty$$

for some $0 < \alpha < r-1$ in place of (4.3), then for every β such that $0 \leq \beta < \alpha/(1+\alpha r')$,

(4.6)
$$\sum_{n=-\infty}^{\infty} |n|^{k+\beta} |C_n(\omega)| < \infty,$$

almost surely.

If $\alpha = r-1$ and hence $X_{\mathcal{M}}^{(k+1)}(t, \omega) \in L^{r}(T \times \Omega)$, and $X(t, \omega)$ has the k+1-st derivative in $L^{r}(T \times \Omega)$, then for $\beta < 1/r'$, (4.6) holds almost surely [3] (Corollary 1). Our theorem for $\alpha < r-1$ is not covered by this corollary.

We also note that the condition for β implies $\beta < 1/r'$. For the case $\beta = 1/r'$ the theorem is not necessarily true. See the remark given for [3] (Corollary 1).

Proof of Theorem 3. From (3.13) with $X_M^{(k)}(t, \omega)$ in place of $X(t, \omega)$, we see that

(4.7)
$$n^{\beta} M_{r}(X_{M}^{(k)}, 1/n) \leq C_{r} \Big(\frac{W_{N}}{n^{1/r-\beta}} + \frac{N^{1-1/r}}{n^{1-\beta}} \Big),$$

where

$$W_N = \int_{E_N} \|X_M^{(k+1)}(t, \omega)\|_r dt$$
,

and

$$E_N = \{t \in T, \|X_M^{(k+1)}(t, \omega)\|_r \ge N\}.$$

Choose a so that $2^{1-r'\beta} \ge a > 2^{\beta/\alpha}$. This is possible. Take $n=2^q$, $N=a^q$ in (4.7), $q=1, 2, \cdots$. The convergence of

(4.8)
$$\sum_{n=1}^{\infty} n^{\beta - 1/r'} M_r^*(X_M^{(k)}, 1/n)$$

is equivalent to the convergence of

(4.9)
$$\sum_{q=1}^{\infty} 2^{q(\beta+1/r)} M_r^*(X_M^{(k)}, 2^{-q}).$$

From (4.7), this converges if

(4.10)
$$\sum_{q=1}^{\infty} V_{a^{q}} 2^{\beta q} + \sum_{q=1}^{\infty} a^{q/r'} / 2^{(1/r' - \beta)q} < \infty.$$

Since $a^{1/r'} < 2^{1/r'-\beta}$, the second series of (4.9) converges. Now

$$\begin{split} 2^{\beta q} V_{a^{q}} &= 2^{\beta q} \int_{E_{N}} \|X_{M}^{(k+1)}(t, \omega)\|_{r} dt \\ &\leq 2^{\beta q} a^{-\alpha q} \int \|X_{M}^{(k+1)}(t, \omega)\|_{r}^{1+\alpha} dt \\ &\leq C (2^{\beta}/a^{\alpha})^{q}, \end{split}$$

where C is a constant independent of q.

Since $2^{\beta}/a^{\alpha} < 1$, the first series of (4.10) is convergent. Thus (4.9) converges and the proof is complete.

5. Sample properties of a periodic stochastic process.

In [2] and [3] it was shown that the almost sure absolute convergence of the Fourier series of a stochastic process immediately yields some sample properties of the process. By the same argument used there, we readily have the following theorem.

Theorem 4. (i) Let $X(t, \omega) \in L^1(T \times \Omega)$ be stochastically continuous. If all the conditions in Theorem 1 are satisfied, then there exists a modification $X_0(t, \omega)$

of $X(t, \omega)$ which is almost surely continuous.

(ii) If all the conditions in Theorem 2 are satisfied, then there exists a modification $X_0(t, \omega)$ of $X(t, \omega)$ which has almost surely the k-th continuous derivative.

(iii) If all the conditions in Theorem 3 are satisfied, then there exists a modification $X_0(t, \omega)$ of $X(t, \omega)$ which has almost surely the k-th derivative belonging to Lipschitz class Λ_β of order β .

References

- [1] N. Bary: A treatise on trigonometric series, Engl. transl. Pergamon, Oxford, 1964.
- [2] T. Kawata: Absolute convergence of Fourier series of periodic stochastic processes and its applications (to appear).
- [3] T. Kawata: The mean derivatives and the absolute convergence of the Fourier series of a stochastic process (to appear).
- [4] I. Wik: Criteria for absolute convergence of Fourier series of functions of bounded variation, Trans. Amer. Math. Soc. 163 1-24 (1972).
- [5] A. Zygmund: Trigonometric series, Camb. Univ. Press, New York, 1959.

Added in proof: [2] appeared in Tohoku Math. J. 35 459-474 (1983) and [3] in Keio Sci. Tech. Rep. 36 11-24 (1983).

Department of Mathematics Keio University Hiyoshi, Kohoku Yokohama 223, Japan