NOTES ON THE ALMOST SURE ABSOLUTE CONVERGENCE OF THE FOURIER SERIES OF A STOCHASTIC PROCESS

By
Tatsuo Kawata
(Received March 1, 1983)

1. Introduction.

Throughout this paper we suppose that $X(t, \omega)$ is a measurable 2π-periodic stochastic process of $L^{r}(T \times \Omega)$ for some $r \geqq 1$, where $T=[-\pi, \pi]$ and (Ω, \mathscr{G}, P) is the probability space:

$$
\begin{equation*}
\|X(t, \omega)\|_{r} \equiv\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} E|X(t, \omega)|^{r} d t\right)^{1 / r}<\infty \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|X(t+2 \pi, \omega)-X(t, \omega)\|_{1}=0 \tag{1.2}
\end{equation*}
$$

for every $t \in R^{1}$. We generally write $\|X(\omega)\|_{r}=\left(E|X(\omega)|^{r}\right)^{1 / r}$. We also write

$$
D_{h} X(t, \omega)=\frac{1}{h}[X(t+h, \omega)-X(t, \omega)] .
$$

If there exists an $X_{\boldsymbol{M}}^{\prime}(t, \omega) \in L^{r}(T \times \Omega)$ such that

$$
\begin{equation*}
\left\|D_{n} X(t, \omega)-X_{d_{f}^{\prime}}^{\prime}(t, \omega)\right\|_{r} \rightarrow 0 \tag{1.3}
\end{equation*}
$$

as $h \rightarrow 0$, then $X(t, \omega)$ is said to have the mean derivative $X_{M}^{\prime}(t, \omega)$ in $L^{r}(T \times \Omega)$.
If $X(t, \omega)$ has the mean derivative $X_{t r}^{\prime}(t, \omega)$ in $L^{r}(T \times \Omega)$ and furthermore $X_{\mu_{k}}^{\prime}(t, \omega)$ has the mean derivative $X_{\boldsymbol{\prime}}^{\prime \prime}(t, \omega)$ in $L^{r}(T \times \Omega)$, then we say that $X(t, \omega)$ has the second mean derivative $X_{k t}^{\prime \prime}(t, \omega)$ in $L^{r}(T \times \Omega)$. In a similar way we successively define the k-th mean derivative $X_{M_{k}}^{(k)}(t, \omega)$ in $L^{r}(T \times \Omega)$.

Let the Fourier series of $X(t, \omega) \in L^{1}(T \times \Omega)$ be

$$
\begin{equation*}
X(t, \omega) \sim \sum_{n=-\infty}^{\infty} C_{n}(\omega) e^{i n t} \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{n}(\omega)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(t, \omega) e^{-i n t} d t \tag{1.5}
\end{equation*}
$$

The author recently has studied the almost sure convergence of

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}|n|^{k+\alpha}\left|C_{n}(\omega)\right|, \quad(0 \leqq \alpha<1) \tag{1.6}
\end{equation*}
$$

k being a nonnegative integer, when $X(t, \omega)$ has the k-th mean derivative in $L^{r}(T \times \Omega), 1<r \leqq 2$. In this paper we aim at giving some sufficient condition for the almost sure convergence of (1.6) when $X(t, \omega)$ has the k-th mean derivative in $L^{1}(T \times \Omega)$ and not necessarily in $L^{r}(T \times \Omega), r>1$.

2. Variation of a stochastic process.

Let $X(t, \omega)$ be of $L^{1}(T \times \Omega)$. Suppose moreover for each $t, X(t, \omega) \in L^{r}(\Omega)$ for some $r \geqq 1$. If

$$
\begin{equation*}
\sup _{D} \sum_{j=1}^{n}\left\|X\left(t_{j}, \omega\right)-X\left(t_{j-1}, \omega\right)\right\|_{r}=V_{r}(X)<\infty \tag{2.1}
\end{equation*}
$$

where sup is taken over all the divisions D of $T, D:-\pi \leqq t_{0}<t_{1}<\cdots<t_{n} \leqq \pi$, then $X(t, \omega)$ is said to be of bounded variation in $L^{r}(\Omega)$. This was defined in [3]. $V_{r}(X)$ is called the total variation of X in $L^{r}(\Omega)$.

Lemma 1. Suppose that $X(t, \omega) \in L^{1}(T \times \Omega)$ and has the mean derivative $X_{M}^{\prime}(t, \omega)$ in $L^{1}(T \times \Omega)$. Suppose also that for each $t, X(t, \omega)$ and $X_{M}^{\prime}(t, \omega)$ belong to $L^{r}(\Omega)$ for some $r \geqq 1$ with $\left\|X_{M}^{\prime}(t, \omega)\right\|_{r} \in L^{1}(T)$ and $X(t, \omega)$ is continuous in $L^{r}(\Omega)$ as a function of t :

$$
\begin{equation*}
\|X(t+h, \omega)-X(t, \omega)\|_{r} \rightarrow 0 \tag{2.2}
\end{equation*}
$$

as $h \rightarrow 0$, then $X(t, \omega)$ is of bounded variation in $L^{r}(\Omega)$ and

$$
\begin{equation*}
V_{\tau}(X) \leqq \int_{-\pi}^{\pi}\left\|X_{M}^{\prime}(t, \omega)\right\|_{r} d t \tag{2.3}
\end{equation*}
$$

Proof. From [3] (Lemma 2), for each fixed h,

$$
X(t+h, \omega)-X(t, \omega)=\int_{t}^{t+h} X_{M}^{\prime}(u, \omega) d u
$$

for almost all (t, ω) in $T \times \Omega$. Hence for each h,

$$
\begin{equation*}
\|X(t+h, \omega)-X(t, \omega)\|_{r}=\left\|\int_{t}^{t+h} X_{\boldsymbol{m}}^{\prime}(u, \omega) d u\right\|_{r} \tag{2.4}
\end{equation*}
$$

holds for almost all $t \in T$. Namely there is a subset $H(h)$ of T with $m H(h)=2 \pi$, generally depending on h, such that, for $u \in H(h)$, (2.4) with $t=u$ holds good. m is the Lebesgue measure.

Let $t_{1}<t_{2}$ be numbers in T and fix them. Take $h=t_{2}-t_{1}$ and write $H=H(h)$. For any $\varepsilon>0$, choose δ in such a way that

$$
\begin{equation*}
\int_{S}\left\|X_{\boldsymbol{M}}^{\prime}(t, \omega)\right\|_{r} d t<\varepsilon \tag{2.5}
\end{equation*}
$$

for $m S<\delta$, and for $|v|<\delta$

$$
\begin{equation*}
\|X(t+v, \omega)-X(t, \omega)\|_{r}<\varepsilon, \quad t \in T \tag{2.6}
\end{equation*}
$$

Choose $u_{1} \in H$ so that

$$
\begin{equation*}
\left|t_{1}-u_{1}\right|<\delta \tag{2.7}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\left|t_{2}-\left(u_{1}+h\right)\right|<\delta \tag{2.8}
\end{equation*}
$$

Using (2.4) we then have

$$
\begin{aligned}
& \left\|X\left(t_{2}, \omega\right)-X\left(t_{1}, \omega\right)\right\|_{r} \leqq\left\|X\left(t_{1}, \omega\right)-X\left(u_{1}, \omega\right)\right\|_{r} \\
& \quad+\left\|X\left(u_{1}, \omega\right)-X\left(u_{1}+h, \omega\right)\right\|_{r}+\left\|X\left(u_{1}+h, \omega\right)-X\left(t_{2}, \omega\right)\right\|_{r} \\
& \leqq 2 \varepsilon+\left\|X\left(u_{1}, \omega\right)-X\left(u_{1}+h, \omega\right)\right\|_{r} \\
& =2 \varepsilon+\int_{u_{1}}^{u_{1}+h}\left\|X_{M}^{\prime}(t, \omega)\right\|_{r} d t
\end{aligned}
$$

which is, because of (2.5), (2.7) and (2.8)

$$
\leqq 2 \varepsilon+2 \varepsilon+\int_{t_{1}}^{t_{2}}\left\|X_{M}^{\prime}(t, \omega)\right\|_{r} d t
$$

This gives us

$$
\begin{equation*}
\left\|X\left(t_{2}, \omega\right)-X\left(t_{1}, \omega\right)\right\|_{r} \leqq \int_{t_{1}}^{t_{2}}\left\|X_{\mu}^{\prime}(t, \omega)\right\|_{r} d t \tag{2.9}
\end{equation*}
$$

Now for any division $-\pi \leqq t_{0} \leqq t_{1} \leqq \cdots \leqq t_{n} \leqq \pi$, we have, from (2.9)

$$
\sum_{j=1}^{n}\left\|X\left(t_{j}, \omega\right)-X\left(t_{j-1}, \omega\right)\right\|_{r} \leqq \int_{-\pi}^{\pi}\left\|X_{M}^{\prime}(t, \omega)\right\|_{r} d t
$$

which shows (2.3).
We shall prove the following lemma just for completeness, although we do not use it in this paper.

Lemma 2. Let $r \geqq 1$. Suppose $X(t, \omega)$ is of $L^{r}(T \times \Omega)$ and is continuous in $L^{r}(\Omega)$ as a function of t. If $X(t, \omega)$ has the mean derivative in $L^{r}(T \times \Omega)$, then $X(t, \omega)$ is of bounded variation in $L^{r}(\Omega)$ and

$$
\begin{equation*}
V_{r}(X)=\int_{-\pi}^{\pi}\left\|X_{M}^{\prime}(t, \omega)\right\|_{r} d t \tag{2.10}
\end{equation*}
$$

Proof. In view of Lemma 1 it is sufficient to show the reverse inequality of (2.3). Let $h=2 \pi / n, n$ being any positive integer.

$$
\int_{-\pi}^{\pi}\left\|X_{\boldsymbol{M}}^{\prime}(t, \omega)\right\|_{r} d t \leqq \int_{-\pi}^{\pi}\left\|D_{h} X(t, \omega)-X_{\boldsymbol{M}}^{\prime}(t, \omega)\right\|_{r} d t+\int_{-\pi}^{\pi}\left\|D_{h} X(t, \omega)\right\|_{r} d t
$$

The first of the right hand side converges to zero as $n \rightarrow \infty$. The second is

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \| \frac{1}{h}\left[X(t+h, \omega)-X(t, \omega) \|_{r} d t\right. \\
& =\frac{n}{2 \pi} \sum_{j=1}^{n} \int_{-\pi+2 \pi(j-1) / n}^{-\pi+2 \pi j / n}\left\|X\left(t+\frac{2 \pi}{n}, \omega\right)-X(t, \omega)\right\|_{r} d t \\
& =\frac{n}{2 \pi} \sum_{j=1}^{n} \int_{-\pi}^{-\pi+2 \pi / n}\left\|X\left(t+\frac{2 \pi j}{n}, \omega\right)-X\left(t+\frac{2 \pi(j-1)}{n}, \omega\right)\right\|_{r} d t \\
& \leqq \frac{n}{2 \pi} \int_{-\pi}^{-\pi+2 \pi / n} V_{r}(X) d t=V_{r}(X) .
\end{aligned}
$$

We remark that the condition that $X(t, \omega)$ has the mean derivative in $L^{r}(T \times \Omega)$ can be replaced by the slightly more general condition that

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left\|D_{h} X(t, \omega)-X_{\boldsymbol{\mu}}^{\prime}(t, \omega)\right\|_{r} d t \rightarrow 0, \quad h \rightarrow 0 \tag{2.11}
\end{equation*}
$$

3. Almost sure absolute convergence of the Fourier series of a stochastic process.

Let $X(t, \omega)$ be a 2π-periodic stochastic process of $L^{1}(T \times \Omega)$ and have the mean derivative $X_{\boldsymbol{M}}^{\prime}(t, \omega)$ in $L^{1}(T \times \Omega)$. Let the Fourier series of $X(t, \omega)$ be given by (1.4), Furthermore we impose the following conditions:
(i) $X(t, \omega) \in L^{r}(\Omega)$ for each t and as a function of $t, X(t, \omega)$ is continuous in $L^{r}(\Omega)$ on T, for some $r>1$.
(ii) $X_{M}^{\prime}(t, \omega) \in L^{r}(\Omega)$ for each t and as a function of $t,\left\|X_{M}^{\prime}(t, \omega)\right\|_{r} \in L^{1}(T)$.

Because of (i), $X(t, \omega)$ actually belongs to $L^{r}(T \times \Omega)$. However we are supposing that $X_{\boldsymbol{M}}^{\prime}(t, \omega)$ exists merely in $L^{1}(T \times \Omega)$. As a matter of fact, we do not assume that $\left\|X_{M_{r}}^{\prime}(t, \omega)\right\|_{r} \in L^{r}(T)$. This is the point in what follows. If this were assumed, Theorem 1 below we are going to show is just a special case of [3] (Theorem 2).

For $X(t, \omega) \in L^{r}(T \times \Omega), 1<r \leqq 2$, we write

$$
\begin{equation*}
M_{r}^{*}(X, \delta)=\sup _{|n| \delta \delta} \int_{-\pi}^{\pi} E|X(t+h, \omega)-X(t, \omega)|^{r} d t \tag{3.1}
\end{equation*}
$$

We here mention the following theorem which is a special case of [2] (Theorem 3.1).

Theorem A. Let $X(t, \omega) \in L^{r}(T \times \Omega), 1<r \leqq 2$. If, for $0 \leqq \alpha<1$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-(1-1 / r)+\alpha} M_{r}^{*}(X, 1 / n)<\infty, \tag{3.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}|n|^{\alpha}\left|C_{n}(\omega)\right|<\infty \tag{3.3}
\end{equation*}
$$

almost surely.
We shall prove the following theorem.
Theorem 1. Let $2 \geqq r>1$. Suppose $X(t, \omega) \in L^{r}(T \times \Omega)$ and has the mean derivative $X_{\boldsymbol{M}}^{\prime}(t, \omega)$ in $L^{1}(T \times \Omega)$. Suppose (i) and (ii) above. If

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left\|X_{M}^{\prime}(t, \omega)\right\|_{r} \log ^{+}\left\|X_{M}^{\prime}(t, \omega)\right\|_{r} d t<\infty \tag{3.4}
\end{equation*}
$$

then (3.3) with $\alpha=0$ holds almost surely.
This theorem is thought of as an analogue of the well known theorem of Zygmund [1] Theorem 2, p. 162), [2] (Theorem 3.9, p. 242) that the Fourier series of $f(t)$ which is absolutely continuous and satisfies

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|f^{\prime}(t)\right| \log ^{+}\left|f^{\prime}(t)\right| d t<\infty, \tag{3.5}
\end{equation*}
$$

is absolutely convergent. The proof of Theorem 1 is carried out based on the arguments used by Wik [4] who made a detailed study on the above Zygmund theorem.

In proving Theorem 1, we note that because of Lemma 1, $X(t, \omega)$ is of bounded variation in $L^{r}(\Omega)$. We use the following lemma employed by Wik [4].

Lemma 3. Let $\phi(t) \in L^{1}(T)$. Write $V_{n}=V_{n}(\phi)=\int_{|\phi|>n}|\phi(t)| d t$. Then for any $a>1$,

$$
\begin{equation*}
\int_{-\pi}^{\pi}|\phi(t)| \log ^{+}|\phi(t)| d t<\infty \tag{3.6}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\sum_{q=1}^{\infty} V_{a^{q}}<\infty . \tag{3.7}
\end{equation*}
$$

Proof of Theorem 1. From (2.4)

$$
M_{\tau}^{*}(X, 1 / n)=\sup _{|n| \leq 1 / n}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} E\left|\int_{t}^{t+n} X_{M r}^{\prime}(s, \omega) d s\right|^{r} d t\right)^{1 / r}
$$

which is, by Minkowski inequality,

$$
\leqq \sup _{|n| \leq 1 / n}\left[\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\int_{t}^{t+n}\left\|X_{N}^{\prime}(s, \omega)\right\|_{r} d s\right)^{r}\right]^{1 / r}
$$

Writing

$$
Y(t)=\int_{-\pi}^{t}\left\|X_{M}^{\prime}(s, \omega)\right\|_{r} d s
$$

we have

$$
\begin{align*}
M_{r}^{*}(X, 1 / n) \leqq & \sup _{1 \leq 1 / n}\left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi}|Y(t+h)-Y(t)|^{r} d t\right\}^{1 / r} \tag{3.8}\\
\leqq & \left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi}[Y(t+1 / n)-Y(t)]^{r} d t\right\}^{1 / r} \\
& +\left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi}[Y(t)-Y(t-1 / n)]^{r} d t\right\}^{1 / r} \\
= & I_{1}+I_{2}
\end{align*}
$$

say. Now let us write

$$
E_{n}=\left\{t \in T,\left\|X_{M}^{\prime}(t, \omega)\right\|_{r} \geqq n\right\}
$$

and let N be any positive integer. We write

$$
\begin{aligned}
Y(t+1 / n)-Y(t)= & \int_{E_{N} \cap(t, t+1 / n)}\left\|X_{M}^{\prime}(s, \omega)\right\|_{r} d s \\
& +\int_{E_{N}^{c} \cap(t, t+1 / n)}\left\|X_{M}^{\prime}(s, \omega)\right\|_{r} d s \\
= & I_{1,1}+I_{1,2}
\end{aligned}
$$

say. Then

$$
\begin{equation*}
I_{1,1} \leqq \int_{E_{N}}\left\|X_{M}^{\prime}(s, \omega)\right\|_{r} d s=W_{N} \tag{3.9}
\end{equation*}
$$

say, and defining $Z_{n}(s)=\left\|X_{M}^{\prime}(s, \omega)\right\|$, for $s \in E_{n}$ and $=0$, for $s \in E_{n}^{c}$, we have

$$
\begin{align*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} I_{1,1} d t & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \int_{t}^{t+1 / n} Z_{N}(s) d s d t \tag{3.10}\\
& \leqq \frac{1}{2 n \pi} \int_{-\pi}^{\pi+1 / n} Z_{N}(s) d s=\frac{1}{2 n \pi} \int_{E_{N}}\left\|X_{M}^{\prime}(s, \omega)\right\|_{r} d s \\
& =\frac{1}{2 n \pi} W_{N}
\end{align*}
$$

Hence using (3.9) and (3.10), we have

$$
\begin{align*}
& \left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} I_{1,1}^{r} d t\right)^{1 / r}=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} I_{1,1}^{r-1} \cdot I_{1,1} d t\right)^{1 / r} \tag{3.11}\\
& \leqq W_{N}^{1-1 / r}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} I_{1,1} d t\right)^{1 / r} \leqq \frac{1}{(2 n \pi)^{1 / r}} W_{N}
\end{align*}
$$

Now

$$
I_{1,2} \leqq \int_{E_{N}^{c} \cap(t, t+1 / n)}\left\|X_{M}^{\prime}(s, \omega)\right\|_{r} d s \leqq \frac{N}{n}
$$

Hence as in (3.11) and (3.10),

$$
\begin{align*}
& \quad\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} I_{1,2}^{r} d t\right)^{1 / r} \leqq\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} I_{1,2}^{r-1} \cdot I_{1,2} d t\right)^{1 / r} \tag{3.12}\\
& \leqq\left(\frac{N}{n}\right)^{1-1 / r} \frac{C}{(2 n \pi)^{1 / r}}=\frac{C}{(2 \pi)^{1 / r}} \cdot \frac{N^{1-1 / r}}{n}, \quad C=\int_{-\pi}^{\pi}\left\|X_{M}^{\prime}(t, \omega)\right\|_{r} d t .
\end{align*}
$$

Therefore from (3.11) and (3.12)

$$
\begin{aligned}
\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} I_{1}^{r} d t\right)^{1 / r} & \leqq\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} I_{1,1}^{r} d t\right)^{1 / r}+\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} I_{1,2}^{r} d t\right)^{1 / r} \\
& \leqq\left(\frac{1}{2 \pi}\right)^{1 / r}\left(\frac{W_{N}}{n^{1 / r}}+\frac{C N^{1-1 / r}}{n}\right) .
\end{aligned}
$$

The same thing is true for $\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} I_{2}^{r} d t\right)^{1 / r}$ and we have

$$
\begin{equation*}
M_{r}^{*}(X, 1 / n) \leqq C_{r}\left(\frac{W_{N}}{n^{1 / r}}+\frac{N^{1-1 / r}}{n}\right) \tag{3.13}
\end{equation*}
$$

where C_{r} is a constant depending only on r.
Now take $n=2^{q}, q$ being a positive integer and $N=a^{q}, 1<a<2$. By monotoneness of $n^{1 / r-1}$ and $M_{r}(1 / n)$, (3.3) with $\alpha=0$ in Theorem B is equivalent to the convergence of $\sum_{q=1}^{\infty} 2^{q / r} M_{r}\left(X, 2^{-q}\right)$. From (3.13) the last series converges when

$$
\sum_{q=1}^{\infty} W_{a^{q}}+\sum_{q=1}^{\infty}\left(\frac{a}{2}\right)^{q-q / r}
$$

converges. The second series obviously converges and the first series also converges by Lemma 3, Hence in view of Theorem B the proof of Theorem 1 is complete.

4. More results.

Let $X(t, \omega)$ be a 2π-periodic stochastic process of $L^{1}(T \times \Omega)$. Let its Fourier series be given by (1.4). Suppose $X(t, \omega)$ has the mean derivative $X_{\boldsymbol{M}}^{\prime}(t, \omega)$ in $L^{1}(T \times \Omega)$. Then the Fourier series of $X_{M}^{\prime}(t, \omega)$ is given by

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}(-i n) C_{n}(\omega) e^{i n t} . \tag{4.1}
\end{equation*}
$$

Actually the Fourier coefficient $C_{n}^{\prime}(\omega)$ of $X_{\boldsymbol{M}}^{\prime}(t, \omega)$ is $(-i n) C_{n}(\omega)$ for all n, almost surely. Because

$$
\left\|C_{n}^{\prime}(\omega)-\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{h} X(t, \omega) e^{-i n t} d t\right\|_{1} \leqq\left\|X_{M^{\prime}}^{\prime}(t, \omega)-D_{h} X(t, \omega)\right\|_{1} \rightarrow 0,
$$

as $h \rightarrow 0$ and

$$
\left\|\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{h} X(t, \omega) e^{-i n t} d t+\frac{i n}{2 \pi} \int_{-\pi}^{\pi} X(t, \omega) e^{-i n t} d t\right\|_{1}
$$

$$
=\left|\frac{1}{h}\left(e^{-i n h}-1+i n\right)\right| \cdot\left\|C_{n}(\omega)\right\| \rightarrow 0
$$

as $h \rightarrow 0$, and from these we see that $\left\|C_{n}^{\prime}(\omega)-(-i n) C_{n}(\omega)\right\|=0$. Hence $C_{n}^{\prime}(\omega)=$ $-i n C_{n}(\omega)$ almost surely for each n, from which this holds for all n, almost surely.

More generally if $X(t, \omega)$ has the k-th mean derivative $X_{\mu}^{(k)}(t, \omega)$ in $L^{1}(T \times \Omega)$, then the Fourier series of $X_{i g}^{(k)}(t, \omega)$ is given by

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}(-i n)^{k} C_{n}(\omega) e^{i n t} \tag{4.2}
\end{equation*}
$$

From Theorem 1 with $X_{\dot{k}}^{(k)}(t, \omega)$ in place of $X(t, \omega)$, we have the following theorem.

Theorem 2. Suppose a 2π-periodic stochastic process $X(t, \omega) \in L^{1}(T \times \Omega)$ has the $k+1$-st mean derivative in $L^{1}(T \times \Omega)$. Assume that there is an $\hat{X}_{\boldsymbol{k}}^{(k)}(t, \omega)$ such that $\hat{X}_{\boldsymbol{\mu}}^{(k)}(t, \omega) \in L^{r}(\Omega)$ for some $1<r \leqq 2$, for each t and is continuous in $L^{r}(\Omega)$ on T, and $\hat{X}_{\boldsymbol{k}}^{(k)}(t, \omega)=X_{M^{(k)}}^{(k)}(t, \omega)$ in $L^{1}(T \times \Omega)$. Moreover suppose $X_{\boldsymbol{H}^{(k+1)}}(t, \omega) \in L^{r}(\Omega)$ for each t and $\left\|X_{W_{H}^{(k+1)}}(t, \omega)\right\|_{r} \in L^{1}(T)$. If

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left\|X_{M}^{(k+1)}(t, \omega)\right\|_{r} \log ^{+}\left\|X_{M}^{(k+1)}(t, \omega)\right\|_{r} d t<\infty \tag{4.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}|n|^{k}\left|C_{n}(\omega)\right|<\infty \tag{4.4}
\end{equation*}
$$

almost surely.
We also have the following theorem.
Theorem 3. Let $1<r \leqq 2,1 / r+1 / r^{\prime}=1$. We assume all the conditions in Theorem 2 with

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left\|X_{k}^{(k+1)}(t, \omega)\right\|_{r}^{1+\alpha} d t<\infty \tag{4.5}
\end{equation*}
$$

for some $0<\alpha<r-1$ in place of (4.3), then for every β such that $0 \leqq \beta<\alpha /\left(1+\alpha r^{\prime}\right)$,

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}|n|^{k+\beta}\left|C_{n}(\omega)\right|<\infty, \tag{4.6}
\end{equation*}
$$

almost surely.
If $\alpha=r-1$ and hence $X_{k r}^{(k+1)}(t, \omega) \in L^{r}(T \times \Omega)$, and $X(t, \omega)$ has the $k+1-s t$ derivative in $L^{r}(T \times \Omega)$, then for $\beta<1 / r^{\prime}$, (4.6) holds almost surely [3] (Corollary 1). Our theorem for $\alpha<r-1$ is not covered by this corollary.

We also note that the condition for β implies $\beta<1 / r^{\prime}$. For the case $\beta=1 / r^{\prime}$ the theorem is not necessarily true. See the remark given for [3] (Corollary 1).

Proof of Theorem 3. From (3.13) with $X_{m}^{(k)}(t, \omega)$ in place of $X(t, \omega)$, we see that

$$
\begin{equation*}
n^{\beta} M_{r}\left(X_{k h}^{(k)}, 1 / n\right) \leqq C_{r}\left(\frac{W_{N}}{n^{1 / r-\beta}}+\frac{N^{1-1 / r}}{n^{1-\beta}}\right) \tag{4.7}
\end{equation*}
$$

where

$$
W_{N}=\int_{E_{N}}\left\|X_{\boldsymbol{M}}^{(k+1)}(t, \omega)\right\|_{r} d t
$$

and

$$
E_{N}=\left\{t \in T,\left\|X_{w^{(k+1)}}(t, \omega)\right\|_{r} \geqq N\right\} .
$$

Choose a so that $2^{1-r^{\prime} \beta} \geqq a>2^{\beta / \alpha}$. This is possible. Take $n=2^{q}, N=a^{q}$ in (4.7), $q=1,2, \cdots$. The convergence of

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\beta-1 / r^{\prime}} M_{r}^{*}\left(X_{M}^{(k)}, 1 / n\right) \tag{4.8}
\end{equation*}
$$

is equivalent to the convergence of

$$
\begin{equation*}
\sum_{q=1}^{\infty} 2^{q(\beta+1 / r)} M_{r}^{*}\left(X_{M}^{(k)}, 2^{-q}\right) \tag{4.9}
\end{equation*}
$$

From (4.7), this converges if

$$
\begin{equation*}
\sum_{q=1}^{\infty} V_{a^{2}} 2^{\beta q}+\sum_{q=1}^{\infty} a^{q / r^{\prime}} / 2^{\left(1 / r^{\prime}-\beta\right) q}<\infty \tag{4.10}
\end{equation*}
$$

Since $a^{1 / r^{\prime}}<2^{1 / r^{\prime}-\beta}$, the second series of (4.9) converges.
Now

$$
\begin{aligned}
2^{\beta q} V_{a^{q}} & =2^{\beta q} \int_{E_{N}}\left\|X_{M}^{(k+1)}(t, \omega)\right\|_{r} d t \\
& \leqq 2^{\beta q} a^{-\alpha q} \int\left\|X_{M}^{(k+1)}(t, \omega)\right\|_{r}^{1+\alpha} d t \\
& \leqq C\left(2^{\beta} / a^{\alpha}\right)^{q},
\end{aligned}
$$

where C is a constant independent of q.
Since $2^{\beta} / a^{\alpha}<1$, the first series of (4.10) is convergent. Thus (4.9) converges and the proof is complete.

5. Sample properties of a periodic stochastic process.

In [2] and [3] it was shown that the almost sure absolute convergence of the Fourier series of a stochastic process immediately yields some sample properties of the process. By the same argument used there, we readily have the following theorem.

Theorem 4. (i) Let $X(t, \omega) \in L^{1}(T \times \Omega)$ be stochastically continuous. If all the conditions in Theorem 1 are satisfied, then there exists a modification $X_{0}(t, \omega)$
of $X(t, \omega)$ which is almost surely continuous.
(ii) If all the conditions in Theorem 2 are satisfied, then there exists a modification $X_{0}(t, \omega)$ of $X(t, \omega)$ which has almost surely the k-th contindous derivative.
(iii) If all the conditions in Theorem 3 are satisfied, then there exists a modification $X_{0}(t, \omega)$ of $X(t, \omega)$ which has almost surely the k-th derivative belonging to Lipschitz class Λ_{β} of order β.

References

[1] N. Bary: A treatise on trigonometric series, Engl. transl. Pergamon, Oxford, 1964.
[2] T. Kawata: Absolute convergence of Fourier series of periodic stochastic processes and its applications (to appear).
[3] T. Kawata: The mean derivatives and the absolute convergence of the Fourier series of a stochastic process (to appear).
[4] I. Wik: Criteria for absolute convergence of Fourier series of functions of bounded variation, Trans. Amer. Math. Soc. 163 1-24 (1972).
[5] A. Zygmund: Trigonometric series, Camb. Univ. Press, New York, 1959.
Added in proof : [2] appeared in Tohoku Math. J. 35 459-474 (1983) and [3] in Keio Sci. Tech. Rep. 36 11-24 (1983).

Department of Mathematics
Keio University
Hiyoshi, Kohoku
Yokohama 223, Japan

