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1. Introduction and results

In time series analysis, an important class of second-order stationary models
is that generated by a linear process of the form

(L.1) am= 3 atn—e(), 3 a¥j<eo,

where the ¢(n) are independent random variables with Es(n)=0 and Ee&¥(n)=o?
for each n. A process of the kind arises, for example, from a mixed
autoregressive and moving average process ([3], Chapter I). Lai and Wei

have recently obtained iterated logarithm results for partial sums ji;z( 7) of linear

processes under very general situations. One of their results is

Theorem A [7]. Let {e(n), —co<n< oo} be a sequence of independent random
variables such that Ee(n)=0 for all n,

(1.2) Ee&¥(n)=o0* for all n,
and
(1.3 sng]e(n)l'<00 for some r>2,

and let {z(n)} be a linear process defined by (1.1). Let S,,=;V_‘{z( 7) and let g(n)=
ES:. Suppose that

(1.4) limnirolf g(Kn)/g(n)>K*™ for some integer K=2,
and
(1.5) Yr>0, 30<1 such that lim sup{arr;?gt gi)/gn)}<1+r.

Then
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(1.6) limsup | S, |/ {2g(n) log log g(n)}*/*<1 a.s.

In Theorem A, the case a(;)=0, j<0, is of special interest. In this case
the process {z(n)} is a one-sided moving average. The one-sided case is of
fundamental importance in prediction theory. In fact, if {y(n)} is a second-order
stationary, purely nondeterministic, process (cf. [3] Chapter IIl), then it may be
represented in the form

ym= 3 aln—pe(i), 3 a¥i)<o0, aO=1;
Ee(n)=0 for all n, E(e(m)e(n))=0 if m#n

with the e(n) as the linear prediction errors, each having variance ¢2>0.
In this paper we consider a process of the form

1.7 x(n)=j=27i}°°a(n—j)e(j), jéoaz(j)<oo,
where the {e(n), F,, —co<n<oo} are martingale differences, i.e.,
(1.8) E(e(n)|Fn-1)=0 a.s. for each n,

%, being the o-field generated by e(m), m=<n, and Ee*(n)=g¢? for each n. . This
model is important in prediction theory, the martingale condition correspond-
ing to the condition that the best linear predictor is the best predictor (both in
the least squares sense; see Hannan and Heyde [4]).

It is our object here to give the following generalization of Theorem A (in
the one-sided case).

Theorem 1. Let {e(n), F,, —co<n< oo} be a martingale difference sequence
such that

(1.9) E(®(n)|Fp-1)=0? a.s. for all n,
and

(1.10) E(le(n)|"|Fn-1)=<A a.s. for all n, some r>2 and some constant A<oco,

and let {x(n)} be a linear process defined by (1.7). Let Sn=jzn)1x( 7) and let g(n)
=FES]. Suppose that g satisfies conditions (1.4) and (1.5). Then (1.6) holds.

In the field of applications, however, it will be often difficult to check con-
ditions (1.9) and (1.10), while conditions (1.2) and are satisfied in many ap-
plications. For this reason, replacing the assumption (1.10) of by
the weaker assumption [(1.3) (and replacing (1.9) by (1.2)), we give the following
iterated logarithm and stability results.
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Theorem 2. Let 8>1. In the notation of Theorem 1, suppose that (1.3) and
(1.9) hold, and that g satisfies (1.5) and

(1.11) lim inf g(Kn)/g(n)=K?f!"6-  for some integer K=2.
Then
(1.12) limsup [S,|/{2B8g(n)log log g(n)}/?<1 a.s.

n -0

Let us introduce the following notation. We denote by ¥, the set of func-
tions ¢(n) defined on the positive integers such that
(i) ¢(n) is positive and nondecreasing, and

(ii) éll/n¢(n)<oo.
Examples of ¢(n) are (log n)'*%, log n(log log n)**?, etc., where §>0.

Theorem 3. In the notation of Theorem 1, suppose (1.2), (1.3), (1.4) and (1.5)
hold. Then for any ¢<¥,,

(1.13) lim S,/ {g(n)¢*"(n)}*/?=0 a.s.
Remarks and Examples. (1) Let {X,, &, —co<n<N} be a martingale
difference sequence with ﬁ} EX:<oo,and let U n=j§N) X;. Since |Up—Un|=

|Up—Un|+|U,—U,| for n<k=<m, by Kolmogorov’s inequality for submartingales,

Pl max |U,—Upyp|>¢]
ns k<m

<PLIU,—Up,] >s/2:|+P[nr<r£as§L |Up—U|>e/2]

<(8/eNEWU—Un)=(8/" 3 EX]

for each ¢>0. Thus U, converges a.s. as n——oo (cf. [2], p. 238).
From this point of view, the series in converges 4.Ss.

(II) As pointed out by Lai and Stout [5] (see also Lai and Wei [7)), the
conditions (1.4) (or and cover a wide range of correlation structures
for the sequences {x(n)}. A simple example is

(i) Ler y(n)=E(x(1)x(n-+1)). Suppose that 7(0)>0 and y(n)=0 for all
n=1. Then g(n) is increasing and hence holds. Trivially, g(2n)=2g(n)
and hence (1.4) holds and if f=r/(r—2), then also holds. Another ex-
amples considered in [5] and are

(ii) Suppose that 1<a<?2 and

7(n)~n*2L(n),

where L(n) is a positive slowly varying function. Then
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g(n)=nr(0)+2:§(n—j)r(j)~2 {al@—1)} *n*L(n),
and hence (1.4) holds, and if f=ar/(ar—2), then [1.1I) holds.
(iii) Suppose that 0<a <1 and
7(n)~—n**L(n);

7O)+2 3 7(m=0.

Then
g(n)~2{a(l—a)} *n*L(n).

Hence, if »>2/a, then (1.4) holds, and if in addition B=ar/(ar—2), then
holds.
(iv) Suppose that

g)ola(j)l<°°, éoa(j);eo and o*(=E%0))>0.
Then

gm~na*(E a(i))
j=0 ’
and hence (1.4) holds, and if =7/(r—2), then holds. Obviously all the g
in (ii)-(iv) satisfy For the particular case,
a(0)=1, a()=0 if j=1, o%>0,

S» reduces to the partial sum jZZ)le( J) of martingale differences and g(n)=o?n,
which is a special case of (i) (and (iv)) and has been extensively studied in the
literature. In the case (iif), since 0<a<1 and [y(m)|~n="L(n), 3 |r(n)|<co.
Hence p’=r(0)+2n§17(n) is a finite nonnegative number. The case (iii) therefore

deals with the case p*=0. Let f(4) be the spectral density of the process {x(n)}.
We note that if ¢%*>0, then

=03 a()=06 f(0)=0,
since

2

P2= 02(?.;0 a(].) )2 and  f(H)=0o*@r)™ l jgo a(j)ei N l

2. Proofs

The proofs of Theorems 1 and 2 are based on the following lemma due to
Lai and Wei [7].
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Lemma 1 [7]. Let {Y,} be a sequence of random variables and {B,} be a
sequence of positive constants such that lim B,=oco. Suppose that there exist 6>1

aud 7(0)>0 such that as n—oo
 PL|Y | 27(6)(Bs log log B,)"/*]=0(exp (—48 log log B,)).
Suppose further that there exist ¢>0 and f: {1, 2, ---}—(0, ) such that
E\Y ,—Y | Sf(n—m) for n>m=m,,
f(n)=0(BY¥?) as n—oo,
lirg_.iilf f(Kn)/f(n)=K* for some 2>80/(6—1) and integer K=2

and
Yr>0, 30<1 such that limﬁsup {arr;ztigc f@/f(n)}<l4r.

Then
limsup |Y,|/(B, log log B,)":<z(8) a.s.

We first prove the following lemma.

Lemma 2. Let {e(n), F,, —co<n<oo} be a martingale difference sequence
such that E(e*(n)|F,-.)=0c? a.s. for all n, and (1.3) holds. Let {b,;:n=1, —o0
<j=n} be a double array of constants such that

2.1) 3 b2;<o0 for all n
J=-c0

(2.2) A,,:j_zn) bi; —> oo as n—oc,

and

2.3) sn}p bri=0(An(log A,)=?) for all p>0.

Let s,,=j=z"_) base(f). Then for all £>1 and 6>0, as n—co
2.4) PL|S.|>C0(20 A, log log A.)2]=0(exp(— 6 log log A.)).

Proof. We first note that for all >0,
(2.5) P[|b,se(5)| > AY%(log log A,)~! for some ;7]

= j:f_,wA;”’(log log A)"|bas|TE ()"
=(sup E|e(7)1"){(sup b3,)/ Aa} *=""log log Au)"

=o(exp(—8@ log log A,)), by [(2.3).
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Let

ex(7)=e(NIL|bnse(5)| = A¥*(log log An)"'],
and

En()=ea())—E(en(s)| F;-1)

for j=<n and n=1. Then for each n=1, {é,(j), F;, —co<j=n} is eifmartingale
difference sequence with '

(2.6) INCHOIE T EY . a.s. for all j,
and
2.7 |bnjEn(f)| =2A%*(log log A,)"* a.s. for all ;.

Let £>{’>1 and put
(2.8) cn=2A%%log log A,)™t, A.={’0"*A7'*(26 log log A,)Y2.

Then, by virtue of [2.2), there exists n, such that 2,c,=<1 for all n=n, Let

§n=j_2n) bn;&.(7), and define nonnegative random variables T, by

(29)  Ta=exp(aSn)exp| —(4/2) 1+ 2uca/2) B bLEEHN] %50 .

In view of a remark made in Section I, and [2.6), both the series in [2.9)
converge a.s., and therefore the T, are well-defined.
We now show that for each n=n,

(2.10) ET.=1.

Combining this with a simple relation ET,=aP[T,>a] implies
(2.11) P[T,>al<a ! for all n=n, and a>0.

In order to prove we let

Tirh=exp (s 3 busnli)) exp | —(28/2) (1+20cn/2) 35 b3,BER) -]

for m=k=n and n=n, and T{; »=1 a.s. Then, in view of and
{T{M,, Fp, m—1=k=<n} forms a nonnegative supermartingale for each m=<n
and n=n, (cf. [8], p. 299). Thus

ET{n<ET{, < - SET@n=1
On the other hand,
T,=lm T, a.s.
m»—ocl

Hence by the Fatou lemma
ET,<liminf ET{, <1,

m—+—oo
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" which proves (2.10)
By and (2.11), we obtain that
(2.12) PLS.>Ca(20 A, log log A,)Y%]

=P[exp(1.5,)>exp{2.{'a(20 A, log log A,)"%}]

=P[T,.>exp {z,,c'a(zoA,, log log A,)**

—(33/2) A+ Ancn/2) 35 BYEENI -} |
<exp{—2A:.{'0(20 A, log log A;)*+(2%/2)(1+Ancr/2)0%An}
<exp(—40 log log A,)

for all n sufficiently large. By a similar argument as above, we have for all
large n,

(2.13) P[—8,>0'0(20 A, log log A,)"*]<exp(—0 log log A,).
Combining (2.12) and we get
(2.19) PL|S.|>C"a(20 A, log log A,)"*]1<2exp (—8 log log A,)

for all n large enough.
Since E(e(y)|F;-,)=0 a.s., we have for all 7>0 and 6>0,

@15  P[| B baBlen(n| s

>7(A, log log A,,)””]

<Ay log log An)*E| 3 bsE(eal)| -0

=7t (A, log log A,)"V?
\ X 33 E{1bnse() | 1L 1bnse()] > AY*(log log AT}
ér"‘(sjup Ele(7)|") {(sup b3,)/ An} "~ /*(log log'A,) ~*/
J

=o(exp (—0 log log A4,)), by [2.3).
From (2.5), [2.14) and (2.15), follows as desired.

Proof of Theorem 1. Let for j<n and n=1,
(2.16) bay= izlea(i— j), where a(i—j;)=0 if i<;j.

Then we note that
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Sa= 35 (N= 3 bare(s).-

Therefore

3 b3,

52w
Note that 111111“; g(n)=o0 under the conditions (1.4) and (cf. [5). Therefore
a?>0, ngl A,=0c0 and holds. Note also that holds for the double array
{ba;} defined by (2.16) (see p. 327).
Let 0<d<1. In view of (1.10), we can choose B>0 such that
2.17) EE(NIC|e(f)| >B]| Fs-1)=0%* a.s. for all ;.

Let

g(n)=ESi=0%A,, where A,

e()=eMILle(j)| =BI—E(e(NICle())| =B F;-1) .
Then {e(y), F;, —0<j<oo} is a martingale difference sequence with
E@* ()| Fj-)SE(¥))| Fj-1)=0® a.s. for all 5.
Applying Lemma 2 with §=1+40 and {=(1409)"?, ‘we obtain that
@.18) P[| 35, baset)| > (1-+8)0(24, log log An)"]
=0(exp{—(1+09) log log As}).
Now we note that for n>m=(
jﬁ_)“bnje(j)— jf_)mbmje(j)= er=Z”_mbn-m,f—me(j) -
Since 51j1p le()| 2B a.s., by Burkholder’s inequality we obtain that for
every p>1 and n>m=0 ,
@.19) E| 35 buet)— B bmseli)|” =C,@B2(3 b3-ms)"
=C,(2B)? AR,

where C, is a positive constant depending only on p. Take s>2/r such that
lim inf g(Kn)/g(n)=K?*, where K is as given in (1.4), and choose p large enough

such that ps/2>(1+48)/6. Then in view of (2.18) and (2.19), we can apply
(with g=p and f(n)=C,(2B)?AZ’?) and obtain that

(2.20) lim»sup |j=z"_: bn,-e(j)|/(An log log A,)2<(1+0)2Y%¢ a.s.

Let d(j)=¢(f)—e(s). Then {d(j), F;, —oo<j<oo} is a martingale difference
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sequence with
E(d*()| F3-) S E(eXNIL|e(j)| > Bl F;-)<80* a.s. for all j,
by (2.17). Hence by

(2.21) | 'P[’Jﬁ_}wbwd( | >(1+8)3(20 4, log log A, ]

=0(exp(—¥@ log log A,))

for all 4>0. Moreoire,r,, by'Burkholder’s inequality again,

(2.22) E| 3 buidi)— 2 bmsd ()| =E| 3_ba-m.s-nd ()|

=2AC( S bioms)

=2"AC, A%,
for n>m=0. Choose 6 large enough so that
(2.23) 0>1, 60/(0—1)<rs/2.

Then in view of [2.21I), [2.22) and [2.23), we can again apply Lemma 1l (with
g=r and f(n)=2"AC.A%?) and obtain that

(2.24) 1i153*s£1p|j=z'§wb,,,d(j)| /(A,, log log A,)"*<(26)"*(1+6)dc a.s.

Since 6 is arbitrary, the upper half of the law of the iterated logarithm
follows from and (2.24).

Proof of Let 6>0. By Burkholder’s inequality, we obtain that
for n>m=0

2.25) E|Sa=Sn|"=E| 2 br-ms-ns()|

) < - n-m R r/2
<Cilsup E1e(i) (2. b3-m.s)
= T(S}Jp Ele(5)|NAY2,.

Hence applying with §=p+6 and {=1+4, and further applying
1 with ¢g=r and f(n)=C,(s;1pEls(j)l')A;’”, we have

(2.26) lim sup | S, |/(A, log log A,)/2<(1+48)(8-+0)/22Y%¢ a.s.

Since @ is arbitrary, the desired conclusion follows from (2.26)
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Proof of The desired conclusion immediately follows from
and Theorems 5 and 7 of Lai and Stout [6].
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