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0. Introduction

Recently, Sakamoto has classified isotropic submanifolds M with parallel
second fundamental form in the Euclidean sphere S™. He stated that M is
locally isometric to compact symmetric spaces of rank one and the immersion is
locally congruent to the second of first standard immersion according as M is a
sphere or not.

Motivated by his work, we have already characterized the second standard
minimal immersion of a sphere into S™ in terms of isotropic immersions. Namely,
we obtained the following (for details, see [3].

Theorem. Let M be an n-dimensional real space form of constant curvature

¢, and M be an(n-l——‘,lg—n(n—i-l)—l)-dz'mensz'onal real space form of constant curva-

ture &. If ¢<& and M is an isotropic submanifold of M, then M is immersed as
a Veronese manifold into M.

The purpose of this paper is to characterize in terms of isotropic immersions
the first standard minimal immersions of other compact symmetric spaces of rank
one into a sphere. We get the following.

Theorem 1. Let M be a real 2n-dimensional complex space form and M2n+p
be a (2n+p)-dimensional real space form of constant curvature &>0. If p=<n®—1
and M is an isotropic submanifold of M, then p=n®*—1, M is locally isometric to
a complex projective space and the immersion is locally congruent to the first
standard minimal immersion.

Theorem 2. Let M be a real 4n-dimensional quaternionic space from and
M@+? be a (dn+ p)-dimensional real space form of constant curvature &¢>0. If
pP=(n—1)2n-+1) and M is an isotropic submanifold of M, then p=(n—1)2n+1),
M is locally isometric to a quaternion projective space and the immersion is locally
congruent to the first standard minimal immersion.

Theorem 3. Let M be an open connected submanifold of either the Cayley
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plane or its noncompact dual and M*+? be q (16-+p)-dimensional real space form
of constant curvature ¢>0. If p=9 and M is an isotropic submanifold of M, then
p=9, M is not an open connected submanifold of the noncompact dual of the

Cayley plane and the immersion is locally congruent to the first standard minimal
immersion.

Remark. Due to Sakamoto [6], we have only to show that the second
fundamental form of the immersion is parallel in order to prove Theorems 1, 2
and 3.

The author wishes to express his appreciation to Professor K. Ogiue and Mr.
K. Tsukada for their encouragement and help in developing this paper.

1. Preliminies

Let M be an n-dimensional submanifold of a Riemannian manifold M"+? with
{,>. Let ¥V and V be the Riemannian connections of M and M, respectively.
Then the second fundamental form o of the immersion is given by (X, V)=
VY —V,Y, where X and Y are tangent vector fields on M. We call S=
(1/n)(tr o)the mean curvature vector of M in M. The mean curvature H of M is
the length of S. If S is identically zero, the submanifold M is said to be minimal.
The submanifold M is totally umbilic provided that o(X, YV)=<X, Y)>S for any
tangent vector field X, Y on M. In particular, if ¢ vanishes identically, M is
said to be a totally geodesic submanifold of M. For a vector field & normal to
M, we write Vxé=—A,X+Dx& where —A.X (resp. Dx&) denotes tangential
(resp. the normal) component of Vx&. A normal vector field & is said to be
parallel if Dx&=0 for any vector field X tangent to M. We define the covariant
differentiation ¥V’ of the second fundamental form ¢ with respect to the connec-
tion in (tangent bundle)-(normal bundle) as follows: (V%a)(Y, Z)=Dx(a(Y, Z))
—o(VxY, Z)—o(Y, VxZ). The second fundamental form ¢ is said to be paraillel
if (Vxo)Y, Z)=0 for all tangent vector fields X, Yand Z on M. Let &, -, &,
be an orthonormal basis of the normal bundle T+(M) and A, be the second
fundamental form with respect to &,: <{A.X, Y)=<(0o(X,Y), £.>. |oll is the

’ y 4
length of the second fundamental form ¢ of the immersion so that ||¢|*= 2)1 tr A%,
a=

A ZA-isotropic immersion is an isometric immersion such that all its normal curva-
ture vectors have the same length 2 at each point. Namely, the length 2 of the
normal curvature vector is a function on the submanifold. In particular, if the
function A is constant, then the immersion is said to be constant A-isotropic. Here and
in the sequel, we study isotropic submanifolds in case that the ambient manifold
M is a real space form of curvature ¢. A Riemannian manifold of constant
curvature is called a real space form. For later use, we write down Gauss and
Coddazi equations :
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(1'1) <G(X: Y); U(Z; W)>—<G(Z; Y)’ U(X; W)>
(1.2) (Vxo)Y, Z)=(VroXX, Z),

where R denotes the curvature tensor of M. :

Now we write the curvature tensors of symmetric spaces of rank one except
real space forms. A Kaehler manifold M of constant holomorphic sectional
curvature is called a complex space form. The curvature tensor R of a complex
space form M with complex structure J of constant holomorphic sectional curva-
ture 4c is given by

(1.3) R(X, Y)Z=c{Y, Z>X—X, ZY+<{JY, Z)]X
—JX, Z)]Y +2(X, JY>]Z}

for all vector fields X, Y and Z tangent to M. A quaternionic Kaehler manifold
of constant Q-sectional curvature is called a quaternionic space form. As is
well-known (cf. [2]), the curvature tensor R of a quaternionic space form M of
constant @Q-sectional curvature 4c is given by

(1.4)  R(X, )Z=c{KY, Z)X—X, Z)Y +UY, Z)IX—UIX, Z>IY
| HJY, ZX]JX—JX, Z)]Y +<KY, Z)KX—<KX, Z)KY
+2(X, IYYIZ+2(X, JY>JZ+2(X, KY>KZ}

for all vector fields X, Y and Z tangent to M, where {I, J, K} is a canonical
local basis of M.

Let M be either the Cayley plane or its-noncompact dual. Here we denote
by Cay the Cayley numbers, which is an 8-dimensional non-associative division
algebra over the real numbers. It has a multiplicative identity and a positive
definite bilinear form <,>. The tangent space of M may be identified with
V=Cay®Cay, viewed as ordered pairs of Cayley numbers. The vector space V
has a positive definite symmetric form ¢, > given by {(a, ¢), (b, d)>=<a, b>+<c, d>
(for details, see [1J). The curvature tensor R of M is given by

(L.5) <R((a, b), (¢, d)e, ), (g, ) |
=2, eXa, g9—4Ka, eXc, gr+<ed, ghd—<eb, gd>
+<ad—cb, gf>+<cf, ahy—<af, chy—4b, f>{d, h)
+4<d, f)<b, hy—<ad—cb, eh)),

where « is a nonzero real number.
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2. Lemmas

For orthonormal vectors X, Y €T (M ), we denote by K(X, Y) (resp. K(X, Y))
the sectional curvature of the plane spanned by X and Y for M (resp. for M)
and we put Ayy=K(X, Y)—K(X, Y). We call A the discriminant at x€M. The
following lemma is due to O’'Neill [5].

Lemma 1. Let M™ be a A (>0)-isotropic submanifold in a Riemannian mani-
fold M. Assume that the discriminant A at x& M is constant. Then the following
inequalities hold at x.:

—((n+2)/2(n—1)) <A< 2

Let N: be the first normal space at x of the above immersion, that is, the vector space
spanned by all vectors o(X, Y). Then we have

(1) A=2*<M is totally umbilic at x <dim Nil=1, -
2) A=—((n+2)/2(n—1)22= M is minimal at x =dim Ni=n(n+1)/2—-1,
3 —((n+2)/2(n—1)22<A< 2=dim Ni=n(n+1)/2.

Finally we prepare the following lemma, which is indebted to Nakagawa

and Itoh

Lemma 2. Let M™ be a constant A-isotropic submanifold in a real space form
Mn+e of curvature &. We assume that M is locally symmetric and the first
normal space equals the normal space at any point of M. Then the second funda-
mental form of the immersion is parallel.

Proof. By assumption, for all vector fields X on M, we have
(o(X, X), o(X, X)p=2KX, XX, X>.
This is equivalent to
2.1) Ko(X, Y), o(Z, W)r+<o(X, Z), a(Y, W)>+<a(X, W), oY, Z))
=2(X, Y XXZ, WHHLX, ZXX, Wr+LX, WY, ZD)

for all vector fields X, Y, Z and W tangent to M. On the other hand, exchanging
X and Y in (1.1I), we get

2.2) oY, X), 0o(Z, W)>—<a(Z, X), oY, W)>
=<(R(Z, )X, W>—e(Y, X)XZ, W)—(Z, X)XY, W>).
Summing up [(L.1), and we obtain

(2.3) <o(X, Y), o(Z, W)>=-31-(<R(Z, X)Y, WH>H<(R(Z, V)X, W)
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— L@, Y, Wy—C¥, ZXX, Wy—CZ, XY, W)

2R, K2, WX, ZXY, WX, WY, 29).
Since A is constant and M is locally symmetric, differentiating with respect
to any tangent vector field T on M, we have the following:
2.4) Vo)X, Y), o(Z, WH=—<ao(X, Y), Nzo)(Z, W)>.
By using and the Codazzi equation repeatedly, we find
(V7o) X, Y), o(Z, W)y=—(a(X, Y), Nzo)T, W))
=((VeoXZ,7Y), o(T, W»=—<a(Z, Y), Wwo)X, T)
=<((Vyo)Z, W), o(X, T)>=—<a(Z, W), Nra)X, Y)).

So we see that (V7o) X, Y), a(Z, W)>=0. This, together with the assumption
that the first normal space equals the normal space at any point of M, shows
that the second fundamental form of our immersion is parallel. Q.E.D.

3. Proof of Theorem 1

Let M be a real 2n-dimensional complex space form with complex structure
J of constant holomorphic sectional curvature 4c. We fix an arbitrary point x
of M. By assumption, all normal curvature vectors at x have the same length,
say, A. Substituting into the right-hand side of we have

3.1) (X, 1), oz, Wiy=2T2=E (x, vyz, w>
A2—(c—0)

3
+c(KJX, ZXXJY, WH+LJY, ZXXJX, W))

for all vectors X, Y, Z and W of T.(M). Now we investigate the first normal
space of M by using [3.I} We choose a local field of orthonormal frame
ey, ***, Cn, Cns1=Jei, -+, esn=Je, around x. Since the curvature tensor R of M
is a nice form, see we immediately find <(R(es, e;)ex, e1>=c(0;:01:—0:x051),
where 7, j, £ and [/ run over the range {1, 2, ---, n}. So we may apply Lemma 1
to the linear subspace of T.(M), which is generated by {e;, -:-, ¢x}. Our aim
here is to show that the case (2) of Lemma 1 occurs at any point of M. First
we consider the case (1) of Lemma 1, that is, A*=c—¢. From we have

3.2) 2¢a(es, e;), aley, e))>+<aley, e1), aley, e)>=(c—&)(201,0:5+1),
where 7 and ; run over the range {1, 2, ---, 2n}. Hence, yields
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3.3 2[]0|j2+4n2H2=4n(n+1)(c—5),

where | g| is the length of the second fundamental form ¢ and H is the mean
curvature of M.
On the other hand the Gauss equation [1.I), combined with shows

3.4 —l|lel*+4n*H*=4n(n+1)c—2n2n—1)¢.

As an immediate consequence of and (3.4), we get |g||*=—2n&<0. This
is a contradiction. Moreover a long but straightforward calculation, by virtue of
(3.1), yields the following orthogonal relations :

A—(c—¢
35) Coles, Jep, oter, Jer=2—E=D 5,5,
| for 1=:<j=<n and 1Z5k<I<Zn.
(3.6) Kolei, ey), ales, Je:)>=0 for 1=<i<j<n and 1<Ek<I<n.

Then, in consideration of (3.5) and (3.6), we see that the case (3) of Lemma 1
does not occur at x. In fact, in this case we find that the codimension
n(n+1) . n(n—1)
bz T
Lemma 1 occurs at any point x of M so that 1 is constant on M and p=n?—1.
‘Thus, in view of the second fundamental form of our immersion is
parallel. - Q.E.D.

=n? which is a contradiction. Hence the case (2) of

4. Proof of Theorem 2

Let M be a real 4n-dimensional quaternionic space form with canonical local
basis {/, J, K} of constant Q-sectional curvature 4c. By the same calculation as
in the section 3, we have
A+2(c—0)

D <eX, V), a2, Wh=""T5

X, YXZ, W)

22—'(6'—75)
3

+e(dX, ZXTY, WH+IY, ZXIX, W)+<JX, ZXX]JY, W)
+JY, ZXJX, WH>H<KX, ZX}XKY, WY>+<(KY, Z)XKX, W)).

+ (KX, WXY, Z>+<X, ZXXY, W>)

Fix an arbitrary point x of M. We choose a local field of orthonormal frame
ey, >+, en, ley, -+, Ie,, Je,, -+, Jen, Ke,, ---, Ke, around x. We here remark
that we may also apply Lemma 1 to the linear subspace of T.(M), which is
generated by {e,, -+, e,}. Similarly we find that the case (1) of Lemma 1 does
not occur. Moreover a long but straightforward calculation, with the help of
shows the following orthogonal relations :
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4.2) ales, Iej), ales, Ie)>=<ales, Je;), aler, Jeu)
=<a(e;, Key), ales, Kez)>=£—:(3f——6)5u5n
for 1=i<j=<n and 1=k<I=n.
4.3) {ales, Iey), ales, Jer)>=<ales, Jey), oler, Ker))
=<o(e;, Ke;), oles, Ie;))>)=0 for 1=i<j=n and 1=k<I=n.
44 - Loley ey), ales, Ier))=<a(ey, ¢)), alew, Jer)>

=<a(ey, ¢;), a(e, Ke))>=0 for 1=/<=j=n and 1=k<i=n.

Then, in consideration of and we see that the case (3) of

Lemma 1 does not occur at x. In fact, in this case we find that the codimen-

n(n+1) n 3n(n—1)
2 2

(2) of Lemma 1 occurs at any point x of M so that 2 is constant on M and

p=(n—1)2n-+1). Thus, in view of the second fundamental form of

our immersion is parallel. Q.E.D.

sion p= =2n?—n, which is a contradiction. Hence the case

5. Proof of Theorem 3
We immediately find from that
K((a, 0), (b, 0))=<R((a, 0), (b, 0))b, 0), (a, 0=«

if (a, 0)A(b, 0)#0. Hence Lemma 1 asserts that A*>=a—¢, since p=9. A direct
calculation from [(1.5), and A*=a—C gives

6.1 <a((a, b), (¢, ), ol(e, 1), (g, M)
=(a—2)(Kg, edXXa, ¢>+<h, f<b, d>)—&(e, gX<b, d>+<f, hX<a, ¢7)

+3(g, ex<b, d>+H<h, F3<a, e>+<a, gXF, d>+<b, hXc, &
+<e, g)<f, b>+<d, h)<e, a3)

+75-(Ceh, cb>+<ah, cf>+<af, ad>-+<gb, ed>+<gf, cb)
+<af, ch)+<eh, ad)>+<{eb, gd>—2{eb, ch)—2{af, gd>
—2{gb, cf>—2{ah, ed)).

Here, for simplicity, we put X;=(e; 0), Y:=(0, e;) for 0=/<7, where ¢,=1,
e;, -+, e; is a basis of Cay. By using we find that the nonzero vectors
{o(Xo, Xo), 6(Xs, Yi)}osiss are mutually orthogonal so that p=9. Thus, in view
of the second fundamental form of our immersion is parallel. Q.E.D.
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