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1. Introduction and results.

Let {X, i€Z} be a strictly stationary sequence of random variables. Let
¢ denote the o-field generated by random variables {Xj, i=p, p+1, -, q}.
Suppose that the sequence {X,} satisfies the condition of the absolute regularity,
that is
(L1 B(n)=E {sup |P(A|F2.)—P(A)|} 10,

AeFy
as n—oo,
Suppose EX;=0 and E|X,|?***<co for some 6>0. Besides if we assume

:21 (‘B(n))a/(ub) <oo,

then the series

Ms

1.2) o’ =EX%:+2 1E(XxXiH)

i

converges absolutely. (See e.g. [8].) We suppose moreover that ¢>0.
Define a continuous polygonal line {X,(#), 0=t<1} by

X,(0=(on) 8, Xt (nt—[n]on) Kencs

where [x] denotes the integral part of x. Let {B(), t=0} be a standard
Brownian motion. Moreover let P, be distribution of {X,(#), 0=t=<1} and W the
Wiener measure on the space of continuous functions C[0, 1]. As is well known,
if the above conditions are satisfied, then the invariance principle of Donsker

type holds, that is, as n—oo
(1.3) P,=W. (Weak convergence in C[0, 1].)

(See e.g. Oodaira and Yoshihara Kato [3]) Furthermore, from Theorem 5.1
in Billingsley (1.3) implies the Erdds-Kac type invariance principle, that is
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(1.4) lim P(max |S;| <on?2A)=T(A)=P(sup |B@)| <A)
n—>c0 1sksn osts1
for all' 4, where
k
Sk= 2 X‘i
i=1
and
: _4 3 (SDP o @etlen
(1.4) TW=_ gy~ g5 )

For the convergence rate in Yoshihara [8] gave the following result;
if E|X,|***<oco for some ¢>0 and

(1.5) 3 k(B0 <o,

then

(1.6) Ap,=sup|P(max |S;|<on'?A)—T(2)| =0(n""*(log n)'?).
2 1sksn :

The method of the proof in Yoshihara [8] highly depends on the assumption
that E|X,|***<co for some e. No stronger condition on moments seems to imply
better rates in [1.6). In this paper we shall give the better rate in (1.4) under
stronger moment condition and furthermore we give the more results under
several other moment conditions.

Theorem 1. Let {X,, i€Z} be a sequence of strictly stationary random vari-
ables satisfying EX,=0 and

(1.7 P(| X,|ZA=K, exp(—ai*)

for some a>0 and >0, where K, is a positive constant. Suppose that {X;} satisfies
the condition of the absolute regularity with coefficient B(-) such that

(1.8) B(n)=o(e"™™)
for some y>0. Then we have
(1.9) A,=0(n""(log n)%),

where {=max(14-¢, 1/24-1/p) for any ¢>0.

Theorem 2. [n Theorem 1, replace condition (1.7) by

(1.10) E|X,|"<co for some r>6.
Then we have for any 6<(r—2)/4(r+1)
(1.11) A,=o0(n"%

as n—oo,
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Theorem 3. In Theorem 1, replace concition (1.7) by
(1.12) E|X,|"<co for some r with 4<r=6.
Then we have
(1.13) A=o(n-Y7)
as n—oo. Moreover if
(1.14) E| X |"<oo for some r with 2<r=4,
then we have for any 0<(r—2)/2(2r—1),

(1.15) Ar=0(n?)

as n—oo,

2. Preliminaries.

The basic idea of the proofs of Theorems 1-3 is to use the following lemma
which is an approximation theorem given by Yoshihara [7].

Lemma 1. Let {X;} be an absolutely regular sequence of random wvariables
such that EX,=0and E|X,|***<oco for some ¢>0. Let g(t, ---, tz) be any Borel
Sfunction on R* with |g(ty, -+, tx)| <K, K, being a positive constant. Then there
exists a sequence of independent random variables {Y;} such that each Y, has the
same distribution as that of X; and

|E{g(Xi1: X’izr Ty Xik)} —E {g(Yip Y‘ig) Tty Yik)} I§2K2k‘3(d)
for any 1=<7,<i,< -+ <ip, where

d= max (fj+1—17;).
1sjs k-1

The following lemma is also due to Yoshihara [7].

Lemma 2. Let {X;} be a strictly stationary and absolutely regular sequence
of random wvariables with zero mean and E|X,|°<oo for some s=3. If the
assumption (1.6) holds and o>0 in (1.2), then

sup {t*(log n)7'P(|Sa| ZUEX)*(log n)!/*n"/")} = Kyn= =212,

t>((s-2)log )1

where K, is a positive constant depending only on s.

We now define several sequences of random variables associated with {X;}
in the following way. Let M=[n'?]+1. For j=1, ---, M—1, define

L= {G=DIn**]+1, G—D[n*]+2, -, jLn**]}
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and

Iy={M—-1)[n'*]+1, (M—1)[n'/*]42, .-, n} .
Let

yi= 2 n"*X; for j=1, -+, M.
i€l

Moreover define U;= {j[n'/*]—[6 log n]+1, j[n"*]—[6 log n]+2, ---, jLn"2]}
and

vy;= 2 n~ %X, for j=1, .-, M—1 and vy=0,

€Uy

where 8 is some positive constant. Denote
§;=y;—v; for j=1, -, M.
Using [Theorem 1 in Yokoyama [6] we easily have the following lemma.

Lemma 3. As n—co,

(i) Eyf=n-24-0(n"Y, =1, -, M—1,
(ii) Eyu*=n—(M—-D[n'*])/n+0(n"")
and
(iliy Ev;*=(0 log n)/n+0(n"Y), j=1, ---, M—1.
For each positive integer m,
(iv) E|y;|""=KgKnE|X,|*"n ™2, j=1, -, M
and
(V) Elv|*"<KzKnE|X,|*™(8 log my™n~™, j=1, -, M—1,
where Kn=2m!(2m—1) and Ky is a positive constant depending only on the coeffi-
cient B(-).

Define M+1 points {a;} on [0, 1] by a,=~k[n'?]/n for k=0, 1, ---, M—1
and ay=1. Let {X,({), 0=¢t=1}, {X,(@®), 0=¢t=1} and {)?,,(t), 0<t<1} be con-
tinuous polygonal lines defined respectively by

x { nt%tX,, for t[0, 1/n],
n(t):
n~ S+ (nt—R)n"2 X4, for te(k/n, (B4-1)/n], k=1, ---, M—1,
Ly, for tel0, a.]
Xo= [
D Yty for t€(ay, azd, k=1, -, M—1,
i=1 Ap+1— Ay
and
?:“yly fOI' tEEO, al:l;
Xa={

k f—
25i+"—?—'£k_$k+1; for te(as, ar+il, k=1, :--, M—1.

i=1 AQpry1—Cay
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3. More lemmas.
We need more lemmas. Let e,=n"'4(log n)*. Define

*_{ 51 for IEJ'l:<=5n
"7lo for 1&]>em
and

n/=&F—E&#* for j=1, -, M.

Moreover define continuous polygonal lines {X,*(t), 0=t=<1} and {X,**(t), 0=t<1}
by

Lex for 1[0, ai],

1

Xx={ ° t
D e ——h_ex  for te(as, awd, k=1, -, M—1,
i=1 Ar+1—ar

and
zt—ﬂh for te[O) al]r
X *%(t) = : t

Evi+#vk+ly for te(ak) ak+1:l7 kzly Tty M_l'
i=1 AQrr1—ay

The expectations of &;* are estimated as follows.
Lemma 4. As n—co, for any u>1/4,
|EEX | =K,n* for j=1, ---, M,
where K, is a positive constant depending only on u.

Proof. Since E§;=0 for each j,

{n1/21-[6 log nJ

3.1) | EE*| = S xP(nir X,edx)|
1Z21>8 i=1
nl/21-(6 n
é‘g n'”“xP(n“”‘E HE s ‘]Xide)l.
1z1>(log m)& i=1

On the other hand we have by that

(3.2) P(|nn ™"

X|Zx)SK,x~*n¢-214(log m)***"2,
i=1

for x>(log n)*. Thus, from and [3.2), the lemma is proved.

Lemma 5. As n—oo,

P(sup | X,(t)—Xn(t)| Zen)=0(ca)

Proof. We see from the definitions of X,(t) and X,(t) that
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(3.3) P(sup | X,()—X, )| =en)
osts1

<P(sup | X,()—X.(t)| Zen/2)+P(sup | Xa()—Xn(®) | Ze0/2)
0sts1 0sts1

<§P( sup 1 Xa()—a(t)| e /2)+P( max D, 2¢,/2)
= &7 \ayoystsag " " 1sksy | S5 n
<M 2 10| >

Pomal 2| zen2)+ E2(| ofzenr2)
=A,+A4,, say.

Recall that {>1. Using with s=8, we have that

2 (log n)%/2)

ze/2)=P(| Z 011X,

k
(3.4) P(| 2 noex,
=o(n=1),

uniformly in £ with 1<.=<[n'?]. Hence

(nl/2] k
(3.5) ASM S P( > noinx, gen/2>=0(en).
As to A, we also apply Lemma 2 to see that
k
(3.6) 4= 3 P(| Zvi|zenr2)
=1 i=1
M k
2\1/2 C 1/4
ékg ( g DY%(log n)t-1/2p )

=0(&,) .
Thus the lemma is proved from the relations and [(3.6).
Lemma 6. As n-—oo,

P(sup | Xa(t)— X **(t) | Z en)=0(e,) .

Proof. From the definitions of X,(t) and X,**(f), we see that

3.7) P(sup | X, ) — X **(t)| Z &)

0stis1

SP(sup | Xa()—X,*(t)| Z€0/2)+P(SUp | Xo*(H)— Xo**(1)| Z€0/2)
0stsl 0sts1

=P(max Zk‘. t—éi*)lgen/Z)JrP max Zk‘, E¢&.*
1SksM | i=1 1sksM | i=1
=C,+C,, say.

Since §;=§&;* if |&;|<e, for each i, we have from that
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(3.8) Ci=P(max |€,] Zen)=MP(|€] Zen)=0(¢n) .
Moreover, as to C,, since we have from that

Z E§X*

M
< 3 BEX|=olen),

max
1sksM

it follows that for sufficiently large n
(3.9) C,=0.

Therefore we obtain the lemma from the relations (3.7)-(3.9).

4. Proof of Theorem 1.

We now turn out to prove [Theorem 1. Define the distribution function
F,*(+) as follows,

Fn*(,l):P( max

1sksM

$nf=1)

Furthermore denote .#4 the o-field generated by the random variables {15, 7p+1,
-+, pg for all p and ¢ with 1<p=<¢g=<M. We have from the assumption (1.1

that
max E{ sup |P(A| M)—P(A) |} =0(n"17).
1sksM-1 AE‘mk+l
Therefore, using [Lemma 1, we see that there exists a sequence of independent
random variables {Y,, ---, Y5} such that Y; has the same distribution as that of
n¢ for each 7 and

k

2y

4.1) P max =0(n70+1/%)

1sksM

£ 2

1sksM

for any A.

On the other hand, applying the Skorokhod embedding theorem (see e.g.
to {Y;}, we can construct a Brownian motion {B(f), =0} and a sequence
of independent and positive random variables {T;, 1=/< M} such that the joint
distributions of

M M-1
{B(TY, BTATH—BT, -+, B( X T:)—B(Z T:)}
=1 i=1
are same as those of {Y,, Y, -+, Yy} and
4.2) ET,=EY;® and E|T;|™=<2m! ElYilz”‘, =1, -, M,

for each positive integer m.
Combining this argument and the equation we have that

(4.3) F,,*(Z):P( max

1SksM

SV =2)+oen
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<2)+olen).

=P( max
1sksM

B(éT;

Now since Exn;=0 and |7|=2¢, for each 4,

max sup <2¢n.

1SkSM 0StsSTy

Therefore we have from that
(4.4) F*(D)=P( sup | B(t)| <A+2e,)+0(en)

0sts ), Tq
i=1

B(t+ th)—B(ki Ti)

i=1

<P( sup |BO)|<2+2e)+P(| S Ti—1|zen)+oten),
and
M
45) FzP( sup | B(t)| =i—2e)—P(| 2 Ti—1|Zen)—ofen).

As to the right hand sides of [(4.4) and [4.5), the same method as in the proof
of stated in Sawyer gives us in view of the inequality that

4.6) P(

M

3 Te—1| Zen)=o0en).

i=1

On the other hand we see from Lemmas 5 and 6 that
4.7) Fn(/?)“—‘P(ogltlé)1 | X2 =2
éP(ogltlle | X)) =2, Sup | Xn(t)— X **(t) | =2e4)
+P(sup | Xo(t)—Xn(t)| Ze)+P(sup | Xa(t)— Xa**(t)| Z&0)
0ostsl1 0sts1

SF*A+2¢e,)to(en)
and

(4.8) Fr(A)=2F*(2—2¢e,)—o0(en).
Thus we have from the inequalities (4.4)-(4.8) that
P( sup |B@)|=2—4¢e,)—o0(en)

0stsitsy

an(Z)S;P(os?;l& I B@) | =2+4e,)+o0(en) .

The rest of the proof is the same as that of Theorem 1 in [5] and is omitted.

5. Proof of Theorem 2.

By the truncation argument which was used in the proof of Theorem 2 in
[5], we can easily prove the theorem.
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6. Proof of Theorem 3.

In the proof of in [2], replace Lemma 3 in [2] by Lemma 1, then

we can obtain [Theorem
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