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1. Introduction and results.

Let {X,, i€Z} be a strictly stationary sequence of random variables. Let
g% denote a o-field generated by random variables {X;, i=p, p+1, -+, g}. Sup-
pose the sequence {X,} satisfies the conditon of the absolute regularity,

(1.1) ﬁ(n)=E[flng° |P(A|92)—P(A)|110,

as n—oo,
Suppose EX;=0 and E|X,|**®<oco for some 6>0. Under these assumptions, if

S (Ba@yI<eo,
then
1.2) azzEXHziZf,; E(X,Xis1) <00 .

(See e.g. [1]). Throughout this paper we assume ¢ >0.
k
Let. S k=i§1Xi, S,=0 and {B(t), t=0} be the standard Brownian motion. Let

f(s, x)eC(R? be a function such that f and its partial derivative of order one
are of slow growth in x, i.e. f satisfies the inequality of the form,

(1-3) lDf(sy x)léKl(l_’_lxla):

where D denotes either the identity operator or first derivative, and ¢ and K,
are some positive constants independent of x and s. Moreover assume that the
probability distribution

F(Z):P(S: f(t, Bpdt=2)

satisfies a first order Lipshitz condition, i.e. there exists an absolute positive con-
stant K, such that



112 S. KANAGAWA

(1.4) |[F)—F(s)| =K,|t—s],

uniformly in ¢ and s.
Under these assumptions, Yoshihara [6] proved that if E| X,|**< oo for some
0>0 and B(n)=0(e-™) for some r>0 then

w8 A=sup|P(o- B A(E 2

where a’>a>0.

The purpose of this paper is to estimate the left hand side of (1.5) for an
absolutely regular sequence of random variables with absolute moments of all
orders, by the method in the proofs given in [3] and and to show the
following theorem.

0‘\/11 )<2) F(R)‘ =0(n""%(log n)t+*'),

Theorem 1. Let {X,;, i€ Z} be a sequence of strictly stationary random varia-
bles. Suppose that the sequence {X;} satisfies

(1.6) B(n)=0(e™™)
for some y>0. Suppose also that EX,=0 and for any A€R!
(L.7) P(| X,| Z22)=0(exp{—al’})

for some a>0 and 0>0. Moreover assume without loss of generality that o=1.
Let f(s, t)yeCYR? be a function satisfying the conditions (1.3) and (1.4). We
then have

Ar=0(n""%(log n)7),

where n=n(a, 6)>1+4a is some positive constant depending only on a and 0.

2. Preliminary lemmas.

In this section we give five lemmas. The basic idea of the proof of
1 is to use the following appoximation theorem due to Yoshihara

Lemma 1. Let {X;} be an absolutely regular sequence of random variables
such that EX,=0 and E|X,|***<oo for some 6>0. Let g(t,, ---, ts) be any Borel
function on R* with |gts, -+, gw)| =K, for some positive constant K,. Then
there exists a sequence of independent random variables {Y;} such that each Y,
has the same distribution as that of X, and

IE{g<Xily Xig: °tty Xik)} —E {g(Yip Yizy "ty Yik)} l§2ngﬂ(d)
for any 1=4,<i,< -+ <iy, where

d= maXz —7).
1545 (J+1 j)
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The following lemma is also due to Yoshihara [7].

Lemma 2. Let {X;} be a strictly stationary and absolutely regular sequence
of random variables with zero mean and E|X,|*<co for some s=3. If the as-
sumption (1.6) holds and >0 in (1.2), then

sup . {t'(log n)"'P(|S,| ZUEXY K(log n)*n¥M} SKin~o,

t>((s~2)logn)1l/2

where K, is a positive constant depending only on s.

We now define several sequences of random variables associated with {X,,
i€Z} in the following way. Let M=[n'/*]+1 and define the sequences I;=
{G—DLn"*]+1, G—D[n**1+2, -, jLn'*]} for j=1, ---, M—1 and Iy={(M—1)
[n**]4+1, (M—1)[nY%]+2, ---, n} and write

¢ Y= E n—1/2Xi, ]'_—_1, e, M.

1€l 5

Furthermore letting U;= {j{n**]—[#(log n)]+1, jLn**1—[6(log n)]+2, -, j
[n'%]}, define the random variables

v;= > n~YiX, j=1, -, M—1

iEUj
and vy =0, where 6 is some positive constant. Write §,=y;—v; for j=1, ---, M.
Using in Yokoyama we have the following lemma.
Lemma 3. As n—oo,
(i) Eyj=n"'2+0(n™Y, j=1,--, M—1,

(ii) Eyi=(m—M-1[n'*])/n+0(n"")
and
(iii) Evj=(0(log n))/n+0(n~Y, j=1, -+, M—1.

Moreover for each positive integer m,

(iv) E|y;|SKsKnE|X,|*™n-™2, j=1, -, M,
and
(v) Elv;|"=KzK.E|X,|*™(0(log n))™n"™, j=I1, -, M—1,

where Kn,=02m)! (2m—1) and Kz is a positive constant depending only on the
coefficient B(-).

Take M points a,, k=1, ---, M on [0, 1] such that a,=k[n¥*]/n for k=
1, .-+, M—1 and ay=1. Let {X,@), 0<t<1}, {)?n(t), 0=<t=<1} and {X.(?), 0=<t<1}
be continuous polygonal lines defined by
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(nieex, for te[O, %] ,

Xa(t)=1
Ln'“”‘S,,—l—(nt—I:e)n’””X,,ﬂ, for te(%, —kﬂ], for k=1, ---
(1

B a—lyl’ for t<[0, a,],

Xa(t)=1 R ‘—a,
Liglyi—*-—myk-ﬂ, for t€(ay, arsrl, k=1, -, M—1

and

) '—at;e,, for te[0, a.l,

Xa(t)=1 . —a
26+ L&y, for t€(ay, apal, k=1, -, M—1,
\i=1 AQp1— Ay '

respectively. With these definitions, we have
Lemma 4. Let ¢,=n"'4log n)?. As n—oo,

P(sup | f(t, Xa@t)—F(t, Xn(t)| Zen)=0(c0).
osts1
Proof. Since, from the condition (1.3),
(2-1) If(t: x)_f(ty xl)l._S_Kl(l+maX(lxla) lela))lx_xll )
we have for some positive b with b>a and b<9—1,
22)  P(sup | f(t, Xa)—f(t, Xn(t))| Ze0)
<P(sup Ku| Xa(t)—Xa(t) | (1-+max (| Xa(0)]%, 1 Xa(t)| %) Zen)
<P(sup Ki| Xa(t)—Xn(h)| (1+max (| Xa(01%, 1 Xa)] ) Zen,
sup | Xa(t) |2 < K;"(log n)®)
0sts1
+P(sup | X,()|*= K, (log n)®)
osts1

<P(sup | Xa()—X.(t)| Zeq(log n)-?)
0stsl1

+P( max (n-'/2 f)Xi‘ =K, (log n)"’“)
1sksn i=1
'_—=-A1+A2 , Ssay.

By the definitions of X,() and X,(t), we have

(2.3) A= ZP( sup | Xa()—Xa(t)| Zen(log m))

i= aj.1s
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k !
3 nieX,
i=1

éMP( =en(log n)"’)

max
1sks(nl/2]

=MP( max

1sksrnl/2],

3 X, | 2 (log 7).

i=1

Recall that »—b>1. Using Lemma 2 with s=10, we obtain that

A

uniformly in 2 with 1<A=<M. Thus we have from (2.3) that

3 14X, 2 (log m)7=*)=0(n"")

[n1/2] k
2.4) ASM S P( 3 n74X; | z(log n)”"’)=0(sn).

Furthermore it is easily proved that A,=o(es,), too. Hence the lemma is
shown by (2.3) and (2.4).

Lemma 5. As n—oo,
P(sup | f(t, Xa(t)—f(t, Xu(t)|Zen)=0(cn).
Proof. By the inequality (2.1) we have
(2.5) P(sup | f(t, Xu(t)— f(t, Ra(®))|=¢0)
osts1
<P(sup Ki| Xo(t)—Za(t)| (14+max (| Xo(0)|%, | Zald)| 9)Ze0)
<P(sup | X.a(t)—Xn(t)| Ze,(log n)-?)
0sts1
+P(sup max (| Xa(1)] %, | £4(0)| )= K, (log n)")
=B,+B,, say.

Since »—b>1, we apply Lemma 2 to B; with s=4 to see that

k

(2.6) B,=P( max

1sksM-1

=e,(log n)"’)

Vi
i=1

M-1 k

=X P( > v,-{ =014 Evi)'¥(log n)”"’"”zn”‘)
k=1 i=1

=o(n-Y%)

=0(eyn)

We next estimate B, as follows. From the definitions of )?,,(t) and X,,(t) we
have

2.7)  B,<P(sup | X.(t)|*= K, "(log n)?)+P(sup | X.(t)|*= K, *(log n)")
0sts1 0sts1
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-—P( max

1sksM

Z Vi |>K e(log n)”’“)+P( max

1sksM

3

1=1

>K —lla(log n)b/a)

=B+ B, say.

Since b/a>1, we also apply Lemma 2 to By, and B,; with s=4 and we obtain
that

(28) Bné % P(‘Ek Yi sz”a(Eyf)l/z(lOg n)b“‘n”‘)
k=1 i=1
=o(n-%)
:O(Gn)
and
2.9 Bas=o0(¢er) .

Thus we obtain the lemma from (2.5)-(2.9).

3. Skorokhod embedding.

Let % be the o-field generated by the random variables {§,, §ps1, -, &g}
for all p and ¢ with 1=<p=¢=<M. From the condition (1.1) we have

max E{ sup |P(A| .Mk — P(A)|}~—O(n“”)

1sksM-1 AE"%IZ+1

Thus, from m there exists a sequence of mdependent random variables

{Y, i=1, ---, M} such that each Y, has the same distribution as that of §; and
3.1) | <max Zk (max Zk Y, gt)‘ —=O(n-01+112)
1sksMli=1 1sksM|i=1

for any ¢=0.

On the other hand, applying the Skorokhod embedding theorem (see e. g. [2])
to {Y;}, we can construct a Brownian motion {B(¢), t=0} and a sequence of
independent and positive random variables {T';, 7=1, ---, M} such that the joint

M M-1
distributions of {B(Tl), B(T+Ty)—B(Ty), -, B(ETO—B( = T } are the same
as those of {Y,, Y, ---, Yy}, and moreover
3.2) ET,=EY;® and E|T;|™<2m!E|Y|*™, i=1 -, M,

for each positive integer m.
Using this argument, we have the following lemma.

Lemma 6. As n—oo,

P(3 (@i—an-)f(as B(Z,Te))=A—2e0)—0len)
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gP(S:f(t, Ra(t)dt=2)

M k
<P(Z (@x—ar-f(ar B(ZT1))S+26n)+olen).
The detail of the proof is just the same as that of Lemma 3.3 in Yoshihara

[6] and is omitted.

4. Proof of Theorem 1.
To prove the theorem, it is enough to show that
M k 1
@D P(|E@—anaf(an BET))-, 1t Bndt|zen)=oen.
This is seen in the following way. Once holds, we have

P(S: f(t, BO)dt<a—e,)—o(en)
<P(3 (@s—as-0f(as, B(ZT:))=2)

1
=p([. 7, Bepdti+es)+olen,
it holds in view of that

P(Bor—aros(an B(E TP 0 01

§P(2—5n<gif(t, B()dt<a-+en)+o(en)

é2K25n+0(5n) .

From this we can prove the theorem from Lemmas 4-6.
Now we shall show (4.1) by the adaptation of Sawyer [3]. Define
fA(s, x)eC(R?) for any A>0 to be such that
fA(s, x)=f(s, x) for |x|=A4,
and
DfA(s, B)S2K,(1+A4%) for [x]|>A,

uniformly in s and x, where D is the operator in (1.3). We then have that

@2 P(|E@—adf(an BET))-] 1, Bndt|z<.)

<P(| £ (@—ar-0f4(ar B(ET))-{ 4t Bandt|ze.)
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M
+P(sup | BO)| 2 A)+P(Z T:>2)
0sts2 t=1
=C,+Cy+C;, say.

From the assumption [1.7), we have that as m— oo,

(2m/d) -1

Thus, from Lemma 2 and [3.2), there exists a positive constant K, depending
only on 0 such that

(4.3) ET=E(y;—v)?=a;—a-,+0(n"'log n)

and

(4.4) ET™"<2m! E|y;—v;|*"<(Kym)Ksmp-m/2

for each 7/=1, ---, M. Therefore it follows from Tchebyshev’s inequality and

Burkholder’s inequality that

i Mz

(4.5) Co=P(3 (T—ET)>2— élETi)

i=1

=P(Z (T—ET)>1+oD))

2

<2E| 3 (T\—ET))

M
<K 3 Ely—vil*
<K n-1/?
=0(€n),

where K, and K; are absolute positive constants. Furthermore, setting A=log n,
we also obtain that

(4.6) C=2P(|B)|Zzv 2 A)=V 2 A exp(—A®)=o0(e,) .

Finally we shall estimate C, as follows. According to the proof in 3], we
see easily that

| = @a—ai-dr4(an BET))-( 1, Bnat]

=S 0t Bans), B(E T )+ panl)s—ands
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Cr+1 O

S [ o 4t ants), B(ETo)+pun(s)) (B~ B(E T:))ds

+5 14, B(;LT,))(T,.H—ET,,H)H"(O, 0)a,

—r4(1, B(élTi)>(du—aM—1)+fA<aM—1, B(éle))(au—au-J
—"S 4(aw, B(Z,T+))C6 log n1/n+0(n")

— [ r4, Banar

ngc“ say.
where |7ea(s)|=1, [psn(s)[|=1 and
c,,:;éln for k=1, -, M and Go=0.
By Tchebyshev’s inequality, we have that

@7 ClzP(

3 G| zen)= FP(GIZews®)
i=1 i=1

-]

< 2(en/8)E|GiI™.

1l
=y

Now we have from the definition of f4(:, -) that

M m
E|G,|™<@2K)™(log n)™*E zm—ETk)] .

k=1

Thus, using Burkholder’s inequality and the inequality we have that
(60/8) ™E|Gs| "= (K /4™ Ksm)*s™(log n) @~ D™
=(Kem)¥s™(log n)¢@-»m,

where K, is a positive constant depending only on 8. Therefore, if we set
m=[(log n)/K,] then

(en/S)—mE | G3 I mé n(1+(a,—‘17)/K6) loglognzo(sn) ,

for some 7>a-+K,.
Now we can also estimate other E|G;|™ in to have

(sn/8)-mE | Gi I m'—_o(sn)
for each ;. We therefore have that C,=o(e,) and finish the proof of




120 S. KANAGAWA

from [(4.2), [(4.5) and (4.6).
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