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1. Introduction.

Let {X,} be a sequence of random variables. For each positive integer =z,
let f(xP:8)=f((x, -+, x4): @) be the density, with respect to a o-finite measure
v*, of X=(X,, ---, X,) at the point xP=(x,, ---, x,) (of the appropriate space)
when @ is the value of the (unknown to the statistician) parameter.

In this paper, we study the limiting properties of certain estimators for shift
parameters constructed on observations {£,} satisfying some absolute regularity
conditions. Especially, we consider the behavior of the following estimators:

(I) a maximum likelihood estimator t,=t,(&;, -+, &), i.€., t, is defined by

(1.1) F(&i—ta, -, En—-tn))=rflgex J(i—t, o, §n—1)),

(II) a Bayesian estimator ¢, with respect to the loss function W(x) and a priori
density =(t), i.e.,

1.2 [W(ta=9pa()dy=min|W(d—pa()dy

where

(1.3) Da()= f(Gi—y, -y Ea—N7(y)
(&2, eam2in(rdz

is the a posteriori density for the parameter ¢ determined according to Bayes’
formula for the a priori density =(¢), and

(I) Pitman’s estimator §, defined by
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[vr@@=y, -, &a—sdy
[ree—s, ~, eamsnay

(1.4) f,=

2. Assumptions.

Let © be an open set in the real line R'. Suppose that a family of proba-
bility spaces {(2, &, P,), t€6} is given. Let {§,, —co<n<oo} be a strictly
stationary, absolutely regular sequence of random variables, i.e., {£,} satisfies an
absolute regularity (a.r.) condition ‘

2.1) Ba=p(n)=sup B(n, t) L 0
teo
as n—oco. Here, for each t=6®

(2.2) B(n, t)=Et{fugpwlpz(AlF—ow)—Pz(A)”

E.(.) denotes the expectation with respect to P,(.), and &% is the smallest
o-algebra generated by &£4=(&q, -+, &b).

We assume that corresponding to {£,} there exists a conditional probability
density (with respect to Lebesgue measure) f(x2|x?-% t) (t€©, n=p=1) where
f(x?|xY, t)=f(x?, t) denotes the probability density function.

Throughout this paper, we assume that for each t® and for all n>1

2.3) Fxal 275 = fa(Xn—t|(X1—1, -, Tn1—1))
and
(2-4) f(X?, t):f((xl—ty DY xn’—t)) .

Let us formulate the restrictions to be imposed on the function f,(.|.)

which are used in and [2.4).
A,. The parameter set @ is an open interval (bounded or unbounded) of R

A,. For any n the functions f,(x,|x?-?) are defined for all x? and #™-measurable
where 8™ is the smallest o-algebra of all Borel subsets of R®. The functions
fa(x|x?"1) are absolutely continuous in x & R

We put
@.5) Ful xE)= o falal 127
and for all ¢

(2.6) F(xalx2™, )=fa(xa—t[(x1—1t, =+, Xn-1—1))

A;. For all n (=1) and almost all xp-?
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@7) [Facetxrndz= 2| fawal x20d50=0.

A, There exists a positive number d, such that
(2.8) supl | 1% f (x| xP )dx <o
for almost all x?-%

A;. There exists a number 6, (>0) such that

Frlxa|x271)
Folxalx2™)

Here, the integrand is assumed to vanish whenever f.(x|x}"")=0.

248,
2.9) supS Fxmdx? < oo

nzl

A,. For some K;>0, ¢>0 and all [t—1,|<e

Flaalsd™, 0 falxt, t)
flxalxb ) flxelxt?, to)

A,;. As n—co B(n)=0(e~*") for some 2,>0.

*Flxh, t)dxt< Klt—to|%

@10 supf

Az As m—oo

’ n-1 ’ n—1 d
ew o=l || P ey
=0(e~*™)
for some 1,>0 where J, is the one used in As.
Put
T _1_ < nfixal xD)(2
@.12) 1=tim - 3| { Ry | fehds

12 9 Sf%(xilxi‘l) fé(lex{”; f(x{)dx{]

s=t+1) fi(xgxi™h) fj(lex{_l

(The existence of the limit in the right-hand side of (2.11) is verified below
(Lemma 4.10).

A,. I is positive.

A, The function =(f) is continuous and positive at the point £, the “true”
" value of the parameter ¢ and satisfies the condition

(2.13) | z(y) | <K {l+1y(%}.

In the following sections, we denote all generic constants by the letter K
and the integral part of s by [s]. D denotes the complement of a set D.
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3. Results.

Let Cy=Cy(—0o0, o) be the space of functions which are continuous on
(—o0, o) and for which llim f(x)=0. Let

|00

FEL, tot+yn-1/2)
f(EIP’ tO)

Theorem 1. Suppose that A,-Ay hold. Then the distributions in the space C,
generated by the process Z,(y) converge as n—co to a distribution in C, generated
by the process

3.1 Za(¥)=

3.2) Z=explyvTE-2)

where & is the standardized normal random variable, and I is the one defined by
2.11).

Theorem 2. Suppose that A;-A,, hold. Then the following statements are
true:

(i) The maximum likelihood estimator , and Bayes estimator t® for the loss
function |x|%, a=1l, and a priori density n(t) are equivalent to each other in the
sense that for all p (>0)

(3.3) E(v/ 1|t —£,1)P—=0  (n—o0).
(ii) Each of these estimators is asymptotically normal with parameters (to, 2/nl)
and for all p (>0)

3.4) Eu|(Fa—tn/ T | 7= 2@1*((\3;1)/2) ,

the same sort of relation also holding for the estimator t3®.
(iii) The difference

(3.5 A,(y)= 71—;2_-1)"(1.‘0—}— %)_(%)Uzexp{_l[fn—(to-}- %)]}2

also converges in probability to zero as n—oo.

4. Auxiliary results.
We remark flrst that the following statement holds.

Remark 4.1. Propositions 3.1-3.4 in remain true if the moment condi-
tion E|f/(,1627Y, 1)/ f(§nl27Y, t)|” (r=4+0) is replaced by the moment condition
of order =2+ (0>0), since the latter condition is needed in those proofs.

The next lemma is a special case of Propositions 3.1 and 3.2 in [5].
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Lemma 4.1. If A,-A; hold, then the limit in the right-hand side of (2.11)
and is finite,

Now, for arbitrary positive integers m and n, let

- _ 1 ofen 1 fiEIE
@b =T fED =Vn A f#&51817%

and
1 f/ER$EIED
4.2 XX p=—= .
“a TV ERTIED
Theorem 3. Suppose that A,-As; hold. Then EX,=0, EXF.=0 (m, n=
1, 2, ---) and lim EX2=1. Moreover, if m=o(n''?), then

n—c0

4.3) lim EXX .=1I.

n—+c0

In addition, if A, holds, then {X,} converges weakly to a mnormal random
variable X with parameters (0, I).

Proof. By A, and Remark 4.1 the first-half is easily obtained.

To prove the latter-half, put p=[n**], g=[n"*] and k=[n/(p+2¢9)]. Let
fiu€:l€17Y)
Fi&léH
I3 =)
Fo&:l€iz0+0)

P
0= X vdi(p+2)+20+i) O=j=k—D),

u(@)= (I=i=n),

v;(8)= (g=i=n),

t= Budito+20+) ASj=k-D)

n—k(p+2

G=" 3 nlk(p+20)+i).

Then the following statements are easily proved by A;, A; Ag and (4.3):

(i) 7 ***, N&-1 are identically distributed random variables. For j0=;<k—1)n;
eF{n%aa and the 7, satisfy the a.r. condition with Bi()=B(jq), Ex;=
0(0=;=<k—1) and

4.4 Eni=pI(1+o0(l)) as n—oo

(ii) &, -+, Ls-1 are identically distributed random variables with Ef,=0 and
E<Kq.

Further, E{,=0 and
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Kkg®, if n—k(p+2¢)=0(q log g),

e
O(p), otherwise.

Hence we have

Le| Bol's 2| Sl +E1

n

<2 (BEG+0() =2 (krgt+p 0
as n—oo,
(i) ~E| 3 v} ['snB@~0 (n—sc0).
n i=2g+1
(iv) LE| B ut)|'sKLo0 (nso0).

From (i)-(v) {o= Z¢} = 3 v}, and {r B}, re

=2¢+1
spectively, converge to zero in probability. Hence, to prove the latter-half it is.
enough to show that

(4.5) «/n 27}1—-*){

But, (4.5) is proved by the method used in the proof of Theorem 6 in Yoshihara
[5] using (i). So, we have the desired conclusion.

Corollary. Suppose that A;-A, hold. Then the X are uniformly integrable.

Proof. By Theorem 3 {X?} converges weakly to X% and lim EX:=FEX?
Hence, by Theorem 5.4 in Billingsley [1, p. 32] the conclusion follows.

5. Proofs.

In the following, we put p=p(n)=[n*J(1/2<a<1l) and e=¢e,=bn"*2 (b>0).
Let

_ ———_ S (xP, 8) _ & filx;|x{E, 8)
oD e I=bnl IV L = Fm o = A T sl 9
For any >0, let
_f.». f(xf, t+e)
(5.2) Anr—-{Xf . |10g——f—(;?t)_l >T}‘

and

(5.3) B,,L(s)-_—{x{’ : %aﬁ,(s)<L}.
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Lemma 5.1. Asumme that A,-A, hold. Then for any t<O

5.4) lim _Si“L b3(s)dxPds=0.

Proof. First, we note that from and the proof of Lemma 4.2 in Yoshi-
hara

(5.5) maxS F(x?, $)dxP=0(n""p)
18-t1<e Anr
as n—oo,
Next, from it follows that for all s (t<s<t+e)
i 2 p p__ l_ 2 D
(5.6) SB“(” S ay()/ (x, 9)dx] _me 5 030d D

Hence, by we obtain that

1
pe

_;_S_S:H{SAM,—\B,,LG)+$BnL(,)}a§>(S)f(xf, s)dxids

1 P\ ], P
)"p—a%(o)f(xﬂdxl

G.7) S :”SA bi(s)dx7ds

IA

g%S:”Lmﬂxf’, sdxfds+|

=j1n(L)+j2n(L) s (say).

Since by [5.5) lim J,,(L)=0 holds for all L, so to prove it suffices to show
that

B, (0

(5.8) lLim lim J,,(L)=0.

But, as the %a?,t(O) are uniformly integrable by [Corollary| to [Theorem 3, so we
have and the proof is completed.

Lemma 5.2. For any t®

1 1
(5.9) Ll_r.l;lc—jse—zglgp(t, Ol*dxf="1
where
(5.10) &r(t, )=V f(x], t+e)—Vf(x7, ).

Proof. By Jensen’s inequality and
1 1

(5.11) > >

Jlgst, oraxt=—"{1,00, o)1dx?
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=ﬁ§{ssz(s)ds}zdxf

<
Hence, by

.1
(5.12) Ll_rg et

S‘Sbg(s)dxfdszigbz(omxf.

1
4pe® Jo 4p

I.

N

§|gp<t, &)|*dxP<

Now, we prove that

1

.1
(5.13) lim—{12,0, e)*dxt= 1.

We note first that
1
pet

=T;?S{S:bp(s)ds}zdx:’:S:S:Sb,,(s>b,,<t>dxfdsdt

(5.14)

[Igst, &)1%dx2

— Z—;}%S:S:pr(t—s)bp(mdx Pdsdt.

For the moment, let ¢ and s be fixed and put /=t—s. Since by A,

(5.15) [1as)—a,0) 1272, OxP= Kt

so by Schwarz’s inequality we obtain that

(5.16) pr(l)bp(O)de=Sap(l)ap(o)\/f(xf, DV f(xf, 0dxf

2| 1,0 1VFGE, DV FGE, 0t

— {1001 18,0, | VFGE, DV FGT, 02
z{{1a,127s7, 0dx?—{e, a7}
~{Jlas @112, 0dxt{ias)—a, 1272, D2}

= |b30)dx?—[e,0d st —Kip{ (b3 022}
where
(5.17) col)=1a,0)|*| g5(t, 0)|VF(x7, 0).
For any M>0, let
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Dy={x{: |gp(l, 0)| <MV f(x1, O)}.

Then
1 . 1 ,
(5.18) —58 ¢,(Ddx —{SDManL(O)+SDManL(o)} —-cs(l)d]
< L{VFGE 0)lgst, Oldx?+M|___~b30)dx?
2L @ D
<L, Dltdxt+ M _ —b30dsT.
So, by
1 1
(5.19) 75» ¢,(0)dx! SKLpl"—{—MS b0t

and by [Corollary| to [Theorem 3 the second term in the right-hand side of the
above inequality tends to zero uniformly in p as L—co. On the other hand

(5.20) [, craxt= 37, 10,0 171,00, D17

=

2 (10,12 (72, D472, O dx?

Ngl

IA

2 Tssopdat+2{[p30dr?+ {1 0x0—a, 122, Ddxt}]
2
M
Hence, by (5.18)-(5.20) and we have that

< [3Sb§,,<0)dx{’+1{p212] .

5.21) L A (est—9)axrasar=o.

M- L-c n-w ps

It is obvious from that
1 B , p) 12 .
lim SS It s[p{pr(O)dxl} dsdi=0

Hence, [(5.13) follows from [5.14), [5.16), [(5.21) and [(5.22), and the proof is com-
pleted.

‘The following lemma assures the validity of Condition 1V in Yoshihara [5].

(5.22)

Lemma 5.3. If A, holds, then for any t, and t,

(5.23) iggltz—tll"l”g«/f(xnlx:'-l, )V f(xal 577 8 f(x7dx] <oo
where 0, is the one defined in A,.

Proof. Without loss of generality, we may assume that {;,=0. From the
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inequality | ";"tz

3,12 s s
=|x—t,|°+|x|° and A, we have

()" (VT OGS, B (2t

éS\/f(xnlxI“l, 0)[ x5 ]2/ f(x [ 2278, t) f(x2)dx?

+S~/f(xn|xi'", OV f(xal 2P t) [ xn—t,[®1f(x7")d x}

<2[[ 120121 £ (xa 227, OF (10 x0d x2S,

which implies Hence, the proof is completed.

Proofs of Theorems 1 and 2. If we use Lemmas 5.1 and 5.2 instead of
Lemmas 4.2 and 4.4 in Yoshihara [5], then noting Lemma 5.3 the proofs are
obtained by the completely same methods as those corresponding theorems in
Yoshihara [5] and so are omitted.
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