SOME THEOREMS OF PHRAGMÉN-LINDELÖF TYPE FOR THE HEAT OPERATOR ON A CERTAIN MANIFOLD

By
Haruo Kitahara and Hachiro Ogawa

(Received November 1, 1982)

1. Introduction.

A. Friedman [5] has generalized the classical theorems of Phragmén-Lindelöf type for the parabolic equations. In this paper we discuss some theorems of Phragmén-Lindelöf type for the heat equation on manifolds with "nice" properties and their applications to the solutions of the heat equation.

In $\S 2$, we suppose that M is a complete C^{∞}-Riemannian manifold with Ricci curvature bounded from below. Then we have a similar theorem for the heat operator as in Theorem 7 in [5] and may apply it to prove the uniqueness of the solutions with Cauchy data which are not necessarily bounded. Our result is an extension of the theorem in [3] which gives the uniqueness of bounded solutions.

In §3, we suppose that M is a " model" with Ricci curvature bounded from below. Then we have a similar theorem for the heat equation as in Theorem 8 in [5] and that the solution with Cauchy data vanishing at infinity vanishes uniformly as time tends to infinity.

In $\S 4$, we apply theorems in $\S 3$ to differential forms.

2. The uniqueness of the solutions with Cauchy data.

Let L be a linear, locally uniformly parabolic operator on a C^{∞}-Riemannian manifold M of dimension n. In local coordinates L may be written as

$$
\begin{equation*}
L u:=\sum_{i, j=1}^{n} a^{i j}(x, t) \frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}+\sum_{i=1}^{n} b^{i}(x, t) \frac{\partial u}{\partial x^{i}}-\frac{\partial u}{\partial t}, \tag{2.1}
\end{equation*}
$$

and for a neighborhood of each point of $M \times \boldsymbol{R}$ (\boldsymbol{R} : the reals) there exist two positive constants C and Λ so that at every point of this neighborhood the following inequalities hold:

$$
\begin{equation*}
\left|\sum_{i=1}^{n} b^{i}(x, t) \xi_{i}\right| \leqq C\left(\sum_{i=1}^{n} \xi_{i}^{2}\right)^{1 / 2} \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\Lambda^{-1}\left(\sum_{i=1}^{n} \xi_{i}{ }^{2}\right) \leqq \sum_{i, j=1}^{n} i^{i j}(x, t) \xi_{i} \xi_{j} \leqq \Lambda\left(\sum_{i=1}^{n} \xi_{i}{ }^{2}\right) \tag{2.3}
\end{equation*}
$$

for every choice of real constants $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$.
Definition 2.1 ([1], [3]). Given a parabolic operator (2.1) L satisfying (2.2) and (2.3), a continuous function u on a domain $\Omega \subset M \times \boldsymbol{R}$ and a function ϕ on Ω with no restriction whatever, we define that

$$
L u(\text { weakly }) \leqq \phi
$$

on any subset $B \subset \Omega$ if, for every $\left(x_{0}, t_{0}\right) \in B$ and every $\varepsilon>0$, there exists a neighborhood $V:=V\left(\varepsilon, x_{0}, t_{0}\right) \subset \Omega$ of $\left(x_{0}, t_{0}\right)$ and a function $u_{\varepsilon, x_{0}, t_{0}}$ on V, of class C^{2} in the manifold variables and of class C^{1} in t such that the difference $u-u_{\varepsilon, x_{0}, t_{0}}$ attains its maximum at (x_{0}, t_{0}), i. e.

$$
\begin{equation*}
u(x, t)-u_{\varepsilon, x_{0}, t_{0}}(x, t) \leqq u\left(x_{0}, t_{0}\right)-u_{\varepsilon, x_{0}, t_{0}}\left(x_{0}, t_{0}\right) \tag{2.4}
\end{equation*}
$$

for $(x, t) \in V$, and

$$
\begin{equation*}
L u_{\varepsilon, x_{0}, t_{0}} \leqq \phi+\varepsilon \quad \text { at }\left(x_{0}, t_{0}\right) . \tag{2.5}
\end{equation*}
$$

Remark 2.2. If u is sufficiently smooth, then $L u$ (weakly) $\leqq \phi$ coincides with $L u \leqq \phi$ ([3]).

Hereafter, we suppose that M is a complete C^{∞}-Riemannian manifold, and $r(x)$ is the geodesic distance from some fixed point x_{0} to x. Let $\Omega \subset M \times(0, \infty)$ be an unbounded domain, and we define some subsets of Ω in the following:

$$
\begin{aligned}
& T_{R}:=\Omega \cap\{(x, t) \in M \times \boldsymbol{R}|r(x)+|t|=R\} \\
& C_{R}:=\Omega \cap\{(x, t) \in M \times \boldsymbol{R}|r(x)+|t|<R\}
\end{aligned}
$$

and

$$
D_{R}:=\Omega \cap\{(x, t) \in M \times \boldsymbol{R}|r(x)+|t|>R\}
$$

We may partition M into two complementary subsets $C\left(x_{0}\right)$ and $M\left(x_{0}\right)$, i.e. $M=C\left(x_{0}\right) \cup M\left(x_{0}\right)$, where $C\left(x_{0}\right)$ is the cut locus of x_{0} and $M\left(x_{0}\right)=M \backslash C\left(x_{0}\right)$. It is well known that $M\left(x_{0}\right)$ is an open subset in M and the function $r(x)$ is of class C^{∞} in $M\left(x_{0}\right) \backslash\left\{x_{0}\right\}$.

Lemma 2.3 ([1], [3]). Let ϕ be a nondecreasing function of class C^{2} defined on the half-line $(0, \infty)$. If the Ricci curvature of M is bounded from below, then the function $f:=\phi(r)$ satisfies the inequality

$$
\Delta f \leqq \phi^{\prime \prime}(r)+\left(\frac{n-1}{r}+C\right) \phi^{\prime}(r)
$$

on $M\left(x_{0}\right) \backslash\left\{x_{0}\right\}$, where the constant C depends only on the lower bound of the Ricci curvature and Δ denotes the Laplacian on M.

Hereafter, we suppose that L is the heat operator, $L=\Delta-\partial / \partial t$, on $M \times \boldsymbol{R}$.
Theorem 2.4. Let M be a complete, C^{∞}-Riemannian manifold with Ricci curvature bounded from below and Ω an unbounded domain in $M \times(0, \infty)$. Let L be the heat operator $\Delta-\partial / \partial t$. If $u(x, t) \geqq 0$ on $\partial \Omega, L u($ weakly $) \leqq 0$ on Ω and

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \frac{1}{R} \inf _{(x, t) \in T_{R}} u(x, t)=0 \tag{2.6}
\end{equation*}
$$

then $u(x, t) \geqq 0$ in Ω.
Proof. Choose a nondecreasing function ϕ of class C^{2} on ($0, \infty$) such that $\phi(s)=0$ for $s \in(0, \delta / 2)$ and $\phi(s)=s$ for $s \geqq \delta$, where $\delta>0$ is so small that the geodesic ball with center at x_{0} and of radius δ is contained in a normal coordinate neighborhood at x_{0}. Set $\rho(x):=\phi(r(x))$. Then $\rho: M \rightarrow \boldsymbol{R}$ is continuous and ρ restricted to $M\left(x_{0}\right)$ is of class C^{2}. We set

$$
V_{R}(x, t):=\frac{\rho(x)+\tilde{K} t+\delta}{R}, \quad(\tilde{K}>1, \text { a constant })
$$

for $(x, t) \in \bar{\Omega}$. Clearly we have the following:

$$
\begin{align*}
& V_{R}(x, t) \geqq 0 \quad \text { if }(x, t) \in \partial \Omega, r(x)+|t| \leqq R . \tag{2.7}\\
& V_{R}(x, t) \geqq 1 \quad \text { if }(x, t) \in \Omega, r(x)+|t|=R . \tag{2.8}
\end{align*}
$$

$$
\begin{equation*}
L V_{R}(\text { weakly }) \leqq 0 \text { in } C_{R} \text { if } \tilde{K} \text { is sufficiently large. } \tag{2.9}
\end{equation*}
$$

In fact, for $(x, t) \in C_{R}$ with $x \in M\left(x_{0}\right)$,

$$
L V_{R}=\frac{1}{R}(\Delta \rho-\tilde{K}),
$$

and, by Lemma 2.3, there exists a constant N, depending only on ϕ and the lower bound of Ricci curvature, such that $\Delta \rho \leqq N$. Then, we have

$$
L V_{R} \leqq 0 \text { for a large constant } \tilde{K}
$$

Next, let $(x, t) \in C_{R}$ with $x \in C\left(x_{0}\right)$. Choosing one geodesic γ of the shortest length $r(x)$ joining x_{0} with x, let x_{ε} be a point on γ at a distance $\varepsilon>0$ from x_{0} arbitrarily small. Then, replacing x_{0} by x_{ε}, we have that $x \in M\left(x_{\varepsilon}\right)$ because the part of γ between x_{ε} and x is the unique geodesic of length $r(x)-\varepsilon$ joining x_{s} with x. We set

$$
\begin{aligned}
& V_{\varepsilon, x, t}:=V_{\varepsilon, x} \times(0, \infty) \cap C_{R} \\
& r_{\varepsilon, x}(y):=\text { the distance from } x_{\varepsilon} \text { to } y \\
& \rho_{\varepsilon, x}(y):=\phi\left(r_{\varepsilon, x}(y)\right)
\end{aligned}
$$

for $y \in V_{\varepsilon, x}$, where $V_{\varepsilon, x} \subset M\left(x_{\varepsilon}\right)$ is a neighborhood of x, and

$$
V_{R, \varepsilon, x, t}(y, s):=\frac{\rho_{\varepsilon, x}(y)+\tilde{K} s+\delta}{R}
$$

for $(y, s) \in V_{s, x, t}$. Then, we have

$$
L V_{R, \varepsilon, x, t} \leqq 0 \quad \text { at }(x, t) .
$$

The triangle inequality implies that

$$
r-r_{\varepsilon, x} \leqq \varepsilon,
$$

the equality holds at x. Choosing δ sufficiently small, we have

$$
\rho(y)-\rho_{\varepsilon, x}(y) \leqq \varepsilon \quad \text { for } y \in V_{\varepsilon, x},
$$

the equality holds at x. Then we have

$$
V_{R}(y, s)-V_{R, \varepsilon, x, t}(y, s) \leqq V_{R}(x, t)-V_{R, \varepsilon, x, t}(x, t)
$$

for $(y, s) \in V_{\varepsilon, x, t}$. This completes the proof of (2.9).
Now, we consider the function

$$
\tilde{u}(x, t):=u(x, t)-\left\{\min \left(0, \inf _{(x, t) \in T_{R}} u(x, t)\right)\right\} V_{R}(x, t) .
$$

Then $\tilde{u}(x, t)$ is non-negative on ∂C_{R} by (2.7) and (2.8), and $L \tilde{u}$ (weakly) $\leqq 0$ in C_{R} by (2.9). Using the weak maximum principle ([3], [6]), we have $\tilde{u}(x, t) \geqq 0$ in C_{R}. Letting $R \rightarrow \infty$ and using (2.6) we have $u(x, t) \geqq 0$. q.e.d.

Corollary 2.5. Let M be a complete, C^{∞}-Riemannian manifold with Ricci curvature bounded from below. Suppose that $u: M \times[0, \infty) \rightarrow \boldsymbol{R}$ is a solution of the heat equation with Cauchy data u_{0}, i.e.

$$
L u=0 \quad \text { on } M \times(0, \infty) \text {, }
$$

and

$$
u(x, 0)=u_{0}(x) \text { on } M .
$$

If

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \frac{1}{R} \sup _{(x, t) \in T_{R}}|u(x, t)|=0, \tag{2.10}
\end{equation*}
$$

then u is the unique solution with Cauchy data u_{0}.
Proof. Suppose that $u_{0}=0$ on M. Using Theorem 2.4 for $\Omega=M \times(0, \infty)$, we have $u \geqq 0$ on $M \times(0, \infty)$. And $-u$ also satisfies the condition of Theorem 2.4, then we have $u \leqq 0$ on $M \times(0, \infty)$. Therefore, we have $u=0$ on $M \times[0, \infty)$. This implies the uniqueness.
q.e.d.

Remark 2.6. J. Dodziuk [3] has proved the uniqueness of bounded solutions of the heat equation with Cauchy data on a complete C^{∞}-Riemannian manifold with Ricci curvature bounded from below. Of course, the condition (2.10) is
satisfied for bounded solutions.

3. The property of the solutions with Cauchy data.

A Riemannian manifold M of dimension n is a model if the following conditions hold:
(i) The exponential map of the tangent space $T_{x_{0}}(M)$ at some fixed point x_{0} onto M is a diffeomorphism.
(ii) For every $r>0$, the mean curvature H of the geodesic sphere $S_{r}\left(x_{0}\right)$ satisfies the inequality

$$
H \leqq \frac{K}{(n-1) r} \quad(K<1, \text { a constant })
$$

with respect to the outer normal.
Remark 3.1. Our terminology differs slightly from that of [2] and [4]. If M is a model in the sense of [4] with negative semi-definite Ricci curvature, then the condition (ii) holds.

Lemma 3.2. Let M be a model and $\Omega \subset M \times(0, \infty)$ an unbounded domain. Then, for any $R_{0}>0$, there exists a function $\omega(x, t)$ with the following properties defined in $D_{R_{0}}$:

$$
\begin{gather*}
\omega(x, t) \geqq 0 \quad \text { if }(x, t) \in \partial D_{R_{0}} . \tag{3.1}\\
\omega(x, t) \geqq 1 \quad \text { if }(x, t) \in \Omega, r(x)+|t|=R_{0} . \tag{3.2}\\
L \omega \leqq 0 \text { in } D_{R_{0}} . \tag{3.3}\\
\omega(x, t) \rightarrow 0 \quad \text { uniformly in } D_{R_{0}} \text { as } r(x)+|t| \rightarrow \infty . \tag{3.4}
\end{gather*}
$$

Proof. We consider the function

$$
\omega(x, t):=\frac{C}{(t+1)^{\varepsilon}} \exp \left(\frac{-G r(x)^{2}}{t+1}\right) \quad(C, G, \varepsilon: \text { positive constants }) .
$$

For (x, t) with $x \in M \backslash\left\{x_{0}\right\}$,

$$
L \omega=\omega\left\{\frac{r^{2}}{(t+1)^{2}}\left(4 G^{2}-G\right)+\frac{1}{t+1}(\varepsilon-2 G r \Delta r-2 G)\right\}
$$

Note that $\Delta r=-(n-1) H$ ([11]). Then we have

$$
L \omega \leqq \omega\left\{\frac{r^{2}}{(t+1)^{2}}\left(4 G^{2}-G\right)+\frac{1}{t+1}(\varepsilon+2 G K-2 G)\right\}
$$

If

$$
\begin{equation*}
4 G^{2}-G \leqq 0 \text { and } \varepsilon+2 G K-2 G \leqq 0 \tag{3.5}
\end{equation*}
$$

then $L \omega \leqq 0$ for (x, t) with $x \in M \backslash\left\{x_{0}\right\}$. Clearly we may choose G and ε so that
(3.5) holds and we also have $L \omega \leqq 0$ for $\left(x_{0}, t\right)$. Therefore (3.3) holds. Then (3.1) and (3.4) also hold, and we may choose C so that (3.2) holds. q.e.d.

Theorem 3.3. Let M be a model with Ricci curvature bounded from below and $\Omega \subset M \times(0, \infty)$ an unbounded domain. If $L u=0$ in Ω,

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \frac{1}{R} \sup _{(x, t) \in T_{R}}|u(x, t)|=0 \tag{3.6}
\end{equation*}
$$

and $u(x, t) \rightarrow 0$ uniformly on Ω as $r(x)+|t| \rightarrow \infty$, then $u(x, t) \rightarrow 0$ uniformly on Ω as $r(x)+|t| \rightarrow \infty$.

Proof. Given $\varepsilon>0$, there exists $R_{0}>0$ such that $|u(x, t)|<\varepsilon$ for $(x, t) \in \partial \Omega$, $r(x)+|t| \geqq R_{0}$. We consider the function

$$
v(x, t):=u(x, t)+\left\{\max _{r(x)+|t|=R_{0}}|u(x, t)|\right\} \omega(x, t)+\varepsilon,
$$

where $\omega(x, t)$ is the function in Lemma 3.2. Then we have $v(x, t) \geqq 0$ for (x, t) $\in \partial D_{R_{0}}$, and $L v \leqq 0$ in $D_{R_{0}}$. Theorem 2.4 implies that $v(x, t) \geqq 0$ in $D_{R_{0}}$. Choosing R_{1} such that

$$
\left\{\max _{r(x)+|t|=R_{0}}|u(x, t)|\right\} \omega(x, t)<\varepsilon
$$

in $D_{R_{1}}$, we have

$$
0 \leqq v(x, t)<u(x, t)+2 \varepsilon
$$

in $D_{R_{1}}$, and so, $u(x, t)>-2 \varepsilon$ in $D_{R_{1}}$. Similarly we have $u(x, t)<2 \varepsilon$ in $D_{R_{1}}$. Therefore, theorem is proved.
q.e.d.

Remark 3.4. If Ricci curvature of $M \geqq-C$ (C : a positive constant), then

$$
H \geqq-\frac{1}{r}-\left(\frac{C}{n-1}\right)^{1 / 2}
$$

Therefore H satisfies the inequality

$$
-\frac{1}{r}-\left(\frac{C}{n-1}\right)^{1 / 2} \leqq H \leqq \frac{K}{(n-1) r} \quad(K<1)
$$

Corollary 3.5. Let M be a model with Ricci curvature bounded from below. If u_{0} is a continuous function on M which vanishes at infinity and u is the solution of the heat equation with initial data u_{0} and satisfies

$$
\lim _{R \rightarrow \infty} \frac{1}{R} \sup _{(x, t) \in r_{R}}|u(x, t)|=0,
$$

then $u(x, t) \rightarrow 0$ uniformly on M as $t \rightarrow \infty$.
Proof. Use Theorem 3.3 for $\Omega=M \times(0, \infty)$. Then, we have $u(x, t) \rightarrow 0$ uniformly on M as $t \rightarrow \infty$.
q.e.d.

Remark 3.6. If M is a complete C^{∞}-Riemannian manifold with Ricci curva-
ture bounded from below and u_{0} is a continuous function on M which vanishes at infinity, then the bounded solution of the heat equation with Cauchy data u_{0} vanishes at infinity for $t>0$ ([3], [7]).

4. An application to \boldsymbol{p}-forms.

Let M be a C^{∞}-Riemannian manifold of dimension n. We denote ∇ and ∇^{*} the Levi-Civita connection and its dual respectively.

The Weitszenböck formula is well known:

$$
\begin{equation*}
\Delta \alpha=-\nabla * \nabla \alpha-F_{p} \alpha \tag{4.1}
\end{equation*}
$$

for a $C^{\infty}-p$-form α on M depending on t, where F_{p} is an algebraic operator depending only on the curvature of M. We denote $|\alpha|$ the norm of α.

Theorem 4.1. Let M be a model with Ricci curvature bounded from below. Suppose that $F_{p} \geqq 0$ at every point of M. If α is the solution of the heat equation on p-forms with Cauchy data vanishing at infinity and satisfies

$$
\lim _{R \rightarrow \infty} \frac{1}{R} \sup _{(x, t) \in T_{E}}|\alpha(x, t)|^{2}=0,
$$

then $\alpha(x, t) \rightarrow 0$ uniformly on M as $t \rightarrow \infty$.
Proof. By the proof of Theorem 5.2 in [3], we have

$$
L|\alpha|^{2} \geqq 0
$$

We consider the function

$$
v(x, t):=-|\alpha(x, t)|^{2}+\left\{\max _{r(x)+|t|=R_{0}}|\alpha(x, t)|^{2}\right\} \omega(x, t)+\varepsilon
$$

where $\omega(x, t)$ is the function in Lemma 3.2. Then, as in $\S 3$, we have that $v(x, t) \geqq 0$ in $D_{R_{0}}$. Therefore, we have $|\alpha(x, t)|^{2}<2 \varepsilon$ in $D_{R_{1}}$.
q.e.d.

References

[1] E. Calabi: An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), 45-56.
[2] J. Cheeger and S.-T. Yau: A lower bound for the heat kernel, Comm. Pure Appl. Math. 34 (1981), 465-480.
[3] J. Dodziuk: Maximum principle for parabolic inequalities and the heat flow on open manifolds, preprint.
[4] R.E. Greene and H. Wu: Function theory on manifolds which possess a pole, Lecture Notes in Math. 699, Springer-Verlag, Berlin Heidelberg New York, 1979.
[5] A. Friedman: On two theorems of Phragmén-Lindelöf for linear elliptic and parabolic differential equations of the second order, Pacific J. Math. 7 (1957), 1563-1575.
[6] L. Nirenberg: A strong maximum principle for parabolic equations, Comm. Pure Appl. Math. 6 (1953), 167-177.
[7] S.-T. Yau: On the heat kernel of a complete Riemannian manifold, J. Math. Pures Appl. 57 (1978), 191-201.

Department of Mathematics		Department of Mathematics
College of Liberal Arts	and	Faculty of Science
Kanazawa University		Kanazawa University
Kanazawa 920, Japan		Kanazawa 920, Japan

