Yokohama Mathematical Journal Vol. 31, 1983

SOME THEOREMS OF PHRAGMÉN-LINDELÖF TYPE FOR THE HEAT OPERATOR ON A CERTAIN MANIFOLD

By

HARUO KITAHARA and HACHIRO OGAWA

(Received November 1, 1982)

1. Introduction.

A. Friedman [5] has generalized the classical theorems of Phragmén-Lindelöf type for the parabolic equations. In this paper we discuss some theorems of Phragmén-Lindelöf type for the heat equation on manifolds with "nice" properties and their applications to the solutions of the heat equation.

In §2, we suppose that M is a complete C^{∞} -Riemannian manifold with Ricci curvature bounded from below. Then we have a similar theorem for the heat operator as in Theorem 7 in [5] and may apply it to prove the uniqueness of the solutions with Cauchy data which are not necessarily bounded. Our result is an extension of the theorem in [3] which gives the uniqueness of bounded solutions.

In §3, we suppose that M is a "model" with Ricci curvature bounded from below. Then we have a similar theorem for the heat equation as in Theorem 8 in [5] and that the solution with Cauchy data vanishing at infinity vanishes uniformly as time tends to infinity.

In 4, we apply theorems in 3 to differential forms.

2. The uniqueness of the solutions with Cauchy data.

Let L be a linear, locally uniformly parabolic operator on a C^{∞} -Riemannian manifold M of dimension n. In local coordinates L may be written as

(2.1)
$$Lu := \sum_{i,j=1}^{n} a^{ij}(x, t) \frac{\partial^2 u}{\partial x^i \partial x^j} + \sum_{i=1}^{n} b^i(x, t) \frac{\partial u}{\partial x^i} - \frac{\partial u}{\partial t},$$

and for a neighborhood of each point of $M \times \mathbf{R}$ (\mathbf{R} : the reals) there exist two positive constants C and Λ so that at every point of this neighborhood the following inequalities hold:

(2.2)
$$\left| \sum_{i=1}^{n} b^{i}(x, t) \xi_{i} \right| \leq C \left(\sum_{i=1}^{n} \xi_{i}^{2} \right)^{1/2}$$

H. KITAHARA AND H. OGAWA

(2.3)
$$\Lambda^{-1}\left(\sum_{i=1}^{n} \xi_{i}^{2}\right) \leq \sum_{i,j=1}^{n} a^{ij}(x, t) \xi_{i} \xi_{j} \leq \Lambda\left(\sum_{i=1}^{n} \xi_{i}^{2}\right)$$

for every choice of real constants $\xi_1, \xi_2, \dots, \xi_n$.

Definition 2.1 ([1], [3]). Given a parabolic operator (2.1) L satisfying (2.2) and (2.3), a continuous function u on a domain $\Omega \subset M \times R$ and a function ϕ on Ω with no restriction whatever, we define that

 $Lu(\text{weakly}) \leq \phi$

on any subset $B \subset \Omega$ if, for every $(x_0, t_0) \in B$ and every $\varepsilon > 0$, there exists a neighborhood $V := V(\varepsilon, x_0, t_0) \subset \Omega$ of (x_0, t_0) and a function $u_{\varepsilon, x_0, t_0}$ on V, of class C^2 in the manifold variables and of class C^1 in t such that the difference $u - u_{\varepsilon, x_0, t_0}$ attains its maximum at (x_0, t_0) , i.e.

$$(2.4) u(x, t) - u_{\varepsilon, x_0, t_0}(x, t) \leq u(x_0, t_0) - u_{\varepsilon, x_0, t_0}(x_0, t_0)$$

for $(x, t) \in V$, and

(2.5)
$$Lu_{\varepsilon, x_0, t_0} \leq \phi + \varepsilon \quad \text{at } (x_0, t_0).$$

Remark 2.2. If u is sufficiently smooth, then $Lu(\text{weakly}) \leq \phi$ coincides with $Lu \leq \phi$ ([3]).

Hereafter, we suppose that M is a complete C^{∞} -Riemannian manifold, and r(x) is the geodesic distance from some fixed point x_0 to x. Let $\Omega \subset M \times (0, \infty)$ be an unbounded domain, and we define some subsets of Ω in the following:

$$T_{R} := \Omega \cap \{(x, t) \in M \times \mathbf{R} | r(x) + |t| = R\}$$
$$C_{R} := \Omega \cap \{(x, t) \in M \times \mathbf{R} | r(x) + |t| < R\}$$

and

$$D_R := \Omega \cap \{(x, t) \in M \times R | r(x) + |t| > R\}.$$

We may partition M into two complementary subsets $C(x_0)$ and $M(x_0)$, i.e. $M=C(x_0)\cup M(x_0)$, where $C(x_0)$ is the cut locus of x_0 and $M(x_0)=M\setminus C(x_0)$. It is well known that $M(x_0)$ is an open subset in M and the function r(x) is of class C^{∞} in $M(x_0)\setminus \{x_0\}$.

Lemma 2.3 ([1], [3]). Let ϕ be a nondecreasing function of class C² defined on the half-line $(0, \infty)$. If the Ricci curvature of M is bounded from below, then the function $f := \phi(r)$ satisfies the inequality

$$\Delta f \leq \phi''(r) + \left(\frac{n-1}{r} + C\right) \phi'(r)$$

on $M(x_0) \setminus \{x_0\}$, where the constant C depends only on the lower bound of the Ricci curvature and Δ denotes the Laplacian on M.

Hereafter, we suppose that L is the heat operator, $L = \Delta - \partial/\partial t$, on $M \times \mathbf{R}$.

Theorem 2.4. Let M be a complete, C^{∞} -Riemannian manifold with Ricci curvature bounded from below and Ω an unbounded domain in $M \times (0, \infty)$. Let L be the heat operator $\Delta - \partial/\partial t$. If $u(x, t) \ge 0$ on $\partial \Omega$, $Lu(\text{weakly}) \le 0$ on Ω and

(2.6)
$$\lim_{R\to\infty}\frac{1}{R}\inf_{(x,\ t)\in T_R}u(x,\ t)=0,$$

then $u(x, t) \ge 0$ in Ω .

Proof. Choose a nondecreasing function ϕ of class C^2 on $(0, \infty)$ such that $\phi(s)=0$ for $s \in (0, \delta/2)$ and $\phi(s)=s$ for $s \ge \delta$, where $\delta > 0$ is so small that the geodesic ball with center at x_0 and of radius δ is contained in a normal coordinate neighborhood at x_0 . Set $\rho(x):=\phi(r(x))$. Then $\rho: M \to \mathbb{R}$ is continuous and ρ restricted to $M(x_0)$ is of class C^2 . We set

$$V_R(x, t) := \frac{\rho(x) + Kt + \delta}{R}$$
, ($\tilde{K} > 1$, a constant)

for $(x, t) \in \overline{\Omega}$. Clearly we have the following:

(2.7)
$$V_R(x, t) \ge 0 \quad \text{if } (x, t) \in \partial \Omega, \ r(x) + |t| \le R.$$

(2.8) $V_R(x, t) \ge 1$ if $(x, t) \in \Omega$, r(x) + |t| = R.

(2.9) $LV_R(\text{weakly}) \leq 0$ in C_R if \tilde{K} is sufficiently large.

In fact, for $(x, t) \in C_R$ with $x \in M(x_0)$,

$$LV_R = \frac{1}{R} (\Delta \rho - \tilde{K}),$$

and, by Lemma 2.3, there exists a constant N, depending only on ϕ and the lower bound of Ricci curvature, such that $\Delta \rho \leq N$. Then, we have

 $LV_R \leq 0$ for a large constant \tilde{K} .

Next, let $(x, t) \in C_R$ with $x \in C(x_0)$. Choosing one geodesic γ of the shortest length r(x) joining x_0 with x, let x_{ε} be a point on γ at a distance $\varepsilon > 0$ from x_0 arbitrarily small. Then, replacing x_0 by x_{ε} , we have that $x \in M(x_{\varepsilon})$ because the part of γ between x_{ε} and x is the unique geodesic of length $r(x) - \varepsilon$ joining x_{ε} with x. We set

$$V_{\epsilon,x,t} := V_{\epsilon,x} \times (0, \infty) \cap C_R$$

$$r_{\epsilon,x}(y) := \text{the distance from } x_{\epsilon} \text{ to } y$$

$$\rho_{\epsilon,x}(y) := \phi(r_{\epsilon,x}(y))$$

for $y \in V_{\varepsilon, x}$, where $V_{\varepsilon, x} \subset M(x_{\varepsilon})$ is a neighborhood of x, and

$$V_{R,\epsilon,x,t}(y, s) := \frac{\rho_{\epsilon,x}(y) + \tilde{K}s + \delta}{R}$$

for $(y, s) \in V_{\varepsilon, x, t}$. Then, we have

 $LV_{R,\varepsilon,x,t} \leq 0$ at (x, t).

The triangle inequality implies that

 $r-r_{\varepsilon,x}\leq \varepsilon$,

the equality holds at x. Choosing δ sufficiently small, we have

$$\rho(y) - \rho_{\varepsilon, x}(y) \leq \varepsilon \text{ for } y \in V_{\varepsilon, x}$$
,

the equality holds at x. Then we have

$$V_{R}(y, s) - V_{R, \epsilon, x, t}(y, s) \leq V_{R}(x, t) - V_{R, \epsilon, x, t}(x, t)$$

for $(y, s) \in V_{\varepsilon, x, t}$. This completes the proof of (2.9). Now, we consider the function

$$\tilde{u}(x, t) := u(x, t) - \{\min(0, \inf_{(x, t) \in T_R} u(x, t))\} V_R(x, t).$$

Then $\tilde{u}(x, t)$ is non-negative on ∂C_R by (2.7) and (2.8), and $L\tilde{u}(\text{weakly}) \leq 0$ in C_R by (2.9). Using the weak maximum principle ([3], [6]), we have $\tilde{u}(x, t) \geq 0$ in C_R . Letting $R \rightarrow \infty$ and using (2.6) we have $u(x, t) \geq 0$. q.e.d.

Corollary 2.5. Let M be a complete, C^{∞} -Riemannian manifold with Ricci curvature bounded from below. Suppose that $u: M \times [0, \infty) \rightarrow \mathbf{R}$ is a solution of the heat equation with Cauchy data u_0 , i.e.

Lu=0 on $M\times(0,\infty)$,

and

 $u(x, 0) = u_0(x)$ on M.

If

(2.10)
$$\lim_{R \to \infty} \frac{1}{R} \sup_{(x, t) \in T_R} |u(x, t)| = 0,$$

then u is the unique solution with Cauchy data u_0 .

Proof. Suppose that $u_0=0$ on M. Using Theorem 2.4 for $\Omega = M \times (0, \infty)$, we have $u \ge 0$ on $M \times (0, \infty)$. And -u also satisfies the condition of Theorem 2.4, then we have $u \le 0$ on $M \times (0, \infty)$. Therefore, we have u=0 on $M \times [0, \infty)$. This implies the uniqueness. q.e.d.

Remark 2.6. J. Dodziuk [3] has proved the uniqueness of bounded solutions of the heat equation with Cauchy data on a complete C^{∞} -Riemannian manifold with Ricci curvature bounded from below. Of course, the condition (2.10) is

satisfied for bounded solutions.

3. The property of the solutions with Cauchy data.

A Riemannian manifold M of dimension n is a model if the following conditions hold:

(i) The exponential map of the tangent space $T_{x_0}(M)$ at some fixed point x_0 onto M is a diffeomorphism.

(ii) For every r>0, the mean curvature H of the geodesic sphere $S_r(x_0)$ satisfies the inequality

$$H \leq \frac{K}{(n-1)r}$$
 (K<1, a constant)

with respect to the outer normal.

Remark 3.1. Our terminology differs slightly from that of [2] and [4]. If M is a model in the sense of [4] with negative semi-definite Ricci curvature, then the condition (ii) holds.

Lemma 3.2. Let M be a model and $\Omega \subset M \times (0, \infty)$ an unbounded domain. Then, for any $R_0 > 0$, there exists a function $\omega(x, t)$ with the following properties defined in D_{R_0} :

(3.1)
$$\omega(x, t) \ge 0 \quad if \ (x, t) \in \partial D_{R_0}.$$

(3.2)
$$\omega(x, t) \ge 1$$
 if $(x, t) \in \Omega$, $r(x) + |t| = R_0$.

$$L\omega \leq 0 \quad in \ D_{R_0}$$

(3.4)
$$\omega(x, t) \rightarrow 0$$
 uniformly in D_{R_0} as $r(x) + |t| \rightarrow \infty$.

Proof. We consider the function

$$\omega(x, t) := \frac{C}{(t+1)^{\varepsilon}} \exp\left(\frac{-Gr(x)^2}{t+1}\right) \quad (C, G, \varepsilon: \text{ positive constants}).$$

For (x, t) with $x \in M \setminus \{x_0\}$,

$$L\omega = \omega \left\{ \frac{r^2}{(t+1)^2} (4G^2 - G) + \frac{1}{t+1} (\varepsilon - 2Gr\Delta r - 2G) \right\}.$$

Note that $\Delta r = -(n-1)H$ ([11]). Then we have

$$L\omega \leq \omega \left\{ \frac{r^2}{(t+1)^2} (4G^2 - G) + \frac{1}{t+1} (\varepsilon + 2GK - 2G) \right\}.$$

If

$$(3.5) 4G^2 - G \leq 0 \text{ and } \varepsilon + 2GK - 2G \leq 0,$$

then $L\omega \leq 0$ for (x, t) with $x \in M \setminus \{x_0\}$. Clearly we may choose G and ε so that

(3.5) holds and we also have $L\omega \leq 0$ for (x_0, t) . Therefore (3.3) holds. Then (3.1) and (3.4) also hold, and we may choose C so that (3.2) holds. q.e.d.

Theorem 3.3. Let M be a model with Ricci curvature bounded from below and $\Omega \subset M \times (0, \infty)$ an unbounded domain. If Lu=0 in Ω ,

(3.6)
$$\lim_{R \to \infty} \frac{1}{R} \sup_{(x, t) \in T_R} |u(x, t)| = 0$$

and $u(x, t) \rightarrow 0$ uniformly on Ω as $r(x) + |t| \rightarrow \infty$, then $u(x, t) \rightarrow 0$ uniformly on Ω as $r(x) + |t| \rightarrow \infty$.

Proof. Given $\varepsilon > 0$, there exists $R_0 > 0$ such that $|u(x, t)| < \varepsilon$ for $(x, t) \in \partial \Omega$, $r(x) + |t| \ge R_0$. We consider the function

$$v(x, t) := u(x, t) + \{ \max_{\tau(x)+|t|=R_0} |u(x, t)| \} \omega(x, t) + \varepsilon,$$

where $\omega(x, t)$ is the function in Lemma 3.2. Then we have $v(x, t) \ge 0$ for $(x, t) = \partial D_{R_0}$, and $Lv \le 0$ in D_{R_0} . Theorem 2.4 implies that $v(x, t) \ge 0$ in D_{R_0} . Choosing R_1 such that

 $\{\max_{r(x)+|t|=R_0}|u(x, t)|\}\omega(x, t) < \varepsilon$

in D_{R_1} , we have

$$0 \leq v(x, t) < u(x, t) + 2\varepsilon$$

in D_{R_1} , and so, $u(x, t) > -2\varepsilon$ in D_{R_1} . Similarly we have $u(x, t) < 2\varepsilon$ in D_{R_1} . Therefore, theorem is proved. q.e.d.

Remark 3.4. If Ricci curvature of $M \ge -C$ (C: a positive constant), then

$$H \geq -\frac{1}{r} - \left(\frac{C}{n-1}\right)^{1/2}.$$

Therefore H satisfies the inequality

$$-\frac{1}{r} - \left(\frac{C}{n-1}\right)^{1/2} \leq H \leq \frac{K}{(n-1)r} \quad (K < 1).$$

Corollary 3.5. Let M be a model with Ricci curvature bounded from below. If u_0 is a continuous function on M which vanishes at infinity and u is the solution of the heat equation with initial data u_0 and satisfies

$$\lim_{R\to\infty}\frac{1}{R}\sup_{(x,t)\in T_R}|u(x,t)|=0,$$

then $u(x, t) \rightarrow 0$ uniformly on M as $t \rightarrow \infty$.

Proof. Use Theorem 3.3 for $\Omega = M \times (0, \infty)$. Then, we have $u(x, t) \rightarrow 0$ uniformly on M as $t \rightarrow \infty$. q.e.d.

Remark 3.6. If M is a complete C^{∞} -Riemannian manifold with Ricci curva-

88

ture bounded from below and u_0 is a continuous function on M which vanishes at infinity, then the bounded solution of the heat equation with Cauchy data u_0 vanishes at infinity for t>0 ([3], [7]).

4. An application to p-forms.

Let M be a C^{∞} -Riemannian manifold of dimension n. We denote ∇ and ∇^* the Levi-Civita connection and its dual respectively.

The Weitszenböck formula is well known:

$$\Delta \alpha = -\nabla^* \nabla \alpha - F_p \alpha$$

for a C^{∞} -p-form α on M depending on t, where F_p is an algebraic operator depending only on the curvature of M. We denote $|\alpha|$ the norm of α .

Theorem 4.1. Let M be a model with Ricci curvature bounded from below. Suppose that $F_p \ge 0$ at every point of M. If α is the solution of the heat equation on p-forms with Cauchy data vanishing at infinity and satisfies

$$\lim_{R\to\infty}\frac{1}{R}\sup_{(x,t)\in T_E}|\alpha(x,t)|^2=0,$$

then $\alpha(x, t) \rightarrow 0$ uniformly on M as $t \rightarrow \infty$.

Proof. By the proof of Theorem 5.2 in [3], we have

$$L|\alpha|^2 \geq 0.$$

We consider the function

$$v(x, t) := - |\alpha(x, t)|^{2} + \{ \max_{\tau(x)+|t|=R_{0}} |\alpha(x, t)|^{2} \} \omega(x, t) + \varepsilon$$

where $\omega(x, t)$ is the function in Lemma 3.2. Then, as in §3, we have that $v(x, t) \ge 0$ in D_{R_0} . Therefore, we have $|\alpha(x, t)|^2 < 2\varepsilon$ in D_{R_1} . q.e.d.

References

- [1] E. Calabi: An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), 45-56.
- [2] J. Cheeger and S.-T. Yau: A lower bound for the heat kernel, Comm. Pure Appl. Math. 34 (1981), 465-480.
- [3] J. Dodziuk: Maximum principle for parabolic inequalities and the heat flow on open manifolds, preprint.
- [4] R.E. Greene and H. Wu: Function theory on manifolds which possess a pole, Lecture Notes in Math. 699, Springer-Verlag, Berlin Heidelberg New York, 1979.
- [5] A. Friedman: On two theorems of Phragmén-Lindelöf for linear elliptic and parabolic differential equations of the second order, Pacific J. Math. 7 (1957), 1563-1575.
- [6] L. Nirenberg: A strong maximum principle for parabolic equations, Comm. Pure Appl. Math. 6 (1953), 167-177.

H. KITAHARA AND H. OGAWA

[7] S.-T. Yau: On the heat kernel of a complete Riemannian manifold, J. Math. Pures Appl. 57 (1978), 191-201.

Department of MathematicsDepartmentCollege of Liberal ArtsandFacultyKanazawa UniversityKanazaKanazawa 920, JapanKanaza

Department of Mathematics and Faculty of Science Kanazawa University Kanazawa 920, Japan