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1. Introduction.

A. Friedman [5] has generalized the classical theorems of Phragm\’en-Lindel\"of
type for the parabolic equations. In this paper we discuss some theorems of
Phragm\’en-Lindel\"of type for the heat equation on manifolds with “ nice “ prop-
erties and their appIications to the solutions of the heat equation.

In \S 2, we suppose that $M$ is a complete $C^{\infty}$-Riemannian manifold with Ricci
curvature bounded from below. Then we have a similar theorem for the heat
operator as in Theorem 7 in [5] and may apply it to prove the uniqueness of
the solutions with Cauchy data which are not necessarily bounded. Our result
is an extension of the theorem in [3] which gives the uniqueness of bounded
solutions.

In \S 3, we suppose that $M$ is a “ model “ with Ricci curvature bounded from
below. Then we have a similar theorem for the heat equation as in Theorem 8
in [5] and that the solution with Cauchy data vanishing at infinity vanishes
uniformly as time tends to infinity.

In \S 4, we apply theorems in \S 3 to differential forms.

2. The uniqueness of the solutions with Cauchy data.

Let $L$ be a linear, locally uniformly parabolic operator on a $C^{\infty}$-Riemannian
manifold $M$ of dimension $n$ . In local coordinates $L$ may be written as

(2.1) $Lu$ $:=\sum_{i.f=1}^{n}a^{ij}(x, t)\frac{\partial^{2}u}{\partial_{X^{i}}\partial_{X^{f}}}+\sum_{i=1}^{n}b^{i}(x, t)\frac{\partial u}{\partial x^{i}}-\frac{\partial u}{\partial t}$ ,

and for a neighborhood of each point of $M\times R$ ($R$ : the reals) there exist two
positive constants $C$ and $\Lambda$ so that at every point of this neighborhood the fol-
lowing inequalities hold:

(2.2) $|\sum_{\ell=1}^{n}b^{i}(x, t)\xi_{\ell}|\leqq C(\sum_{i=1}^{n}\xi_{i^{2}})^{1/2}$
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(2.3) $\Lambda^{-1}(\sum_{i=1}^{n}\xi_{i^{2}})\leqq\sum_{\ell.j=1}^{n}a^{\ell j}(x, t)\xi_{i}\xi_{j}\leqq\Lambda(\sum_{\ell\Rightarrow 1}^{n}\xi_{i^{2}})$

for every choice of real constants $\xi_{1},$ $\xi_{2},$ $\cdots$ , $\xi_{n}$ .
Deflnition 2.1 ([1], [3]). Given a parabolic operator (2.1) $L$ satisfying (2.2)

and (2.3), a continuous function $u$ on a domain $\Omega\subset M\times R$ and a function $\phi$ on
$\Omega$ with no restriction whatever, we deflne that

$ Lu(weakly)\leqq\phi$

on any subset $ B\subset\Omega$ if, for every $(x_{0}, t_{0})\in B$ and every $\epsilon>0$, there exists a
neighborhood $ V:=V(\epsilon, x_{0}, t_{0})\subset\Omega$ of $(x_{0}, t_{0})$ and a function $u_{\epsilon.x_{0}.t_{0}}$ on $V$ , of class
$C^{2}$ in the manifold variables and of class $C^{1}$ in $t$ such that the difference
$u-u_{\epsilon.x_{0}.t_{0}}$ attains its maximum at $(x_{0}, t_{0}),$ $i.e$ .
(2.4) $u(x, t)-u_{\epsilon.x_{0},t_{0}}(x, t)\leqq u(x_{0}, t_{0})-u_{\epsilon.x_{0}.t_{0}}(x_{0}, t_{0})$

for $(x, t)\in V$ , and

(2.5) $ Lu_{\epsilon.x_{0}.t_{0}}\leqq\phi+\epsilon$ at $(x_{0}, t_{0})$ .

Remark 2.2. If $u$ is sufficiently smooth, then $ Lu(weakly)\leqq\phi$ coincides with
$Lu\leqq\phi([3])$ .

Hereafter, we suppose that $M$ is a complete $C^{\infty}$-Riemannian manifold, and
$r(x)$ is the geodesic distance from some fixed point $x_{0}$ to $x$ . Let $\Omega\subset M\times(O, \infty)$

be an unbounded domain, and we define some subsets of $\Omega$ in the following:

$T_{R}:=\Omega\cap\{(x, t)\in M\times R|r(x)+|t|=R\}$

$C_{R}:=\Omega\cap\{(x, t)\in M\times R|r(x)+|t|<R\}$

and
$D_{R}:=\Omega\cap\{(x, t)\in M\times R|r(x)+|t|>R\}$ .

We may partition $M$ into two complementary subsets $C(x_{0})$ and $M(x_{0}),$ $i.e$ .
$M=C(x_{0})\cup M(x_{0})$ , where $C(x_{0})$ is the cut locus of $x_{0}$ and $M(x_{0})=M\backslash C(x_{0})$ . It is
well known that $M(x_{0})$ is an open subset in $M$ and the function $r(x)$ is of class
$C^{\infty}$ in $M(x_{0})\backslash \{x_{0}\}$ .

Lemma 2.3 ([1], [3]). Let $\phi$ be a nondecreasing function of class $C^{2}$ defined
on the half-line $(0, \infty)$ . If the Ricci curvature of $M$ is bounded from below, then
the function $f:=\phi(r)$ satisfies the inequality

$\Delta f\leqq\phi^{\prime\prime}(r)+(\frac{n-1}{r}+C)\phi^{\prime}(r)$

on $M(x_{0})\backslash \{x_{0}\}$ , where the constant $C$ depends only on the lower bound of the Ricci
curvature and $\Delta$ denotes the Laplacian on $M$.
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Hereafter, we suppose that $L$ is the heat operator, $L=\Delta-\partial/\partial t$, on $M\times R$ .

Theorem 2.4. Let $M$ be a complete, $C^{\infty}$-Riemannian manifold with Ricci
curvature bounded from below and $\Omega$ an unbounded domain in $M\times(O, \infty)$ . Let $L$

be the heat operator $\Delta-\partial/\partial t$ . If $u(x, t)\geqq 0$ on $\partial\Omega,$ $Lu(weakly)\leqq 0$ on $\Omega$ and

(2.6) $\lim_{R\rightarrow\infty}\frac{1}{R}\inf_{(x.t)\in T_{R}}u(x, t)=0$ ,

then $u(x, t)\geqq 0$ in $\Omega$ .

Proof. Choose a nondecreasing function $\phi$ of class $C^{2}$ on $(0, \infty)$ such that
$\phi(s)=0$ for $s\in(O, \delta/2)$ and $\phi(s)=s$ for $ s\geqq\delta$, where $\delta>0$ is so small that the
geodesic ball with center at $x_{0}$ and of radius $\delta$ is contained in a normal coordi-
nate neighborhood at $x_{0}$ . Set $\rho(x):=\phi(r(x))$ . Then $\rho:M\rightarrow R$ is continuous and
$\rho$ restricted to $M(x_{0})$ is of class $C^{2}$. We set

$V_{R}(x, t):=\frac{\rho(x)+\tilde{K}t+\delta}{R}$ , ( $\tilde{K}>1$ , a constant)

for $(x, t)\in\overline{\Omega}$ . Clearly we have the following:

(2.7) $V_{R}(x, t)\geqq 0$ if $(x, t)\in\partial\Omega,$ $r(x)+|t|\leqq R$ .
(2.8) $V_{R}(x, t)\geqq 1$ if $(x, t)\in\Omega,$ $r(x)+|t|=R$ .
(2.9) $LV_{R}(weakly)\leqq 0$ in $C_{R}$ if $\tilde{K}$ is sufficiently large.

In fact, for $(x, t)\in C_{R}$ with $x\in M(x_{0})$ ,

$LV_{R}=\frac{1}{R}(\Delta\rho-\tilde{K})$ ,

and, by Lemma 2.3, there exists a constant $N$, depending only on $\phi$ and the
lower bound of Ricci curvature, such that $\Delta\rho\leqq N$. Then, we have

$LV_{R}\leqq 0$ for a large constant $\tilde{K}$.
Next, let $(x, t)\in C_{R}$ with $x\in C(x_{0})$ . Choosing one geodesic $\gamma$ of the shortest
length $r(x)$ joining $x_{0}$ with $x$ , let $x_{\epsilon}$ be a point on $\gamma$ at a distance $\epsilon>0$ from $x_{0}$

arbitrarily small. Then, replacing $x_{0}$ by $x_{\epsilon}$ , we have that $x\in M(x_{\epsilon})$ because the
part of $\gamma$ between $x_{\epsilon}$ and $x$ is the unique geodesic of length $ r(x)-\epsilon$ joinin$gx_{\iota}$

with $x$ . We set
$V_{6.\partial.\ell}$ $:=V..x\times(0, \infty)\cap C_{R}$

$r_{\epsilon.x}(y):=the$ distance from $x_{\epsilon}$ to $y$

$\rho_{e.x}(y):=\phi(r..x(y))$

for $y\in V_{\epsilon.x}$, where $V_{*.x}\subset M(x_{\epsilon})$ is a neighborhood of $x$ , and
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$V_{R...x.t}(y, s):=\frac{\rho_{e.x}(y)+\tilde{K}s+\delta}{R}$

for $(y, s)\in V_{\epsilon.\#.t}$ . Then, we have

$LV_{R.\iota.x.t}\leqq 0$ at $(x, t)$ .
The triangle inequality implies that

$ r-r_{\epsilon.x}\leqq\epsilon$ ,

the equality holds at $x$ . Choosing $\delta$ sufficiently small, we have

$\rho(y)-\rho_{\text{\’{e}}.x}(y)\leqq\epsilon$ for $y\in V_{\epsilon.x}$ ,

the equality holds at $x$ . Then we have

$V_{R}(y, s)-V_{R...x.t}(y, s)\leqq V_{R}(x, t)-V_{R.\iota.x.t}(x, t)$

for $(y, s)\in V_{\epsilon.x,t}$ . This completes the proof of (2.9).

Now, we consider the function

$\tilde{u}(x, t)$
$:=u(x, t)-\dagger\min(0,\inf_{(x.t)\in T_{R}}u(x, t))$} $V_{R}(x, t)$ .

Then $\tilde{u}(x, t)$ is non-negative on $\partial C_{R}$ by (2.7) and (2.8), and $L\tilde{u}(weakly)\leqq 0$ in $C_{R}$

by (2.9). Using the weak maximum principle ([3], [6]), we have $\tilde{u}(x, t)\geqq 0$ in
$C_{R}$ . Letting $ R\rightarrow\infty$ and using (2.6) we have $u(x, t)\geqq 0$ . $q.e.d$ .

Corollary 2.5. Let $M$ be a complete, $C^{\infty}$-Riemannian manifold with Ricci
curvature bounded from below. SuPpose that $ u:M\times[0, \infty$ ) $\rightarrow R$ is a solution of
the heat equation with Cauchy data $u_{0},$ $i.e$ .

$Lu=0$ on $M\times(O, \infty)$ ,

and
$u(x, 0)=u_{0}(x)$ on $M$.

If
1

(2.10) lim– $sup|u(x, t)|=0$ ,
$R\rightarrow\infty R(x.t)\in T_{R}$

then $u$ is the unique solution with Cauchy data $u_{0}$ .
Proof. Suppose that $u_{0}=0$ on $M$. Using Theorem 2.4 for $\Omega=M\times(0, \infty)$ ,

we have $u\geqq 0$ on $M\times(O, \infty)$ . And $-u$ also satisfies the condition of Theorem
2.4, then we have $u\leqq 0$ on $M\times(O, \infty)$ . Therefore, we have $u=0$ on $ M\times[0, \infty$ ).

This implies the uniqueness. $q.e.d$ .
Remark 2.6. J. Dodziuk [3] has proved the uniqueness of bounded solutions

of the heat equation with Cauchy data on a complete $C^{\infty}$-Riemannian manifold
with Ricci curvature bounded from below. Of course, the condition (2.10) is
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satisfied for bounded solutions.

3. The property of the solutions with Cauchy data.

A Riemannian manifold $M$ of dimension $n$ is a model if the following con-
ditions hold:

(i) The exponential map of the tangent space $T_{x_{0}}(M)$ at some fixed point $x_{0}$

onto $M$ is a diffeomorphism.
(ii) For every $r>0$, the mean curvature $H$ of the geodesic sphere $S_{r}(x_{0})$ satisfies
the inequality

$H\leqq\frac{K}{(n-1)r}$ ($K<1$ , a constant)

with respect to the outer normal.

Remark 3.1. Our terminology differs slightly from that of [2] and [4]. If
$M$ is a model in the sense of [4] with negative semi-definite Ricci curvature.
then the condition (ii) holds.

Lemma 3.2. Let $M$ be a model and $\Omega\subset M\times(O, \infty)$ an unbounded domain.
Then, for any $R_{0}>0$ , there exists a function $\omega(x, t)$ with the following Properties

defined in $D_{R_{0}}$ :

(3.1) $\omega(x, t)\geqq 0$ if $(x, t)\in\partial D_{R_{0}}$ .
(3.2) $\omega(x, t)\geqq 1$ if $(x, t)\in\Omega,$ $r(x)+|t|=R_{0}$ .
(3.3) $L\omega\leqq 0$ in $D_{R_{0}}$ .
(3.4) $\omega(x, t)\rightarrow 0$ uniformly in $D_{R_{0}}$ as $ r(x)+|t|\rightarrow\infty$ .

Proof. We consider the function

$\omega(x, t):=\frac{C}{(t+1)^{\text{\’{e}}}}\exp(\frac{-Gr(x)^{2}}{t+1})$ ( $C,$ $G,$ $\epsilon$ \ddagger positive constants).

For $(x, t)$ with $x\in M\backslash \{x_{0}\}$ ,

$L\omega=\omega\{\frac{r^{2}}{(t+1)^{2}}(4G^{2}-G)+\frac{1}{t+1}(\epsilon-2Gr\Delta r-2G)\}$ .

Note that $\Delta r=-(n-1)H$ ([11]). Then we have

$L\omega\leqq\omega\{\frac{\gamma^{2}}{(t+1)^{2}}(4G^{2}-G)+\frac{1}{t+1}(\epsilon+2GK-2G)\}$ .

If

(3.5) $4G^{2}-G\leqq 0$ and $\epsilon+2GK-2G\leqq 0$ ,

then $L\omega\leqq 0$ for $(x, t)$ with $x\in M\backslash \{x_{0}\}$ . Clearly we may choose $G$ and $\epsilon$ so that
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(3.5) holds and we also have $L\omega\leqq 0$ for $(x_{0}, t)$ . Therefore (3.3) holds. Then
\langle 3.1) and (3.4) also hold, and we may choose $C$ so that (3.2) holds. $q.e.d$ .

Theorem 3.3. Let $M$ be a model with Ricci curvature bounded from below
and $\Omega\subset M\times(O, \infty)$ an unbounded domain. If $Lu=0$ in $\Omega$,

\langle 3.6) $\lim_{R\rightarrow\infty}\frac{1}{R}\sup_{\langle x.t)\in T_{R}}|u(x, t)|=0$

and $u(x, t)\rightarrow 0$ uniformly on $\Omega$ as $ r(x)+|t|\rightarrow\infty$ , then $u(x, t)\rightarrow 0$ uniformly on $\Omega$

as $ r(x)+|t|\rightarrow\infty$ .
Proof. Given $\epsilon>0$, there exists $R_{0}>0$ such that $|u(x, t)|<\epsilon$ for $(x, t)\in\partial\Omega$,

$r(x)+|t|\geqq R_{0}$ . We consider the function

$ v(x, t);=u(x, t)+\{\max_{r(x)+|t|=R_{0}}|u(x, t)|\}\omega(x, t)+\epsilon$ ,

where $\omega(x, t)$ is the function in Lemma 3.2. Then we have $v(x, t)\geqq 0$ for $(x, t)$

$\in\partial D_{R_{0}}$, and $Lv\leqq 0$ in $D_{R_{0}}$ . Theorem 2.4 implies that $v(x, t)\geqq 0$ in $D_{R_{0}}$. Choosing
$R_{1}$ such that

$\{\max_{r(x)+1t|=R_{0}}|u(x, t)|\}\omega(x, t)<\epsilon$

in $D_{R_{1}}$ , we have
$ 0\leqq v(x, t)<u(x, t)+2\epsilon$

in $D_{R_{1}}$ , and so, $ u(x, t)>-2\epsilon$ in $D_{R_{1}}$ . Similarly we have $ u(x, t)<2\epsilon$ in $D_{R_{1}}$ .
Therefore, theorem is proved. $q.e.d$ .

Remark 3.4. If Ricci curvature of $M\geqq-C$ ($C$ : a positive constant), then

$H\geqq-\frac{1}{\gamma}-(\frac{C}{n-1})^{1/2}$.
Therefore $H$ satisfies the inequality

$-\frac{1}{\gamma}-(\frac{C}{n-1})^{1/2}\leqq H\leqq\frac{K}{(n-1)r}$ $(K<1)$ .

Corollary 3.5. Let $M$ be a model with Ricci curvature bounded from below.
If $u_{0}$ is a continuous function on $M$ which vanishes at infinity and $u$ is the solu-
tion of the heat equation with initial data $u_{0}$ and satisfies

$\lim\perp$
$sup|u(x, t)|=0$ ,

$R\rightarrow\infty R(x.t)\in T_{R}$

then $u(x, t)\rightarrow 0$ uniformly on $M$ as $ t\rightarrow\infty$ .
Proof. Use Theorem 3.3 for $\Omega=M\times(O, \infty)$ . Then, we have $u(x, t)\rightarrow 0$

uniformly on $M$ as $ t\rightarrow\infty$ . $q.e.d$ .
Remark 3.6. If $M$ is a complete $C^{\infty}$-Riemannian manifold with Ricci curva-
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ture bounded from below and $u_{0}$ is a continuous function on $M$ which vanishes
at infinity, then the bounded solution of the heat equation with Cauchy data $u_{0}$

vanishes at infinity for $t>0$ ([3], [7]).

4. An application to $p$-forms.

Let $M$ be a $C^{\infty}$-Riemannian manifold of dimension $n$ . We denote $\nabla$ and $\nabla^{*}$

the Levi-Civita connection and its dual respectively.
The Weitszenb\"ock formula is well known:

(4.1) $\Delta\alpha=-\nabla^{*}\nabla\alpha-F_{p}\alpha$

for a $C^{\infty}- p$-form $\alpha$ on $M$ depending on $t$, where $F_{p}$ is an algebraic operator
depending only on the curvature of $M$. We denote $|\alpha|$ the norm of $\alpha$ .

Theorem 4.1. Let $M$ be a model with Ricci curvature bounded from below.
SuppOse that $F_{p}\geqq 0$ at every Point of M. If $\alpha$ is the solution of the heat equation
on $p$-forms with Cauchy data vanishing at infinity and satisfies

$\lim\perp$
$sup|\alpha(x, t)|^{2}=0$ ,

$R\rightarrow\infty R(x.t)\in T_{B}$

then $\alpha(x, t)\rightarrow 0$ uniformly on $M$ as $ t\rightarrow\infty$ .
Proof. By the proof of Theorem 5.2 in [3], we have

$L|\alpha|^{2}\geqq 0$ .
We consider the function

$ v(x, t):=-|\alpha(x, t)|^{2}+\{\max_{r(x)+|t|=R_{0}}|\alpha(x, t)|^{2}\}\omega(x, t)+\epsilon$

where $\omega(x, t)$ is the function in Lemma 3.2. Then, as in \S 3, we have that
$v(x, t)\geqq 0$ in $D_{R_{0}}$ . Therefore, we have $|\alpha(x, l)|^{2}<2\epsilon$ in $D_{R_{1}}$ . $q.e.d$ .
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