ON THE HEEGAARD GENUS OF A CLOSED, ORIENTABLE 3-MANIFOLD

By

R. CRAGGS

(Received October 21, 1982)

We consider closed, compact, connected, orientable, pwl 3-manifolds and their subpolyhedra. By a Heegaard decomposition (M; U, V) of a 3-manifold M, we understand a partition $M=U\cup V$ into a pair of cubes with handles U and V (regular neighborhoods of graphs) such that $U\cap V=BdU=BdV$. Notice that if we collapse U to a 1-dimensional graph G, we can reconstruct the decomposition, up to equivalence, by taking as U any regular neighborhood of G and as V the complement $M\setminus Int U$. We will thus refer to a compact, connected graph G in a 3-manifold M as a Heegaard graph (see also [1]) if both a regular neighborhood N(G) of G and the complement $M\setminus Int N(G)$ are cubes with handles. Note that for a Heegaard graph G in M, if $\chi(G)=1-n$, then G defines a Heegaard decomposition of genus n.

We prove the following theorem:

Theorem. Suppose that G is a Heegaard graph in the 3-manifold M with $\chi(G)=1-n$. Suppose further that G contains a connected subgraph G_0 with $\chi(G_0)=1-p$ such that G is contained in the interior of a 3-ball B in M.

Then M has a Heegaard decomposition of genus at most n-p; that is, the Heegaard genus of M is at most n-p.

Proof. There is no loss in assuming that M is not a 3-sphere.

Step 1. We may assume that G and G_0 are cell complexes with one 0-cell and n and p 1-cells respectively:

Regard G as a simplicial complex. Locate a maximal tree T in G that intersects G_0 in a maximal tree T_0 . Using the collapse $T \setminus T_0$ deform the 3-ball G so that it engulfs G and still contains G_0 in its interior. Now it is an easy matter to define a series of 2-dimensional deformations of G, all taking place inside G, so that all the 1-cells of $G \setminus T$ are pushed down and attached to a single vertex G. Finally collapse G back to the vertex G. We are left with G and G0 as the desired bouquets of loops. Since the deformations do not change the regular neighborhood type, it follows that the modified G is still a Heegaard graph. Note that $G_1 = Cl(G_0 \setminus G_0)$ is now connected.

Alternate Step 1. After the deformation of B mentioned in the last paragraph, shrink T to a point. With a suitable triangulation, M/T is pwl homeomorphic to M and B/T and G/T are polyhedra with G/T and $G_0/T = G_0/T_0$ bouquets of circles where $Cl(G/T\backslash G_0/T)$ is connected. Replace M, B, G, and G_0 by M/T, B/T, G/T, and G_0/T and proceed to Step 2.

Step 2. A split regular neighborhood for G:

Let D be a disk in Int B with $D \cap G = t \in \text{Int } D$. Choose D so that locally it separates $G_0 \setminus t$ from $G_1 \setminus t$ in M. Choose a regular neighborhood U of G so that $U \cap D$ is a regular neighborhood of t in Int D with $U \setminus G \cup (U \cap D) \setminus G$ and so that the component of $U \setminus D$ containing $G_0 \setminus t$ is contained in Int B. Let U_0 and U_1 denote the closures of the components of $U \setminus D$ containing G_0 and G_1 respectively. Note that we have $U = U_0 \cup U_1$ with $U_0 \cap U_1$ a disk and that U_0 is contained in Int B.

This next step is well known, but we include it for completeness.

Step 3. Some homology meridians on BdU_0 :

We claim that there are p disjoint, homologously independent simple closed curves J_1, \dots, J_p on $(BdU_0)\backslash D$ that are homologous to zero in $B\backslash \text{Int } U_0$. (Homology coefficients Z are assumed here.)

An application of the Mayer-Vietoris sequence produces an internal direct sum decomposition $H_1(BdU_0)=H\oplus K$ where H denotes the kernel of the (inclusion induced) homomorphism $H_1(BdU_0)\to H_1(B\setminus U_0)$ and K denotes the kernel of the corresponding homomorphism $H_1(BdU_0)\to H_1(U_0)$. Now K is free of rank p; so H must also be free of rank p. Thus there is a basis $h_1, \dots, h_p, k_1, \dots, k_p$ for $H_1(BdU_0)$ so that h_1, \dots, h_p is a basis for H and H_1, \dots, H_p is a basis for H.

The intersection numbers $h_i \circ h_j$ and $k_i \circ k_j$ must be zero for all pairs i and j. If, say, $h_i \circ h_j$ were not zero, then we could push a cycle representing h_i slightly into Int U_0 and there it would link a cycle representing h_j . But that would contradict the fact that a cycle representing h_j is homologously trivial in $B \setminus Int U_0$. A similar argument applies to the numbers $k_i \circ k_j$.

Let h_j correspond to the jth column of the matrix $\begin{pmatrix} I_{p,p} \\ O_{p,p} \end{pmatrix}$ and k_j to the jth column of the matrix $\begin{pmatrix} O_{p,p} \\ I_{p,p} \end{pmatrix}$. Then a column vector $X = [x_1, \cdots, x_{2p}]^T$ corresponds to $\sum_{i=1}^p x_i h_i + x_{j+p} k_j$. With respect to this basis, intersection numbers are given by $X \circ Y = X^T R Y$ where

$$R = \left(\frac{0}{C} \left| \frac{-C^T}{0} \right) = \left(\frac{0}{(k_i \circ k_j)} \left| \frac{(h_i \circ k_j)}{0} \right| \right).$$

Now C is unimodular since the intersection pairing is a unimodular form. Let k'_1, \dots, k'_p correspond to the successive columns of

$$\left(\begin{array}{c|c} I & 0 \\ \hline 0 & C^{-1} \end{array}\right) \left(\begin{array}{c} 0 \\ I_{p,p} \end{array}\right).$$

With respect to the revised basis $h_1, \dots, h_p, k'_1, \dots, k'_p$, the intersection matrix is

$$\left(\begin{array}{c|c} I & 0 \\ \hline 0 & C^{-1} \end{array}\right) \left(\begin{array}{c|c} 0 & -C^T \\ \hline C & 0 \end{array}\right) \left(\begin{array}{c|c} I & 0 \\ \hline 0 & (C^T)^{-1} \end{array}\right) = \left(\begin{array}{c|c} 0 & -I \\ \hline I & 0 \end{array}\right).$$

Corresponding to the presentation

$$\pi_1(BdU_0) = \langle g_1, \cdots, g_{2p} | [g_1, g_{p+1}] \cdots [g_p, g_{2p}] \rangle$$

there are simple closed curves S_1, \dots, S_{2p} on $BdU_0 \setminus D$ representing the conjugacy classes of g_1, \dots, g_{2p} so that S_1, \dots, S_p are disjoint, S_{p+1}, \dots, S_{2p} are disjoint, and $S_i \cap S_{j+p}$ is either empty or a single point of transverse intersection accordingly as $i \neq j$ or i = j. Thus, when orientation matters are seen to, we may regard g_1, \dots, g_{2p} as a basis for $H_1(BdU_0)$ so that the intersection matrix with

respect to this basis is $\left(\begin{array}{c|c} 0 & -I \\ \hline I & 0 \end{array}\right)$. The automorphism induced by $g_j \rightarrow h_j$, g_{j+p}

 $\rightarrow k'_j$, $j \leq p$ preserves intersection numbers and so, by a theorem of Nielsen's, see [4, Ch. 3, Th. N13], the automorphism is induced by a homeomorphism h. We may assume that h is the identity on $D \cap BdU_0$.

The desired simple closed curves J_1, \dots, J_p may be taken to be $h(S_1), \dots, h(S_p)$.

Step 4. Surgery on M:

Let W be a cube with p-handles and let L_1, \dots, L_p be a complete set of meridians on BdW. Let $f: BdW \rightarrow BdU_0$ be a homeomorphism chosen so that $f(L_i)=J_i$. Consider now the 3-manifold M' defined by

$$M'=W_{x=f(x)}+(U_1\cup V)$$

where + denotes disjoint union. Then M' results from a surgery that replaces U_0 by W.

The 3-ball B can be used to express M as the connected sum $M \sharp \Sigma$ where Σ denotes the 3-sphere and B is thought of as the part of Σ remaining after formation of connected sum. The surgery takes place inside B, so what we really have is $M' = M \sharp M_0$ where M_0 results from a corresponding surgery on Σ . A second application of the Mayer-Vietoris sequence reveals that $H_1(M_0)$ is free of rank p.

Step 5. Completion of the proof:

Given two Heegaard decompositions $(M_a; U_a, V_a)$ and $(M_b; U_b, V_b)$, the sum $(M_a; U_a, V_a) \# (M_b; U_b, V_b)$ is formed by locating 3-balls A and B in M_a and M_b so that $A \cap U_a$ and $B \cap U_b$ are disks properly embedded in A and B. Then

 $M_a \setminus \text{Int } A$ is attached to $M_b \setminus \text{Int } B$ by means of a homeomorphism $f: BdA \to BdB$ that sends $(BdA) \cap U_a$ to $(BdB) \cap U_b$. This naturally forms, in addition to $M_a \# M_b$, two boundary sum $U_a \# U_b$ and $V_a \# V_b$, and the sum of decompositions is defined to be $(M_a \# M_b, U_a \# U_b, V_a \# V_b)$.

A theorem of Haken's [2, Sec. 7] together with the uniqueness of connected sum decompositions of 3-manifolds [3, 5] implies that any Heegaard decomposition of a non-trivial connected sum of 3-manifolds splits as a sum of decompositions of the component 3-manifolds. The application of Haken's theorem may require one to convert non-separating 2-spheres in a 3-manifold to separating 2-spheres, but this is easy to do.

We have a Heegaard decomposition $(M', W_{x=f(x)} \cup U_1, V)$ of M' of genus n. From the preceding remarks we see that this decomposition splits as a sum $(M; U_2, V_2) \# (M_0; U_3, V_3)$. The genus of $(M_0; U_3, V_3)$ is at least p since the first Betti number of M_0 is p. Thus the genus of $(M; U_2, V_2)$ is at most n-p and so we may take $(M; U_2, V_2)$ to be the decomposition promised by our theorem.

Question: Is the Heegaard decomposition $(M; U_2, V_2)$ a summand of the original decomposition (M; U, V)? We conjecture that it is.

The following corollary to our theorem is almost immediate. We omit a proof:

Corollary. Suppose that G is a Heegaard graph in the 3-manifold M with $\chi(G)=1-n$. Suppose further that there are disjoint 3-balls B_0, \dots, B_r in M and disjoint, connected subgraphs G_0, G_1, \dots, G_r of G such that $G_i \subseteq \text{Int } B_i$ for each i.

Then M has a Heegard decomposition of genus at most $n - \sum_{i=0}^{r} p_i$.

References

- [1] R. Craggs: A new proof of the Reidemeister-Singer theorem on stable equivalence of Heegaard splittings, Proc. AMS 57 (1976), 143-147.
- [2] W. Haken: Some results on surfaces in 3-manifolds, Studies in Modern Topology, P. J. Hilton, ed. pp. 39-98, Math. Assoc. of America, Dist. by Prentice-Hall Inc., Englewood Cliffs, NJ, 1968.
- [3] H. Kneser: Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jber. D. M. V. 38 (1929), 248-260.
- [4] W. Magnus, A. Karrass and D. Solitor: Combinatorial Group Theory, Interscience (John Wiley & Sons), New York, 1966.
- [5] J.W. Milnor: A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1-7.

Department of Mathematics University of Illinois at Urbana-Champaign 1409 West Green Street Urbana, Illinois 61801