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We consider closed, compact, connected, orientable, pwl 3-manifolds and their
subpolyhedra. By a Heegaard decomposition $(M;U, V)$ of a 3-manifold $M$, we
understand a partition $M=U\cup V$ into a pair of cubes with handles $U$ and $V$

(regular neighborhoods of graphs) such that $U\cap V=BdU=BdV$ . Notice that if
we collapse $U$ to a l-dimensional graph $G$ , we can reconstruct the decomposition,
up to equivalence, by taking as $U$ any regular neighborhood of $G$ and as $V$ the
complement $M\backslash IntU$ . We will thus refer to a compact, connected graph $G$ in a
3-manifold $M$ as a Heegaard graPh (see also [1]) if both a regular neighborhood
$N(G)$ of $G$ and the complement $M\backslash IntN(G)$ are cubes with handles. Note that
for a Heegaard graph $G$ in $M$, if $\chi(G)=1-n$ , then $G$ defines a Heegaard decom-
position of genus $n$ .

We prove the following theorem:

Theorem. SuPpose that $G$ is a Heegaard graPh in the 3-manifold $M$ with
$\chi(G)=1-n$ . SuppOse further that $Gconta\iota ns$ a connected subgraph $G_{0}$ with
$\chi(G_{0})=1-p$ such that $G$ is contained in the interior of a 3-ball $B$ in $M$.

Then $M$ has a Heegaard decomposition of genus at most $n-p$ ; that is, the
Heegaard genus of $M$ is at most $n-p$ .

Proof. There is no loss in assuming that $M$ is not a 3-sphere.

Step1. We may assume that $G$ and $G_{0}$ are cell complexes with one O-cell
and $n$ and $P$ l-cells respectively:

Regard $G$ as a simplicial complex. Locate a maximal tree $T$ in $G$ that
intersects $G_{0}$ in a maximal tree $T_{0}$ . Using the collapse $T\searrow T_{0}$ deform the 3-ball
$B$ so that it engulfs $T$ and still contains $G_{0}$ in its interior. Now it is an easy
matter to deflne a series of 2-dimensional deformations of $G$ , all taking place
inside $B$ , so that all the l-cells of $G\backslash T$ are pushed down and attached to a
single vertex $t\in T$ . Finally collapse $T$ back to the vertex $t$ . We are left with
$G$ and $G_{0}$ as the desired bouquets of loops. Since the deformations do not change
the regular $neighborhd$ type, it follows that the modified $G$ is still a Heegaard
graph. Note that $G_{1}=Cl(G_{0}\backslash G_{0})$ is now connected.
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Alternate Step1. After the deformation of $B$ mentioned in the last para-
graph, shrink $T$ to a point. With a suitable triangulation, $M/T$ is pwl homeo-
morphic to $M$ and $B/T$ and $G/T$ are polyhedra with $G/T$ and $G_{0}/T=G_{0}/T_{0}$

bouquets of circles where $Cl(G/T\backslash G_{0}/T)$ is connected. Replace $M,$ $B,$ $G$ , and
$G_{0}$ by $M/T,$ $B/T,$ $G/T$ , and $G_{0}/T$ and proceed to Step 2.

Step2. A split regular neighborhood for $G$ :
Let $D$ be a disk in Int $B$ with $D\cap G=t\in IntD$ . Choose $D$ so that locally it

separates $G_{0}\backslash t$ from $G_{1}\backslash t$ in $M$. Choose a regular neighborhood $U$ of $G$ so that
$U\cap D$ is a regular neighborhood of $t$ in Int $D$ with $U\searrow G\cup(U\cap D)\searrow G$ and so
that the component of $U\backslash D$ containing $G_{0}\backslash t$ is contained in Int $B$ . Let $U_{0}$ and
$U_{1}$ denote the closures of the components of $U\backslash D$ containing $G_{0}$ and $G_{1}$ respec-
tively. Note that we have $U=U_{0}\cup U_{1}$ with $U_{0\cap}U_{1}$ a disk and that $U_{0}$ is
contained in Int $B$ .

This next step is well known, but we include it for completeness.

Step3. Some homology meridians on $BdU_{0}$ :
We claim that there are $P$ disjoint, homologously independent simple closed

curves $J_{1},$ $\cdots$ , $J_{p}$ on $(BdU_{0})\backslash D$ that are homologous to zero in $B\backslash IntU_{0}$ . (Homology
coefficients $Z$ are assumed here.)

An ,application of the Mayer-Vietoris sequence produces an internal direct
sum decomposition $H_{1}(BdU_{0})=H\oplus K$ where $H$ denotes the kernel of the (inclu-

sion induced) homomorphism $H_{1}(BdU_{0})\rightarrow H_{1}(B\backslash IntU_{0})$ and $K$ denotes the kernel
of the corresponding homomorphism $H_{1}(BdU_{0})\rightarrow H_{1}(U_{0})$ . Now $K$ is free of rank
$p$ ; so $H$ must also be free of rank $p$ . Thus there is a basis $h_{1},$ $\cdots$ , $h_{p},$ $k_{1},$ $\cdots$ , $k_{p}$

for $H_{1}(BdU_{0})$ so that $h_{1},$ $\cdots$ , $h_{p}$ is a basis for $H$ and $k_{1},$ $\cdots$ , $k_{p}$ is a basis for $K$.
The intersection numbers $h_{i^{o}}h_{j}$ and $k_{i}\circ k_{j}$ must be zero for all pairs $i$ and $j$.

If, say, $h_{\ell}\circ h_{j}$ were not zero, then we could push a cycle representing $h_{\ell}$ slightly
into Int $U_{0}$ and there it would link a cycle representing $h_{j}$ . But that would
contradict the fact that a cycle representing $h_{j}$ is homologously trivial in $B\backslash IntU_{0}$ .
A similar argument applies to the numbers $k_{i^{\circ}}k_{j}$ .

Let $h_{j}$ correspond to the $j$th column of the matrix $\left(\begin{array}{l}I_{p.p}\\O_{p}p\end{array}\right)$ and $k_{j}$ to the
$j$th column of the matrix $(_{I_{p.p}}^{O_{p.p}})$ . Then a column vector $X=[x_{1}, \cdots , x_{2p}]^{T}$

corresponds to $\sum_{i=1}^{p}x_{j}h_{j}+x_{j+p}k_{j}$ . With respect to this basis, intersection numbers

are given by $X\circ Y=X^{T}RY$ where

$R=(\frac{0}{C}|\frac{-C^{T}}{0})=\left(\begin{array}{llll}0 & & (h_{i^{o}} & k_{j})\\(k_{t^{o}} & h_{j}) & 0 & \end{array}\right)$ .

Now $C$ is unimodular since the intersection pairing is a unimodular form. Let
$k_{1}^{\prime},$ $\cdots$ , $k_{p}^{\prime}$ correspond to the successive columns of
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$\left(\begin{array}{ll}I & 0\\0 & C^{-1}\end{array}\right)\left(\begin{array}{ll}0 & \\I_{p} & p\end{array}\right)$ .

With respect to the revised basis $h_{1},$ $\cdots$ , $h_{p},$ $k_{1}^{\prime},$ $\cdots$ , $k_{p}^{\prime}$ , the intersection matrix is

Corresponding to the presentation

$\pi_{1}(BdU_{0})=\langle g_{1}, \cdots g_{\epsilon p}|[g_{1}, g_{p+1}]\cdots[g_{p}, g_{2p}]\rangle$

there are simple closed curves $S_{1},$ $\cdots$ , $S_{2p}$ on $BdU_{0}\backslash D$ representing the conjugacy
classes of $g_{1},$

$\cdots$ , $g_{2p}$ so that $S_{1},$ $\cdots$ , $S_{p}$ are disjoint, $S_{p+1},$ $\cdots$ , $S_{zp}$ are disjoint,
and $S_{\ell\cap}S_{f+p}$ is either empty or a single point of transverse intersection accord-
ingly as $i\neq j$ or $i=j$. Thus, when orientation matters are seen to, we may
regard $g_{1},$

$\cdots$ , $g_{2p}$ as a basis for $H_{1}(BdU_{0})$ so that the intersection matrix with

respect to this basis is $\left(\begin{array}{ll}0 & -I\\I & 0\end{array}\right)$ . The automorphism induced by $g_{j}\rightarrow h_{j},$ $g_{j+p}$

$\rightarrow k_{j}^{\prime},$ $1\leqq p$ preserves intersection numbers and so, by a theorem of Nielsen’s, see
[4, Ch. 3, Th. N13], the automorphism is induced by a homeomorphism $h$ . We
may assume that $h$ is the identity on $D\cap BdU_{0}$ .

The desired simple closed curves $J_{1},$ $\cdots$ , $J_{p}$ may be taken to be $h(S_{1}),$ $\cdots$ , $h(S_{p})$ .
Step4. Surgery on $M$ :
Let $W$ be a cube with $p$ -handles and let $L_{1},$ $\cdots$ , $L_{p}$ be a complete set of

meridians on $BdW$ . Let $f$ : $BdW\rightarrow BdU_{0}$ be a homeomorphism chosen so that
$f(L_{i})=J_{\ell}$ . Consider now the 3-manifold $M^{\prime}$ defined by

$M^{\prime}=W+(U_{1}\cup V)x=f(x)$

where $+denotes$ disjoint union. Then $M^{\prime}$ results from a surgery that replaces
$U_{0}$ by $W$.

The 3-ball $B$ can be used to express $M$ as the connected sum $ M\#\Sigma$ where
$\Sigma$ denotes the 3-sphere and $B$ is thought of as the part of $\Sigma$ remaining after
formation of connected sum. The surgery takes place inside $B$ , so what we
really have is $M^{\prime}=M\# M_{0}$ where $M_{0}$ results from a corresponding surgery on $\Sigma$.
A second application of the Mayer-Vietoris sequence reveals that $H_{1}(M_{0})$ is free
of rank $p$ .

Step5. Completion of the proof:
Given two Heegaard decompositions $(M_{a} ; U_{a}, V_{a})$ and $(M_{b} ; U_{b}, V_{b})$ , the sum

$(M_{a} ; U_{a}, V_{a})\#(M_{b} ; U_{b}, V_{b})$ is formed by locating 3-balls $A$ and $B$ in $M_{a}$ and $M_{b}$

so that $A\cap U_{a}$ and $B\cap U_{b}$ are disks properly embedded in $A$ and $B$ . Then
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$M_{a}\backslash Int$ $A$ is attached to $M_{b}\backslash IntB$ by means of a homeomorphism $f:BdA\rightarrow BdB$

that sends $(BdA)\cap U_{a}$ to $(BdB)\cap U_{b}$ . This naturally forms, in addition to
$M_{a}\# M_{b}$, two boundary sum $U_{a}\# U_{b}$ and $V_{a}\# V_{b}$ , and the sum of decompositions
is defined to be $(M_{a}\# M_{b}, U_{a}\# U_{b}, V_{a}\# V_{b})$ .

A theorem of Haken’s [2, Sec. 7] together with the uniqueness of connected
sum decompositions of 3-manifolds $[3, 5]$ implies that any Heegaard decomposition
of a non-trivial connected sum of 3-manifolds splits as a sum of decompositions
of the component 3-manifolds. The application of Haken’s theorem may require
one to convert non-separating 2-spheres in a 3-manifold to separating 2-spheres,
but this is easy to do.

We have a Heegaard decomposition $(M^{\prime}, W+U_{1}x=f(x)V)$ of $M^{\prime}$ of genus $n$ .
From the preceding remarks we see that this decomposition splits as a sum
\langle$M;U_{2},$ $V_{2}$) $\#(M_{0} ; U_{8}, V_{9})$ . The genus of $(M_{0} ; U_{8}, V_{3})$ is at least $p$ since the
first Betti number of $M_{0}$ is $p$ . Thus the genus of $(M;U_{2}, V_{2})$ is at most $n-P$

and so we may take $(M;U_{2}, V_{2})$ to be the decomposition promised by our theorem.

Question: Is the Heegaard decomposition $(M;U_{2}, V_{2})$ a summand of the
original decomposition $(M;U, V)$ ? We conjecture that it is.

The following corollary to our theorem is almost immediate. We omit a
proof:

Corollary. SuPpose that $G$ is a Heegaard graph in the 3-manifold $M$ with
$\chi(G)=1-n$ . SuPpose further that there are disjoint 3-balls $B_{0},$ $\cdots$ , $B_{r}$ in $M$ and
disjoint, connected subgraphs $G_{0},$ $G_{1},$

$\cdots,$
$G_{r}$ of $G$ such that $G_{\ell}\subseteqq IntB_{i}$ for each $i$ .

Then $M$ has a Heegard decompOsjtjOn of genus at most $n-\sum_{\ell=0}^{r}p_{i}$ .
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