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0. Introdution.

The central limit theorem (C.L.T.) for weakly dependent random fields has
been studied by many authors (for example, 8] and [117) and
applied to Gibbs random fields.

The techniques of proof are divided into three types roughly. The first is
calculation of semi-invariants and [8]), the second, Bernstein’s blocking
and and the third, the use of Chen’s result

In this paper we shall prove the C.L.T. for weakly dependent random fields
by Stein’s technique. In below we explain our method shortly. In C. Stein
characterizes the standard normal distribution N(0, 1) as follows. A random
variable W has the distribution N(0, 1) iff for sufficiently many feC} (|| fllo<co,
[ f'lle<oco and f’ is continuous on R?Y)

(0.1) E{f'W)—WfW)}=0.

From this fact it can be guessed that the distribution of a random variable W is
close to N(0, 1) if for each f&C} E{f'W)—W fW)} is close to 0 in some sense.
In fact, for each bounded continuous function h, define

(0.2) f(x):ez?/ZSlh(t)—Nh)e-ﬂﬂdt

where

Nh=(27r)'””r h(x)e-**"*dx ,
then f/(x)—xf(x)=h(x)—Nh, hence we have
(0.3) E{fW)—WfW)}=E{h(W)—Nh.

This simple idea was, firstly, used in estimating of the error in the C.L.T.
for weakly dependent random variables by Stein himself (cf. [13]. And
Erickson [6] and Chen ([4], [5] and etc.) developed the idea and obtained many
good results which have been thought to be impossible to prove by “ classical”
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blocking method. As to a detailed explanation of Stein’s idea and related topics
the readers should be referred to Chen [5].

The usefulness of Stein’s method is not only in its simplicity but also in its
generality. We shall consider a,random field X={X, ; a=Z?} (for the definition,
see section 1) and the convergence for sums S(V)= EX . (VCZ%. The proof

by blocking needs some regularity of the shape of V, for example, cube. On the
other hand the proof by calculating the semi-invariants needs rather strong
conditions on the moments and the rate of the decay of mixing coefficients. In
this paper we shall show that the C.L.T. for weakly dependent random fields

can be proved under weaker conditions without assuming any regularity of the
shape of V.

Our results are generalizations of results of Nahapetian [8] and Neaderhouser

L11]

1. Preliminaries and results.

Let X={X,;acsZ% (d=1) be a family of random variables defined on a
probability space (2, 4, P), indexed by elements in Z¢, with E(X,)=0 for all
acsZ?% We shall use the following notations and abbreviations in the sequel.

(N1) D=2Z¢. la—-bl=1r£1ias)§ |a;—b;| for a=(a,, ---, ay) and b=(b,, :--, by) in D.
(N2) |V |=#{a; asV} the cardinality of VCD.

(N3) UA={V; |V|<oo, VCD}.

(N4) for V,, V,e¥, d(V,, Vy)=min{|a—b|; acV,, beV,}.

(N5) for Ve, g(V)=0{Xq;acV}: if V=¢, F(V)={Q, ¢}.

(N6) S(V)=a§VXa, a*(V)=E(S(V)?).

(N7) & denotes the class of functions g with the following properties;

(1) for some a=0, g(x) is defined on (a, +o0), and g(x)—-+oco0 as x—+oo.
(2) for any positive numbers a, b, ¢ and d (¢<d)

(1.1) g(x)*/g(xog(x)"")%—0 as x—-oo.
Remark. @& contains log x, loglog x and etc.
Now we introduce two types of conditions on the weak dependence for X.

(M1). ¢-mixing [10]: there exist a sequence {¢(n)} of nonnegative real numbers A
and a nondecreasing function M, defined on Z, such that ¢(n) |0 as n——+co
and that, for each V,, V,e¥«

(L.2) sup |P(AIF(Vo)—PAI=M(V.)gd(Vy, V).

AEEF(VI)



C.L.T. FOR RANDOM FIELDS 69

(M2). Strong mixing [11]: there exist a sequence {a(n)} of nonnegative real
numbers and a function M, defined on ZZ%, nondecreasing with respect to each
variable, such that a(n) | 0 as n 1 +oco and that, for each V,, V,€¥,

(1.3) sup sup |P(ANB)—P(AP(B)|=M,(|V.l, |V.DDa(d(V,, V).

AEF (V) BEF (V)

In what follows we shall agree that the large letter K denotes some absolute
constant not depending on V or m (we shall use frequently), not necessarily
identical at different occurrences.

We shall consider the following conditions.

(C1). (la) || Xqall:+s=K for all acD and {|X.|**®; a= D} is uniformly integrable
for some 0=<=d<oo.
(1b) ntetg(n)g @+ /()< K for some g=@.
(C2). (2a) |X4|=K a.e. for all asD.
(2b) n*¢ig(n)¢(n)<K for some g=@®.
(C3). (3a) || Xgllz+s=K for some 0<d=<co and {|X,|**®; acD} (0<oo) is uni-
formly integrable. _
(3b) M,(n, m)<K(nm)* for some k£>1/2.

(3¢) ’élnd‘la""“”’(n)<00 and n®**Vig(n)a(n)=K for some g=@.

Now we state the main results.

Theorem 1. Suppose that X is ¢-mixing and satisfies (C1) or (C2). Then for
any sequence {V,} in W such that |V ,|—oc0 (n—oo) and

(1.4) lim inf E{S(V )%} /|Val>0,

S(Va)/a(Vy) converges in distribution to the standard normal distribution N(0, 1)

as n—oo, i.e., S(V)/o(Va)—> N0, 1) as n—sco.

Theorem 2. Suppose that X is strong-mixing and satisfies (C3). Then for any
sequence {V,} in U such that |V ,|—oc0 (n—o0) and

(1.5) lin;_’inf E{SV.)%}/I1Val>0,

S(V 1)/ a(V ) —> N0, 1) as n—soo.

2. Reviewing of Stein’s estimation.

In this section we assume all random variables to be bounded. As in
F and C are two sub-g-algebras of 4, G and W* are two random variables
measurable with respect to 4 and C respectively. Let W=E%G be the condi-
tional expectation of G with respect to ¥. We assume
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(2.1) E{GW—-W*)}=1.

For a fixed hC}, let f(x) be the function defined in Then by we
have

(2.2) Ifle<co, [f'la<co and [f”(x)|<K{|x|+1} for some K.

Applying the Taylor expansion formula and putting K=max{K, 1}, by and
we have

2.3) |E{hW)} =Nh|=|E{f'W)—W f(W)} |
=|E{f'W)—(EZG) W} |=|E{f'W)—GfW)}|

=E{f/W)—GLIW)—fW ]} —E{GfW*)} |

GW*—W)?

=|E{f'W)+GCW*—W)f' W)+ 5

—E{GfW*)} ]

frW+oW*—w)}

where € is a random variablé such that 0<6<1 a.e.,
=K[|E{LEGW ~W*—EGW —W*1f' W)} | +E|GW —W*| /2
+E|GWW —W*)*| [2+E|GW —W*)*| /24| E(G f(W*))|]
(cf. (2.1) and [2.2))
SK[{E|E*GW —W*)—EGW —W*) |3} 24 E| GIW —W*)? |
+E|GWW —W*)?|+E|GW —W*)*|+|EGfW*)|].
(cf. pp. 587 [12]).

In the following section we shall apply this estimate to the random fields.

3. General lemmas.

Lemma 3.1 [10]. Let V,, V, be in A. If X is F(V,)-measurable and Y is
F(Vy)-measurable, then

[Xll:<oo, [Y]s<oo (c0zr>1, co>s=1 and 1/r+1/s=1)
implies

3.1) |E(XY)—E(X)EY)| S2M (| V1) * @V 1, V)IXIAY ], .

Lemma 3.2 [11]. Let Vy, V, be in . If X is F,(V)-measurable and Y is
F(Vy)-measurable, then

[Xll-<oo,  [[¥[ls<oo (co=r, s>1, 1/r+1/s<1)
implies
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3.2) |E(XY)—EX)EX)|Z10M?2(| V4], |V Da?(d(Vy, VXY s
where 1/p=1—(1/r+1/s).

Fix an element V (#¢) in %. Let I be a random variable uniformly distri-
buted over V, independent of {X,; acV}. Fix a positive integer m which shall
be specified in proofs of theorems. Remark that, in below, we consider only
elements in {X,; acV}. Set $=0{X,; acV}=%(V). And denote by C the
o-algebra generated by the events {I=7, X,<x,, |a—i|>m} where x, are real
numbers. Put
(3.3) *=EY {X. ¥ Xi},

acy b-alsm
and assume & >0.

Now define G and W* in section 2 as follows

_1vl 1
3.4) G= 3 X, W*——ala_“m a
Then we have
3.5) W=ESG=—;- > X.=SWV)/2, EGW—WH=1.
For notational simplicity put
(3.6) Zo= X X, acsV.
ib-alsm

By the result in section 2 we have the following

Lemma 3.3. Let h be in C}. Then there éxz'sts a positive constant K which
does not depend on V and m, such that

3.7 |E{n(S(V)/@)} —Nh|

_1__ 2 __L 2
SK| 55 (Bl B XoZo— FEXZa| P45 T E|XuZ3|

+—317a};3VE | XaS(V) 25| +’alT 3 E| X281+ EG )] ]

=K{l,+1,+I;41,+1}, say
where f is the function defined by (0.2).

4. Proof of Theorem 1.
In this section we assume that the conditions of are satisfied.
Lemma 4.1. If |X,|=C a.e. for all acD, then we have

4.1) E(mlzs}an)‘éK ktd-dis
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for all positive integer k.

Proof. By modifying the proof of Lemma 4 in section 20 of we can
obtain the inequality

2 E( 3, Xo) sK{ 2 j g} ke

lalsk

On the other hand, since ¢"*%(;)<K ;~*%/%, we have
(4.3) jzk)]'d—l¢1/2(]')§K kd—zd/s’
=0

hence, by we have [4.1).
Lemma 4.2. If | X,|.ss<M for all acD, then we have
4.4) ES(VP)=K|V].

Proof is omitted becasue this is obtained by the analogous method to the one
dimensional case.
Here we specify the value of m. .

(4.5) m=[|Val**g(|Val)-**]

where [x] denotes the largest integer contained in x.
By Lemma 31 and (4.4) we have the following inequality.

(4.6) |[E(S(V ) —E{ %} XoZa} |
=E X (Xe T Xl
a€V, 1j-a1>m

SKZ | 3 Xl mXalers  (g=(2+0)/(146))

a€Vy ij-al>m

SK|Va ||V 2" (m).
Hence, by we may suppose that there exist n, and K>0 such that
4.7) E{ g‘# XoZd}/|ValZK>0

for all n=n,.
Now we truncate each variable X,. C denotes a positive constant.

(4.8) Yo=XoJ(| Xa| =C)—EX,J(| Xa| =C), Wa= 2 Y, (a€D)

where J denotes the indicator variable such that if the inner condition of the
round brackets is satisfied, then it takes one, otherwise zero. By the same
argument as we may suppose that there exist n, and K>0 such that

(4.9) E( X YW/ |ValZK>0

a€v,
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for all n=n,. For the brevity, in the sequel, >3 means > . Using Y, in place
a aEV

of X, in lemma 3.3 we shall estimate the terms I; (=1, ---, 5).

Lemma 4.3. For some K>0 which depends only on ¢ and C,
(1) L=K{m?/|Va| 24m©eD1/ [V, |17
@) IL=K{m®/|V.|'%}
(4.10) @) Li=K{m''*/|V,|'%
@) L=K{m*/|V.|}
©®) Li=K{g(m)|V.|'?}.

Proof. Put 2=E( X Y ,W,). &, plays the same role as & in

aEV

) SLII=E(SY W o= E(Y W o)

(4.11) sK{ X EA A+ X EAA}
la-bis2m la=-bi>2m

SK{ 3 il At 3 EAuA}=)i+]:, say

where A,=Y W ,—E(Y ,W,). By Lemma 42, we have
4.12) L=K|V,|m?e.
Next fix a and b such that |a—b|>2m. Then
(4.13) |EAcAs|=|EAa 2 Uyl (Up;=Y oY ;—EY,Y )

1j~bism

< 3 |EAJUy

jj-dlsm

=K 32 |Aal.g(la—b[—2m)C*

1j-bism

< K¢(la—b| —2m)ymema/2.
Hence

(4.14) L=K % ¢(la—b|—2mym**

la-n>m
<K¥ jf‘, (j+2m) =1 (j)m*a/2
<KX mberr1=K|V,|mce-2e,

Therefore, bY @, [@ and we have
4.15) L= K{m?/ |V Ve hm -0/, |11
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(I2) LEKZ EW/|Val**sKZm/|Val S K{m®/|ValV.
(Is) LsKZE|YaS(VaWa/|Val*  where S(Va)=2Ya
(4.16) KISV alslWalle/[Val®

SKZ|Va|tmrm2ait/|V,]* - by Le 41,
=K{m***/|Va|*%.

(La) Iéli';ElYaW?zl/anl2

(4.17) SKZEWom/|Val®
SKZm*/|Val*=K{m**/|Val}.

(Is) Since f(x) is bounded, we have
(4.18) Is=|E(Gf(W*)|=|E(ENGfW*))| =K{p(m)|[V|'/?}
where E! denotes the conditional expectation with respect to the r.v. I.

Proof of Theorem 1. At first remark that d<4d/3 and (5d—2)/4<4d/3.
Since m=[|V,|%8%g(|V,|)-*/*¢], we can easily see that, as n—oo, I, I,, Is and
I, tend to 0. Next consider I;,. By the definition of the class @, we have
(4.19) Is<K{m=%g=Y(m)|V .|*/%}

g VaDIVal'?
[Val'2g(|Val**¢g=*1*4(|Val))

Thus we showed that for fixed h and C, as n—oo,

(4.20) E(h(S«(V2)/32))—Nh—>0

—0 (n—o0).

=K

D
which means S;(V,)/é,.—> N(0, 1) as n—co. To complete the proof of theorem
1, we must approximate S(V,)/a(V,) by Si(V,)/é8.. But this is well known, and
so is omitted. We have proved

5. Proof of Theorem 2.

We use the truncation technique as well as in section 4. For a fixed C we
define Y,’s as in section 4. In order to prove it is sufficient to
prove the C.L.T. for Y,’s. Hence from the start we may assume that | X,|=C
a.e. for all aeD and that n®**Vég(n)a(n)<K for all n for some g@®. We
shall estimate I; (=1, ---, 5) in We use the notations in section 3.

(I) o (Vo i=E(Z XoZo—2 EXaZa)*
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(5.1) SKE{( ¥ + X )L.Ly}

la~dissm |a-bi>3m

éK{§la_g)ssmllLallzllLallerZ 2 E(LoLy}

a 1a=d>3m

=K(Ji+J3), ' (say)

where L,=X,Z,—E(XoZ,). Since E(L{)<KE(Z:)<Km¢,
(®.2) SL=K|Va|m.
For fixed ¢ and b such that |a—b|>3m,
®.3) IE(LaLb)I=I§E(RatRu)I

=K{m*a(|a—b|—2m)}
where R.;=X.X;—E(X. X)), (li—c|<m) (c=a or b). Hence
(5.4) ]géK@lb » mm"’a(la—-bl—2m)

-ai{>s

§K§m2" > péa(la—b|—2m)

p=3m+1

észsd—l i pd—la(p)
p=m+1

éKl Vn l mz(l-k)d-l.
These imply

(®.5) L=K{m*/|V,|+mta-0d-1/ |y |},
(Is) IzéK%: E(Z)/\Val* P K{m®/ |V, |19,
(Is) Since n®**Veg(n)a(n)<K (remark k>1/2) implies ;Z‘i n®-la'/*(n)<co we have
(5.6) E\Z, |* < Km?¢ for all a=D.
From this inequality,
(5.7) Ii=E|GWW —W*)?|
SKEZNSVIllZalli/ Va2 < K{me/ |V a3,

(9 I=E|GW—-W*)|

(5.8) SKIH{E|Zo || ValP S K{ms2/ |V 4|}

(Is) Applying Lemma 32 with »=s=+co, we have

(5.9) Ie=|E(GfW*)|=|E(EN(GfW*)| S K|V |/ *a(m).

Here we specify m as follows ;
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(5.10) m:[lan1/2dg—1/(4dk+2d)(l'[/n|)].
Then by easy calculations we have that, as n—oo,
(5.11) 11+12+13+I4——’>0

and

_ ()= Vol !5 g2V, |)
(5.12) I;=0(|V | ka(m))—O( IVn11/2+kg(|an1/2dg—1/(4dk+2d)(anI))

=o(l).

In (5.12) we used the property of &. Thus we have completed the proof of
Theorem 2,

6. Concluding remarks.

In the case where the blocking method can be applied, can
be proved under less restrictive condition n*®eg(n)a(n)<K in place of
n(l+2k)dg(n)a(n)§K.

S. Mase [9] discussed the same problem as ours. He took as the index set
a countable subset of a metric space, and proved a theorem analogous to our

Our results can be applied to the Gibbs phenomena (see, for example,

Nahapetian and Neaderhouser [117).

Added in proof. After this paper being received, the author knew E.
Bolthousen’s paper “On the central limit theorem for stationary mixing random
fields” (Ann. Probab. 10. 1047-1050 (1982)). Remark that in the proof of

2 in the present paper we made use of only the mixing condition introduced in
Bolthousen’s paper.
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