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Introduction

Complex tensor products of commutative Banach algebras and canonical de-
compositions of their spectra (: Gel’fand spaces) have already been examined in
several instances by B. R. Gelbaum [2], J. Tomiyama [22]. In a more general
situation (complex) topological (not normed) tensor products with respect to ten-
sorial ”compatible” topologies as well as similar decompositions of their spectra

have defined and systematically studied by A. Mallios [11-15].

Now, due to recent considerations, one is led to study analogous results in
case of topological A-algebras, that is topological (not normed) algebras with
“coefficients” not necessarily the complex number field $C$, but a general topological
algebra $A$. This kind of algebras find numerous applications in several branches
of Mathematics (cf., $e.g$ . $[16,17]$).

More precisely, we first define the A-tensor product A-algebra of two given
A-algebras as a solution of a universal problem (cf. (1.1)) realizing it into two
equivalent ways (cf. \S 1, in particular, (1.4)). Then, on this (algebraic) A-tensor
product of two topological A-algebras, we deflne tensorial topologies as A-com-
patible topologies (Deflnition 1.1), within an entirely general context. This con-
stitutes an extension of the classical case of complex tensor products of locally
convex spaces [4] or topological algebras $[11, 12]$ , as well as a generalization of
the corresponding situation in case of Banach A-modules [19] or commutative
A-algebras $[3, 7]$ .

Moreover, by examining the (numerical) spectrum of the above topological
A-tensor product algebra and its completion, in connection with the spectra of
the factor algebras (Theorem 2.1), we get an extension of the corresponding re-
sults of [7] to a more general case than that of Banach A-algebras, such that
the previous results of [2, 3, 11, 12, 13, 22] are natural consequences. On the
other hand, in the theory of topological A-algebras a basic notion is that of the
generalized A-spectrum (cf. \S 3), an extension of the notion of the (numerical)

spectrum as well as of the generalized spectrum due to [14]. In this respect,
by considering locally convex A-algebras, we are concerned with a decomposition
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of the generalized A-spectrum of a topological A-tensor product A-algebra and
its completion, in terms of the spectra of factor algebras; we still suppose the
algebras having bounded approximate identities (Proposition 3.1, Theorem 3.1),

extending thus [11, 14, 15] (cf. also [23]) where in the latter case the algebras
involved have identity elements. Furthermore, by considering continuous central
A-morphisms (cf. \S 4; a useful notion, particularly, in the theory of representa-
tions of $(^{*}-)$ algebras, cf. [18]) of topological A-tensor product algebras we get
analogous relations connecting these sets of morphisms with those of generalized
A-spectra (Propositions 4.1, 4.2).

Now, by still specializing to locally convex A-algebras one has the posibility
of taking more convenient forms, concerning the previous A-tensor products.
Thus, on the one hand, we define the projective (topological) A-tensor product
A-algebra via a universal property (Deflnition 5.1) and on the other hand we
introduce the ”topological tensor product over $A$ ’ characterized by Proposition
5.2 and constituting an extension of the corresponding tensor products of com-
mutative Banach A-algebras introduced by B. R. Gelbaum [3]. The relation (5.10)

(cf. also (5.11), (5.14), (5.15)) allows us to take the form of the continuous (A-)

morphisms defined on the latter tensor product in terms of the corresponding
morphisms of the factor algebras (Proposition 5.3, relations (5.12), (5.13), (5.18)).

Applications of the preceding to the case of topological geometric d-spaces

as well as an extension to infinite tensor product A-algebra will be considered
elsewhere (cf. [8, 9, $9a]$).

1. Topological A-tensor products of topological A-algebras

The topological vector spaces and topological algebras (with separately con-
tinuous multiplication) considered in the sequel are over the complex fleld $C$ and
will be assumed Hausdorff. Throughout the paper $A$ will denote a commutative
algebra.

Thus, let $E,$ $F,$ $D$ be A-algebras and $\varphi$ an A-bilinear (: $\varphi(ax, y)=\varphi(x, ay)=$

$a\varphi(x, y)$ , with $a\in A,$ $(x, y)\in E\times F)$ multiplicative (: $\varphi(xx^{\prime}, yy^{\prime})=\varphi(x, y)\varphi(x^{\prime}, y^{\prime})$

$x,$
$x^{\prime}$ in $E,$ $y,$ $y^{\prime}$ in $F$ ) map of $E\times F$ into $D$ . The pair $(D, \varphi)$ is said to be an

(A-algebra) A-tensor product of $E,$ $F$, if the following universal property is satisfied:

For every pair $(M, u)$ , where $M$ is an A-algebra and $u:E\times F\rightarrow M$

(1.1) an A-bilinear multiplicative map, there exists a unique $A$-morphism
$\tilde{u}$ : $D\rightarrow M$ such that $ u=\tilde{u}\circ\varphi$ .

(1.1) implies, of course, the uniqueness of $(D, \varphi)$ within an isomorphism of A-
algebras.

On the other hand, one gets an A-tensor product as follows: Let $E,$ $F$ be
A-algebras and $(E\otimes F, \varphi_{1})$ the usual (complex) tensor product algebra of $E,$ $F$ (cf.
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[1: Chap. 8, \S 1] and also [11: Chapt. VI, \S 1]) being an A-algebra by defining
$a\cdot(x\otimes y):=ax\otimes y,$ $a\in A,$ $x\otimes y\in E\otimes F$. If $I:=[S]$ is the vector subspace of
$E\otimes F$ generated by

(1.2) $S=\{ax\otimes y-x\otimes ay;a\in A, x\in E, y\in F\}$ ,

then $I$ is a 2-sided A-ideal of $E\otimes F$ such that $E\otimes F/I$ is (naturally) an A-algebra.
The pair $(E\otimes F/I, \varphi:=\rho^{Q}\varphi_{1})$ , where $\rho$ is the canonical quotient A-morphism, is
the A-tensor product of $E,$ $F$.

One gets another realization of the preceding A-tensor product of $E,$ $F$, by
considering the free vector space generated by $E\times F,$ $\mathcal{F}(E, F)_{0}\equiv\{f\in C^{ExF}$ ; $f$ has
finite support} (cf. [1: Chap. 8]). This is a “convolution algebra” (cf. [10: $p$ .
107]), and moreover an A-algebra by $a\cdot f:=\sum_{(x.y)}f(x, y)\delta_{(ax.y)}$ , for $a\in A,$ $ f\in$

$\mathcal{F}(E, F)_{0}$ , where $\delta_{(x.y)}\equiv\delta(x, y)\in \mathcal{F}(E, F)_{0}$ , with $(x, y)\in E\times F$, such that for $x=$

$y=0,$ $\delta_{(x,y)}=0$ and for $(x, y)\neq 0,$ $\delta_{(x,y)}$ is the characteristic function of $\{(x, y)\}$ .
If $H$ is the vector subspace of $\mathcal{F}(E, F)_{0}$ generated by the functions

(1.3) i) $\delta_{(\lambda x_{1}+\mu x_{2},y)}-\lambda\delta_{(x_{1}.y)}-\mu\delta_{(x_{2}.y)}$

ii) $\delta_{(x.\lambda y_{1}+\mu y_{2})}-\lambda\delta_{(x.y_{1})}-\mu\delta_{(x.y_{2})}$

iii) $\delta_{(ax.y)}-\delta_{(x.ay)}$

for all $x,$ $x_{1},$ $x_{2}\in E,$ $y,$ $y_{1},$ $y_{2}\in F,$ $a\in A,$ $\lambda,$ $\mu\in C$, then $H$ is a 2-sided A-ideal of
$\mathcal{F}(E, F)_{0}$ , in such a way that $(\mathcal{F}(E, F)_{0}/H,$ $\varphi:=\rho^{\circ}\delta$) is the A-tensor product of
$E,$ $F$, where $\rho$ is the canonical quotient A-morphism.

Given two A-algebras $E,$ $F$ there always exists a unique (within an isomor-
phism of A-algebras) Pair $(D, \varphi)$, “the” A-tensor product of $E,$ $F$, which will be
denoted by $E\otimes_{A}F$, that is

(1.4) $E\otimes_{A}F=E\otimes F/I=\mathcal{F}(E, F)_{0}/H$ ,

within isomorphisms of A-algebras. The elements $\varphi(x, y)\equiv x\otimes_{A}y,$ $x\in E,$ $y\in F$

(: decomposable A-tensors) generate $E\otimes_{A}F$ as a vector space, so that every ele-

ment $z\in E\otimes_{4}F$ is of the form $z=\sum_{i=1}^{n}x_{i}\otimes_{A}y_{i}$ .
Now, given a (commutative) topological algebra $A$, an A-algebra $E$ is called

a topolOgical A-algebra whenever $E$ is, a topological algebra and a topological
A-module. A locally (m-) convex A-algebra $E$ is a topological A-algebra such
that $E,$ $A$ are locally (m-) convex algebras.

Definition 1.1. Let $E,$ $F$ be topological A-algebras. By an $A$-compatible
toPology on the corresponding A-tensor product A-algebra $E\otimes_{A}F$ we mean a
(Hausdorff) topology $\mathfrak{T}$ such that the pair $(E\otimes_{A}F, \mathfrak{T})\equiv E\otimes_{A}^{\mathfrak{T}}F$ is a topologicaI
A-algebra of the same type with $E,$ $F$.

For $A=C$ we get the usual compatible topology on $E\otimes F$, cf. [13: Def. 3.1].
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Now, let $E,$ $F$ be topological A-algebras and $E\bigotimes_{\tau}F$ the usual (complex) ten-

sor product algebra of $E,$ $F$, equipped with a compatible topology $\tau$ on $E\otimes F$

[ $13$ : Definition 3.1], such that the bilinear map

(1.5) $A\times(E\bigotimes_{\tau}F)\rightarrow E\bigotimes_{\tau}F:(a, x\otimes y)-a\cdot(x\otimes y)\equiv ax\otimes y$

is continuous, $i.e$ . $E\bigotimes_{\tau}F$ is a topological A-algebra. If $I$ is the closed vector

subspace of $E\bigotimes_{r}F$ generated by (1.2) being, in particular, a closed 2-sided A-ideal

of $E\bigotimes_{\tau}F$, then the corresponding (Hausdorff) quotient topology on $E\bigotimes_{\tau}F/I$ is an
$A$-compatible topology on $E\otimes_{A}F$, which will be called an $A$-compatible toPology on
$E\otimes_{A}F$ associated with the topology $\tau$ on $E\otimes F$ (denote it also by $\mathfrak{T}$), such that
one sets by definition

(1.6) $E\otimes_{A}^{\mathfrak{T}}F=E\bigotimes_{\tau}F/I$

as topological A-algebras.
In this respect, we remark that if $A$ is a locally bounded algebra with con-

tinuous multiplication (cf. [13: \S 2]), then every locally bounded A-algebra with
continuous multiplication is a topological A-algebra (not necessarily locally convex).

Thus, given a pair $(E, F)$ of such algebras, the corresponding quotient topology

of the compatible algebra topology on $E\otimes F$ (cf. [11: Chapt. VI, Theorem 3.1])

is, in fact, an A-compatible topology on $E\otimes_{A}F$ (not necessarily locally convex);

cf., Definition 1.1 and also relation (1.6).

2. The (numerical) spectrum of a topological A-tensor product A-algebra

By the (numerical) spectrum of a topological algebra $E$ we mean the set of
continuous characters on $E$ (denoted by $\mathfrak{M}(E)$ ) endowed with the relative topology
induced on it by the weak topological dual space $E_{1}^{\prime}$ , viz., the dual $E^{\prime}$ of $E$ in
the weak topology $\sigma(E^{\prime}, E)$ (cf. [11, 12, 13]).

Throughout this Section we suppose that given two topological A-algebras $E,$ $F$

the corresPonding toPological A-tensor product (A-algebra) is endowed with an
$A$-compatible topology $\mathfrak{T}$ associated with a compatible topOlOgy $\tau$ on $E\otimes F$ (cf. (1.6)

and also [13: Definition 3.1]).

Now, we remark that the above topology $\mathfrak{T}$ is of the same type with $\tau$, in the
sense that, whenever $\tau$ satisfies the following three conditions (in this respect,

cf. also [13]), the corresponding ones, concerning $E\otimes_{A}^{\mathfrak{T}}F$, are also valid for $\mathfrak{T}$ :

(2.1) The canonical map of $E\times F$ into $E\bigotimes_{\tau}F$ is separately continuous
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(2.2) For every pair $(f, g)\in \mathfrak{M}(E)\times \mathfrak{M}(F),$
$f\otimes g\in(E\bigotimes_{\tau}F)_{s}^{\prime}$ , where

$(f\otimes g)(x\otimes y);=f(x)\cdot g(y),$ $x\in E,$ $y\in F$.
(2.3) For any equicontinuous subsets $M,$ $N$ of $\mathfrak{M}(E),$ $\mathfrak{M}(F)$ respectively,

$M\otimes N=\{f\otimes g:f\in M, g\in N\}$ is an equicontinuous subset of $(E\bigotimes_{\tau}F)_{*}^{\prime}$ .
So, (2.1), (2.2) follow immediately by (1.6). Concernin$g(2.3)$ , let $M,$ $N$ be

equicontinuous subsets of $\mathfrak{M}(E)$, $\mathfrak{M}(F)$ respectively. Then, $M\otimes_{A}N$ defined by
$(M\otimes_{A}N)\circ\rho=(M\otimes N)_{I}$ $:=\{f\otimes g\in M\otimes N:I\subseteqq ker(f\otimes g)\}\subseteqq M\otimes N,$ ( $\rho$ is the canonical
quotient map, cf. (1.6)) is an equicontinuous subset of $(E\otimes_{A}^{\mathfrak{T}}F)_{l}^{\prime}$ since $ M\otimes N\subseteqq$

$(E\bigotimes_{\tau}F)_{s}^{\prime}$ is equicontinuous (cf. [5: p. 199, Proposition 5] and (2.3)).

Thus, given $E\otimes_{A}^{\mathfrak{T}}F$, consider the closed subsets $h(I)=\{\omega\in \mathfrak{M}(E\bigotimes_{\tau}F):I\subseteqq ker(\omega)\}$

(: hull of $I\subseteqq E\bigotimes_{\tau}F$, cf. (1.6) and [11: Chapt. $V$, Definition 1.1]) and $R=\{(f, g)$ :
$f(ax)g(y)=f(x)g(ay);a\in A,$ $x\in E,$ $y\in F$} of $\mathfrak{M}(E\bigotimes_{\tau}F),$

$\mathfrak{M}(E)\times \mathfrak{M}(F)$ , respectively.
Then,

(2.4)
$\mathfrak{M}(E\otimes_{A}^{\mathfrak{T}}F)=h(I)=R\subseteqq \mathfrak{M}(E)\times \mathfrak{M}(F)=\mathfrak{M}(E\bigotimes_{\tau}F)$

within homeomorphisms (cf. (1.6), as well as [11: Chapt. V, Lemma 2.4; Chapt.
VI, Lemma 5.1]).

Another expression of (2.4) is provided by considering the continuous maps

$\mu:\mathfrak{M}(E)\rightarrow \mathfrak{M}(A)^{+}(:f\leftrightarrow\mu(f)(a):=\frac{f(ax)}{f(x)})$

(2.5)

$\nu;\mathfrak{M}(F)\rightarrow \mathfrak{M}(A)^{+}(;g-\nu(g)(a):=\frac{g(ay)}{g(y)})$

for $x\in E,$ $y\in F$ such that $f(x)\neq 0,$ $g(y)\neq 0$ and $\mathfrak{M}(A)^{+}\equiv \mathfrak{M}(A)\cup\{0\}$ . Then, if $\Delta^{+}$

is the diagonal of $\mathfrak{M}(A)^{+}\times \mathfrak{M}(A)^{+}$, one gets

(2.6) $(\mu\times\nu)^{-1}(\Delta^{+})=R$ .
Throughout the sequel equalities or inclusion relations $(: \rightarrow\subset)$ between topol0gical

spaces will always be understood within homeomorphisms.

The following theorem specializes to [7: Theorem 3.3] for commutative
Banach A-algebras, as well as to [11: Chap. VI, Theorems 5.1, 5.2] for $A=C$.

Theorem 2.1. Let $E,$ $F$ be top0logical A-algebras and $E\otimes_{A}^{\mathfrak{T}}F$ the respective
A-tensor pr0duct A-algebra equipped with an A-compatible topol0gy $\mathfrak{T}$ associated
with a compatjble tensorial topol0gy $\tau$ on $E\otimes F$ satisfying (2.1), (2.2). Then, one
gets

(2.7)
$\mathfrak{M}(E\otimes_{A}^{\mathfrak{T}}F)=h(1)=(\mu\times\nu)^{-1}(\Delta^{+})\subseteqq \mathfrak{M}(E)\times \mathfrak{M}(F)=\mathfrak{M}(E\bigotimes_{\tau}F)$ .
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Moreover, if $E,$ $F$ have continuous multipljcatjOns and locally equicontinuous spectra

and the topology $\tau$ on $E\otimes F$ satisfies also (2.3), then one has

(2.8) $\mathfrak{M}(E\otimes_{A}^{\mathfrak{T}}F)=h(I)=(\mu\times\nu)^{-1}(\Delta^{+})\subseteqq \mathfrak{M}(E)\times \mathfrak{M}(F)=\mathfrak{M}(E\bigotimes_{\tau}^{\wedge}F)\wedge$

( $‘‘\wedge$ means completion).

Proof. By (2.4), (2.6) and [13: Theorem 4.1] one gets immediately (2.7).

Now, $E\otimes_{A}^{\mathfrak{T}}F$ is a topological A-algebra with continuous multiplication, since $E,$ $F$

have continuous multiplications (cf. (1.6)). Moreover, the local equicontinuity of
$\mathfrak{M}(E),$ $\mathfrak{M}(F)$ implies the local equicontinuity of $\mathfrak{M}(E\otimes_{A}^{\mathfrak{T}}F)$ cf. (2.3) and also [11:

Chapt. V, Lemma 5.2]) such that $\mathfrak{M}(E\otimes_{A}^{\mathfrak{T}}F)=\mathfrak{M}(E\otimes_{4}^{\mathfrak{T}}F)\wedge$ . Hence, (2.8) is a con-
sequence of (2.7) and [13: Theorem 4.2]. $\blacksquare$

Equivalently, Theorem 2.1 says that $\mathfrak{M}(E\otimes_{A}^{\mathfrak{T}}F)$ (resp. $\mathfrak{M}(E\otimes_{A}^{\mathfrak{T}}F)$ )
$\wedge$

is the
“pullback” (: fiber product) of $\mathfrak{M}(E)\times \mathfrak{M}(F)w.r.t$ . $\mathfrak{M}(A)^{+}$ (cf. also [16]).

Scholium 2.1. Concerning the set of continuous morphisms on $E\otimes_{A}^{\mathfrak{T}}F$ with
values in a given unital topological algebra $G$ with continuous multiplication
(: generalized spectrum of $E\otimes_{A}^{\mathfrak{T}}Fw.r$ . $t$ . $G$ denoted by $\ovalbox{\tt\small REJECT}(E\otimes_{4}^{\mathfrak{T}}F, G)$ ; cf. [14:

\S 2] $and/or[15]$ ), we have analogous results to that of Theorem 2.1: So, if $E,$ $F$

are unital topological A-algebras and the topology $\tau$ of Theorem 2.1 satisfies the
corresponding conditions to (2.1), (2.2) (cf. [15: (2.1), (2.2)]), one gets

(2.9) $\ovalbox{\tt\small REJECT}(E\otimes_{4}^{\mathfrak{T}}F, G)=h(I)=R\subseteqq\ovalbox{\tt\small REJECT}(E, G)\times\ovalbox{\tt\small REJECT}(F, G)$ ,

where $h(I)=\{\omega\in\ovalbox{\tt\small REJECT}(E\bigotimes_{\tau}F, G):I\subseteqq ker(\omega)\}$ , (cf. (1.6)), $R=\{(f, g):f(x)g(y)=$

$g(y)f(x),$ $f(ax)g(y)=f(x)g(ay);a\in A,$ $x\in E,$ $y\in F$} $\subseteqq\ovalbox{\tt\small REJECT}(E, G)\times\ovalbox{\tt\small REJECT}(F, G)$ . Be-
sides, by considering completions $(: E\otimes_{A}^{\mathfrak{T}}F)\wedge$ , one has an analogous decomposition
to (2.9), under the additional hypothesis that $E,$ $F$ have continuous multiplications,
$\tau$ satisfies the corresponding condition to (2.3) (cf. 15: (2.3)]), $G$ is complete and
$\ovalbox{\tt\small REJECT}(E, F),$ $B\ell(F, G)$ are locally equicontinuous (cf. also [15: Lemma 2.1, Theorem
2.2]).

Regarding (2.9), we do not have equalities everywhere, even if $G$ is commu-
tative or still the complexes (Theorem 2.1), unless $A=C$ (cf. [14: Theorems
2.1, 3.1]). However, we get better estimations by considering A-morphisms (cf.

Proposition 3.1, Theorem 3.1 below).

3. The generalized A-spectrum of $E\otimes_{A}^{\mathfrak{T}}F$

If $E,$ $F$ are topological A-algebras, the generalized $A$-spectrum of $E(w.r.t$ .
$F)$ is the set $R_{A}(E, F)$ of non-zero continuous A-morphisms of $E$ into $F$, equiP-
ped with the topology induced on it by $X_{A}(E, F)_{s}$ (: the space of continuous
A-linear maps between the corresponding modules with the relative topology
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from $X_{s}(E, F)$ , cf. [5]). In particular, if $E$ has a bounded approximate identity
$(b.a.i)(u_{\ell})_{i\in K}(i.e$ . a bounded directed net $(u_{i})_{\ell\in K}$ of elements of $E$ such that
$1{\rm Im} u_{i}x=\lim_{ii}xu_{i}=x$ , $x\in E$ ; cf. [11: Chapt. VI, Definition 11.2]), then we sup-

pose for every $f\in\ovalbox{\tt\small REJECT}_{A}(E, F),$ $(f(u_{i}))_{i\in K}$ is a (bounded) approximate identity of $F$.
Now, let $E,$ $F,$ $G$ be topological A-algebras and $f\in\ovalbox{\tt\small REJECT}_{A}(E, G),$ $g\in\ovalbox{\tt\small REJECT}_{A}(F, G)$ .

The map $f\times g:E\times F\rightarrow G:(x, y)\mapsto(f\times g)(x, y):=f(x)g(y)$ is a separately con-
tinuous A-bilinear map, such that there exists the corresponding tensor product

A-linear map $f\otimes_{A}g:E\otimes_{A}F\rightarrow G$ , being also an A-morphism whenever $G$ is com-
mutative.

In the sequel, we are interested in A-compatible topologies $\mathfrak{T}$ (Definition 1.1)

satisfying the following conditions:

(3.1) The canonical map of $E\times F$ into $E\otimes_{A}^{\mathfrak{T}}F$ is (jointly) continuous.

(3.2) For any Pair $(f, g)\in\ovalbox{\tt\small REJECT}_{A}(E, G)\times\ovalbox{\tt\small REJECT}_{A}(F, G),$ $f\otimes_{A}g\in X_{A}(E\otimes_{A}^{\mathfrak{T}}F, G)_{s}$ .

A stronger version of (3.2) is applied when completed A-tensor product A-
algebras have to be considered. That is,

For any equicontinous subsets
(3.3) $M\subseteqq\ovalbox{\tt\small REJECT}_{A}(E, G),$ $N\subseteqq\ovalbox{\tt\small REJECT}_{A}(F, G),$ $M\otimes_{A}N:=\{f\otimes_{A}g:f\in M, g\in N\}$

is an equicontinuous subset of $\mathcal{L}_{A}(E\otimes_{A}^{\mathfrak{T}}F, G)_{\epsilon}$ .

In this respect, one has an analogous situation with that described by \S 2
(cf. relations (2.1), (2.2), (2.3)), when considering instead generalized A-spectra.

This is for instance the case for locally (m-) convex A-algebras and the projective
A-tensor product topology $\pi$ on $E\otimes_{A}F$ (cf. Appendix).

Now, let $E,$ $F$ be locally convex A-algebras with $b.a.i$ . $s(u_{i})_{i\in K},$ $(v_{j})_{j\in J}$ re-
spectively, and $h\in\ovalbox{\tt\small REJECT}_{A}(E\otimes_{A}^{\mathfrak{T}}F, G)$ where $\mathfrak{T}$ is an A-compatible topology on $E\otimes_{A}F$

satisfying (3.1) and $G$ a locally convex A-algebra. Then, the maps

(3.4) $x-\lim_{j}h(x\otimes_{A}v_{j}),$
$x\in E$ and $y\leftrightarrow\lim_{i}h(u_{i}\otimes_{A}y),$

$y\in F$ ,

whenever there exist (cf., for instance, [11: Chapt. VI, Theorem 11.1]), define
a pair $(f, g)\in ffl_{A}(E, G)\times\ovalbox{\tt\small REJECT}_{A}(F, G)$ such that we get the map

(3.5) $\ovalbox{\tt\small REJECT}_{A}(E\otimes_{A}^{\mathfrak{T}}F, G)\rightarrow\ovalbox{\tt\small REJECT}_{A}(E, G)\times B\ell_{A}(F, G)$ : $h\leftrightarrow(f, g)$ .

Proposition 3.1. Let $E,$ $F$ be locally convex A-algebras with $b.a.i’ s$, and $G$

a locally convex A-algebra with continuous multiplicatjOn. Moreover, let $\mathfrak{T}$ be an
$A$-compatible topology on $E\otimes_{A}F$ satisfying (3.1), (3.2) and let the closed set

(3.6) $Q=\{(f, g) : f(x)g(y)=g(y)f(x);x\in E, y\in F\}\subseteqq\ovalbox{\tt\small REJECT}_{A}(E, G)\times\ovalbox{\tt\small REJECT}_{A}(F, G)$ .

Then one gets
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(3.7) $\ovalbox{\tt\small REJECT}_{A}(E\otimes_{A}^{\mathfrak{T}}F, G)=Q$ ,

and for $G$ commutative

(3.8) $\ovalbox{\tt\small REJECT}_{A}(E\otimes_{A}^{\mathfrak{T}}F, G)=Bt_{A}(E, G)\times\ovalbox{\tt\small REJECT}_{A}(F, G)$ .

Proof. Given an $h\in\ovalbox{\tt\small REJECT}_{A}(E\otimes_{A}^{\mathfrak{T}}F, G)$ , by (3.4) one gets

(3.9) $h=f\otimes_{A}g$

(cf. also [11: Chapt. VI, condition (10.57)]) and thus (3.5) is an injection. Now,
given $(f, g)\in Q$ , one has $h\equiv f\otimes_{A}g\in\ovalbox{\tt\small REJECT}_{A}(E\otimes_{A}^{\mathfrak{T}}F, G)$ (cf. (3.2)) and every element
thus defined yields according to (3.9) the initial pair $(f, g)$ , that is (3.5) is a bijec-
tion onto $Q$ . The bicontinuity of (3.5) can be proved analogously to [15: Theorem
2.1] and thus one gets (3.7). Moreover, (3.8) is an immediate consequence of
(3.6), (3.7). $\blacksquare$

Now, let $E,$ $G$ be topological A-algebras where $E$ has continuous multiplica-
tion and $G$ is complete. The map

(3.10) $f-\overline{f};\ovalbox{\tt\small REJECT}_{A}(E, G)\rightarrow m_{A}(E, G)$

where $\overline{f}$ is the (continuous) extension of $f$ to the completion $E$ of $E$ , is a con-
tinuous bijection. In particular,

The bijection (3.10) is a homeomorphism if and only if either one
(3.11)

of the sets $\ovalbox{\tt\small REJECT}_{4}(E, G),$ $\ovalbox{\tt\small REJECT}_{A}(E, G)$ is locally equicontinuous

(cf. [11: Chapt. III, Theorem 8.3] in case $A=C$).

Proposition 3.1 and relation (3.11) yield the following lemma, by using the
arguments of [11: Chapt. VI, Lemma 6.2] for $A=C$ .

Lemma 3.1. Let $E,$ $F,$ $G$ be locally convex A-algebras as in PropOsitjOn3.1
and $\mathfrak{T}$ an $A$-compatible topology satisfying (3.1), (3.3). Moreover, consider the
following assertions:

i) $\ovalbox{\tt\small REJECT}_{A}(E, G),$ $\ovalbox{\tt\small REJECT}_{A}(F, G)$ are both locally equicontinuous.
ii) $\ovalbox{\tt\small REJECT}_{A}(E\otimes_{A}^{\mathfrak{T}}F, G)$ is locally equicontinuous.

Then $i$ ) $\Rightarrow ii$). Besides, if $E,$ $F,$ $G$ are unital, for every $(f, g)\in Q$ there exist an
equicontinuous neighbourhood $U$ of $f$ in $\ovalbox{\tt\small REJECT}_{A}(E, G)$ and $V$ of $g$ in $m_{A}(F, G)$ such
that $U\otimes_{A}V$ is an equicontinuous neighbourhood of $h\equiv f\otimes_{1}\ell g$ in $\ovalbox{\tt\small REJECT}_{A}(E\otimes_{A}^{\mathfrak{T}}F, G)$ . In
particular, $ii$) $\Rightarrow i$ ) as well, whenever $G$ is commutative. In the latter case, $it$

suffices the topology $\mathfrak{T}$ to satisfy (3.13) below (not necessarily (3.1)). $\blacksquare$

Concerning the generalized A-spectrum of the (complete) locally convex A-
algebra $ E\otimes_{A}^{\mathfrak{T}}F\wedge$, we have

Theorem 3.1. Let $E,$ $F$ be locally convex A-algebras with $b.a.i$. $s$ and con-
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tinuous multiplications. Moreover, suPpose that $\ovalbox{\tt\small REJECT}_{A}(E, G),$ $\ovalbox{\tt\small REJECT}_{A}(F, G)$ are locally
equicontinuous, where $G$ is a complete locally convex A-algebra with continuous
multiPlication and let $\mathfrak{T}$ be an $A$-compatible topology on $E\otimes_{A}F$ satisfying (3.1),

(3.3). If $Q$ is the set (3.6), then one has

$\ovalbox{\tt\small REJECT}_{A}(E\otimes_{A}^{\mathfrak{T}}F\wedge, G)=Q=m_{A}(E\otimes_{A}^{\mathfrak{T}}F, c)\subset\ovalbox{\tt\small REJECT}_{A}(E\rightarrow’ c)\times m_{A}(P, G)$

(3.12)
$=m_{A}(E, G)\times\ovalbox{\tt\small REJECT}_{A}(F, G)$ .

In case $G$ is commutative, the ”inclusion sign” in (3.12) may be replaced by an
equality.

Proof. By Lemma 3.1, $\ovalbox{\tt\small REJECT}_{1d}(E\otimes_{A}^{\mathfrak{T}}F, G)$ is locally equicontinuous so that
$\ovalbox{\tt\small REJECT}_{A}(E\otimes_{A}^{\mathfrak{T}}F\wedge, G)=\ovalbox{\tt\small REJECT}_{A}(E\otimes_{A}^{\mathfrak{T}}F, G)$ (cf. (3.10), (3.11)). Now, the assertion is a straight-
forward consequence of Proposition 3.1 (cf. also (3.11). $\blacksquare$

Remark 3.1. One gets, of course, the same conclusions with those of Pro-
position 3.1 (resp. Theorem 3.1), in case of unital topological A-algebras, where
the topology $\mathfrak{T}$ satisfies instead of (3.1) the condition:

(3.13) The canonical map of $E\times F$ into $E\otimes_{A}^{\mathfrak{T}}F$ is separately continuous,

the rest hypotheses of Proposition 3.1 (resp. Theorem 3.1) remaining unchanged.
The above specializes to [11: Chapt. VI, Lemma 6.1, Theorem 6.2] (cf. also
[14: Theorems 2.2, 3.1]).

In this respect, we remark that, if $H$ is a complete locally bounded $A-$

module, whose topology is defined by an a-norm (cf. [13]), $\mathcal{L}_{A}(H)$ (: continuous
linear A-endomorphisms of $H$) is, $w.r.t$ . ”operator norm”, a complete locally

bounded (not necessarily locally convex) A-algebra with continuous multiplication
and identity $id_{H}$ . Thus, by analogous considerations to [11: Chapt. VI, Theorem
11.1, Lemma 11.2], the preceding results are fulfilled in case of locally bounded
A-algebras.

4. Continuous central A-morphisms

Let $E,$ $F$ be topological A-algebras with identities $1_{E},$ $1_{F}$. Then, a continuous
central $A$-morphism is an element $h\in\ovalbox{\tt\small REJECT}_{A}(E, F)$ such that $Im(h)$ has trivial center
in $F$ over $A$ (equivalently, $Im(h)$ is a central A-subalgebra of $F$),

(4.1) $\mathfrak{C}(Im(h))=A\cdot 1_{F}$ ,

where $\mathfrak{C}(Im(h))$ denotes the center of $Im(h),$ $i.e$ . $\mathfrak{C}(Im(h))=Im(h)\cap(Im(h))^{\prime}$ , with
$(Im(h))^{\prime}\equiv\{y\in F:yh(x)=h(x)y, x\in E\}$ the commutant of $Im(h)$ in $F$. The set of
continuous central A-morphisms of $E$ into $F$ endowed with the relative topology

induced on it by $\ovalbox{\tt\small REJECT}_{A}(E, F)$ will be denoted by $\ovalbox{\tt\small REJECT}_{4}^{0}(E, F)$ .
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Under the conditions of Remark 3.1, for each $h\in\ovalbox{\tt\small REJECT}_{A}^{0}(E\otimes_{A}^{\mathfrak{T}}F, G)$ of the form
$h=f\otimes_{A}g$ (cf. (3.9)), one gets

\langle 4.2) $\mathfrak{C}(Im(g))\subseteqq \mathfrak{C}(Im(h))$ , $\mathfrak{C}(Im(f))=Im(f)\subseteqq \mathfrak{C}(Im(h))$ ,

whenever $E$ is commutative (cf. also [11: Chapt. VI, Theorem 7.2]). Thus,
$h=f\otimes_{A}g$ is a continuous central $A$-morphism if, and only if, this is $tr\cdot ue$ for $f,$ $g$ :
Indeed, if $h\in\ovalbox{\tt\small REJECT}_{A}^{0}(E\otimes_{A}^{\mathfrak{T}}F, G)$ , then by (4.2) $(f, g)\in\ovalbox{\tt\small REJECT}_{A}^{0}(E, c)\times m_{A}^{0}(F, G)$ . Con-
versely, if $(f, g)\in\ovalbox{\tt\small REJECT}_{A}^{0}(E, G)\times\ovalbox{\tt\small REJECT}_{A}^{0}(F, G)$ , then $f(x)=a_{x}\cdot 1_{G},$ $a_{x}\in A$ (cf. (4.2)) such
that $f(x)g(y)=a_{x}\cdot g(y)=g(y)f(x)$ , for all $(x, y)\in E\times F$, so that $ h\equiv f\otimes_{A}g\in$

$\ovalbox{\tt\small REJECT}_{A}(E\otimes_{A}^{\mathfrak{T}}F, G)$ (cf. Proposition 3.2). Moreover, $Im(h)\subseteqq Im(g)$ (cf. (3.9)), hence
$A\cdot 1_{G}=\mathfrak{C}(Im(f))\subseteqq \mathfrak{C}(Im(h))\subseteqq \mathfrak{C}(Im(g))=A\cdot 1_{G},$ $i.e$ . $h\in\ovalbox{\tt\small REJECT}_{A}^{0}(E\otimes_{A}^{\mathfrak{T}}F, G)$ .

Remark 3.1 and the preceding comments yield the next proposition (cf. also
Proposition 3.1).

Proposition 4.1. Let $F,$ $F,$ $G$ be unital topological A-algebras, where one of
$E,$ $F$ is commutative and $G$ has continuous multipljcatjOn. Moreover, let $E\otimes_{A}^{\mathfrak{T}}F$ be
the topological A-tensor Product A-algebra of $E,$ $F$ equiPped with an $A$-compatible
topology $\mathfrak{T}$ satisfying (3.2), (3.13). Then,

\langle 4.3) $\ovalbox{\tt\small REJECT}_{A}^{0}(E\otimes_{A}^{\mathfrak{T}}F, G)=\ovalbox{\tt\small REJECT}_{A}^{0}(E, G)\times\ovalbox{\tt\small REJECT}_{A}^{0}(F, G)$ . $\blacksquare$

Now, let $E$ be a topological A-algebra. An element $0\neq x\in E$ is said to be a
topologically torsion free element if the canonical map $\omega_{x}$ : $A\rightarrow E:a-\omega_{x}(a):=ax$

is an isomorphism “into” of the correspOnding topOlOgjcal A-algebras $(: A\subset E)$ , that

is $E$ is a toPological extension of the topological algebra A. (cf. [6: $C^{\omega}h^{x}apt$ . IV,
p. 220], for the ”discrete” case).

Lemma 4.1. Let $E,$ $F$ be topological A-algebras with identities $1_{B},$ $1_{F}$ respec-
tively, where $E$ is also commutative and $1_{F}$ topOlogjcally torsion free. Then, every
$f\in\ovalbox{\tt\small REJECT}_{A}^{0}(E, F)$ takes the form
(4.4) $f=x\otimes_{A}1_{F}$ ,

where $\chi\in \mathfrak{M}_{A}(E)$ $(:=\ovalbox{\tt\small REJECT}_{A}(E, A),$ $A$-spectrum of $E$), such that $(\chi\otimes_{A}1_{F})(x):=x(x)\cdot 1_{F}$,
$x\in E$ . In particular, one gets

(4.5) $\mathfrak{M}_{A}(E)=\ovalbox{\tt\small REJECT}_{A}^{0}(E, F)$ .
Proof. By (4.2), $f(x)=a_{x}\cdot 1_{F},$ $a_{x}\in A$ for every $x\in E$ ; hence, by defining

$\chi;E\rightarrow A;x\mapsto\chi(x):=a_{x}$ , such that $f(x)=\chi(x)\cdot 1_{F}\equiv(\chi\otimes_{A}1_{F})(x)$ , one gets $\chi\in \mathfrak{M}_{A}(E)$ .
On the other hand, by the previous comments, one obtains an isomorphism of
topological A-algebras defined by $\omega_{1_{F}}$, that is

$A\cong_{F}A\cdot 1_{F}\subseteqq F\omega_{1}$
in such a way that

(4.5) follows immediately. $\blacksquare$

Now, let the conditions of Proposition 4.1 be valid, whereas $A$ is unital and
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$1_{G}$ is a topologically torsion free element. If, moreover, $E$ is commutative then
each $h\in\ovalbox{\tt\small REJECT}_{A}^{0}(E\otimes_{A}^{\mathfrak{T}}F, G)$ is of the form $h=x\otimes_{A}g$ , with $x\in \mathfrak{M}_{A}(E),$ $g\in\ovalbox{\tt\small REJECT}_{A}^{0}(F, G)$ ,
such that

(4.6) $\ovalbox{\tt\small REJECT}_{A}^{0}(E\otimes_{A}^{\mathfrak{T}}F, G)=\mathfrak{M}_{A}(E)\times m_{A}^{0}(F, G)$

(cf. (4.3), (4.5)). Furthermore, if $E,$ $F$ are both commutative and $A$ has con-
tinuous multiplication, then for each $h\in\ovalbox{\tt\small REJECT}_{A}^{0}(E\otimes_{A}^{\mathfrak{T}}F, G)$ we have $h=x\otimes_{A}\psi\otimes_{A}1_{G}$,
where $(\chi\phi)\in \mathfrak{M}_{A}(E)\times \mathfrak{M}_{A}(F)$ , such that

(4.7) $\ovalbox{\tt\small REJECT}_{A}^{0}(E\otimes_{A}^{\mathfrak{T}}F, G)=\mathfrak{M}_{A}(E)\times \mathfrak{M}_{A}(F)=\mathfrak{M}_{A}(E\otimes_{A}^{\mathfrak{T}}F)$

(cf. (4.3), (4.6) and (3.8) for $G=A$).

Examining continuous central A-morphisms defined on $ E\otimes_{A}^{\mathfrak{T}}F\wedge$ we need also
the following: Let $E,$ $F$ be topological A-algebras where $E$ has continuous mul-
tiplication and $F$ is complete. Let also $f$ be a continuous A-morphism of $E$ into
$F$. Then (cf. also (3.10))

(4.8) $(Im(\overline{[}))^{\prime}=(Im(f))^{\prime}=(\overline{Im(f)})^{\prime}$

( $\overline{Im(f)}$ is the closure of $Im(f)$ in $F$) and

(4.9) $\mathfrak{C}(Im(f))=Im(f)\cap(Im(\overline{f}))^{\prime}\subseteqq \mathfrak{C}(Im(\overline{f}))$

that is $f$ is a continuous central A-morphism whenever $f$ $(: E\rightarrow F)$ is such a mor-
phism. Thus, the map

(4.10) $\theta$ : $\ovalbox{\tt\small REJECT}_{A}^{0}(E, F)\rightarrow\ovalbox{\tt\small REJECT}_{A}^{0}(E, F):\overline{f}\leftrightarrow\overline{f}|_{B}=f$

is, of course, a continuous bijection onto $Im(\theta)\equiv H\subseteqq\ovalbox{\tt\small REJECT}_{A}^{0}(E, F)$ , by considering $H$

equipped with the relative topology induced on it by $\ovalbox{\tt\small REJECT}_{A}(E, F)$ . In particular,
$\ovalbox{\tt\small REJECT}_{A}^{0}(E, F)$ is locally equicontinuous if and only if $H$ is locally equicontinuous, so
that the hypothesis of local equicontinuity of one of the last sets implies

(4.11) $\ovalbox{\tt\small REJECT}_{A}^{0}(E, F)=H\subseteqq\ovalbox{\tt\small REJECT}_{A}^{0}(E, F)$

(cf. (4.10), (3.10), (3.11) and also [11: Chapt. III, Remark 8.1]).

On the other hand, with $E,$ $F$ as above, let $\ovalbox{\tt\small REJECT}_{A}^{*}(E, F)$ be the set of con-
tinuous A-morphisms of $E$ into $F$ with trivial commutant $(i.e., (Im(f))^{\prime}=A\cdot 1_{F}$,
$f\in\ovalbox{\tt\small REJECT}_{A}(E, F))$ equipped with the relative topology from $\ovalbox{\tt\small REJECT}_{A}(E, F)$ (\S 3). Then,
by (4.9) one gets

(4.12) $\ovalbox{\tt\small REJECT}_{A}^{*}(E, F)=\ovalbox{\tt\small REJECT}_{A}^{*}(E, F)$

if, and only if, one of the sets of (4.12) is locally equicontinuous.
Furthermore, let $E,$ $F$ be unital topological A-algebras with continuous mul-

tiplications, $E$ being also commutative and $A,$ $F$ complete. If $1_{F}$ is topologically
torsion free, then the local equicontinuity of each one of the sets $\mathfrak{M}_{A}(E),$ $H$,
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$\ovalbox{\tt\small REJECT}_{A}^{0}(E, F)$ implies the local equicontinuity of the other two (cf. (4.5), (4.11), (3.11)).

Besides, under the hypotheses of Proposition 4.1 one obtains that $m_{A}^{0}(E\otimes_{A}^{\mathfrak{T}}F, G)$

is locally equicontinuous if, and only if, $\ovalbox{\tt\small REJECT}_{A}^{0}(E, G),$ $\ovalbox{\tt\small REJECT}_{A}^{0}(F, G)$ are locally equicon-
tinuous (cf. Lemma 3.1).

Proposition 4.2. Let $E,$ $F,$ $G$ be unital top0l0gical A-algebras with continuous
multiplicati0ns where $G$ is complete and one of $E,$ $F$ commutative. Moreover, $\sup-$

pose that $\ovalbox{\tt\small REJECT}_{A}^{0}(E, G)$ , $\ovalbox{\tt\small REJECT}_{A}^{0}(F, G)$ are locally equicontinuous and the A-compatible
topology $\mathfrak{T}$ on $E\otimes_{A}F$ satisfies (3.3), (3.13). Then, one gets

(4.13) $R_{A}^{0}(E\otimes_{A}^{\mathfrak{T}}F\wedge, G)\subset R_{A}^{0}(E\otimes_{A}^{\mathfrak{T}}F_{f}\rightarrow G)=\ovalbox{\tt\small REJECT}_{A}^{0}(E, G)\times\ovalbox{\tt\small REJECT}_{A}^{0}(F, G)$ .
In particular, if $\mathfrak{T}$ satisfies, moreover, (3.1), then

(4.14) $\ovalbox{\tt\small REJECT}_{A}^{0}(E\otimes_{A}^{\mathfrak{T}}F\wedge, c)\subset\ovalbox{\tt\small REJECT}_{A}^{0}(E\rightarrow’ c)\times\ovalbox{\tt\small REJECT}_{A}^{0}(F, G)$

$\rightarrow\subset\ovalbox{\tt\small REJECT}_{A}^{0}(E, c)\times m_{A}^{0}(F, G)=\ovalbox{\tt\small REJECT}_{A}^{0}(E\otimes_{A}^{\mathfrak{T}}F, G)$ .

Proof. By (4.11) we have $\ovalbox{\tt\small REJECT}_{A}^{0}(E\otimes_{A}^{\mathfrak{T}}F\wedge, G)\subset\ovalbox{\tt\small REJECT}_{A}^{0}(E\otimes_{4}^{\mathfrak{T}}F, G)$ , so that (4.3) im-
plies (4.13). Furthermore, by the continuity $\rightarrow of\varphi:E\times F\rightarrow E\otimes_{A}^{\mathfrak{T}}F$ (cf. (3.1)) one
gets $ E\otimes_{A}^{\mathfrak{T}}\vec{F}=\varphi(E\times P)\subseteqq\varphi(E\times F)\wedge=E\otimes_{A}^{\mathfrak{T}}F\wedge$, which implies $ m_{A}^{0}(E\otimes_{A}^{\mathfrak{T}}F\wedge, G)\subset\rightarrow$

$\ovalbox{\tt\small REJECT}_{A}^{0}(E\otimes_{A}^{\mathfrak{T}}P, G)$ (cf. (4.11)), hence (4.14) immediately follows by (4.3). $\blacksquare$

By combining Proposition 4.2 and relations (4.6), (4.7) (cf. also remarks be-
fore Proposition 4.2) one gets more informative decompositions than (4.13), (4.14),

as it is, for instance, the validity of (4.13), (4.14) with equalities.

5. Appendix

In this Section, on the one hand we introduce the notion of projective (to-

pological) A-tensor product A-algebra, and on the other hand we define the to-
pological tensor product over $A$ of (locally convex) A-algebras in a similar way
to that defined by B. R. Gelbaum [3] for Banach A-algebras. Besides, the con-
nection between the previous two A-tensor products is also considered together
with the corresponding “spectra” of the topological algebras involved.

Thus, we first set the following deflnition.

Definition 5.1. Let $E,$ $F$ be locally convex A-algebras. The pair $(D, \varphi)$ con-
sisting of a locally convex A-algebra $D$ and a continuous A-bilinear multiplica-
tive map $\varphi$ of $E\times F$ into $D$ is said to be projective(topological) A-tensor Producf
(A-algebra) of $E,$ $F$ if the following universal property is valid:

For any Pair $(M, u)$ , where $M$ is a locally convex A-algebra and $u$ a
(5.1) continuous A-bilinear multiPlicative map of $E\times F$ into $M$, there exists a

uniquely defined continuous $A$-morphism $\tilde{u}$ ; $D\rightarrow M$, such that $ u=\tilde{u}\circ\varphi$ .
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The uniqueness of the projective A-tensor product is, of course, easily realized.
The existence of the projective A-tensor product of $E,$ $F$ is provided by the

Projective A-tensorial locally convex topology on $E\otimes_{A}F$ (denoted by $\pi$). Thus, let
$(E, (p_{a})_{a\in K}),$ $(F, (q_{\lambda})_{\lambda\in L})$ be locally convex A-algebras, where $(p_{a}),$ $(q_{\lambda})$ are the
families of (continuous) semi-norms defining the topologies of $E,$ $F$ respectively.
Then the relation

(5.2) $r_{(a.\lambda)}(z)=\inf\sum_{i=1}^{n}p_{a}(x_{l})q_{\lambda}(y_{i})$ ,

where “inf” is taken over all expression of $z=\sum_{i=1}^{n}x_{i}\otimes_{A}y_{i}\in E\otimes_{A}F$, defines $r_{(a.\lambda)}$

as a semi-norm on $E\otimes_{A}F$, for every $(a, \lambda)$ , so that the respective locally convex
topology deflned by the family $(r_{(a,\lambda)})$ is an A-compatible topology on $E\otimes_{A}F$

(Definition 1.1).

By applying (1.1), a continuous A-bilinear multiplicative map $u$ of $E\times F$ into
a locally convex A-algebra $M$ gives rise to a uniquely defined continuous A-
morphism $\tilde{u}$ of $(E\otimes_{A}F, (r_{(a.\lambda)}))$ into $M$, since, for each continuous semi-norm
$\nu$ on $M,$

$\nu(\tilde{u}(z))\leqq k\cdot\sum_{\ell}\nu(u(x_{i}, y_{i}))\leqq l\cdot\sum_{\ell}p_{a}(x_{i})q_{\lambda}(y_{\ell})$ with $l>0$ so that $\nu(\tilde{u}(z))\leqq$

$i\cdot r_{(a,\lambda)}(z)$ , for $z=\sum_{\ell}x_{i}\otimes_{A}y_{i}\in E\otimes_{A}F$. Thus, the projective A-tensor prOduct to-
Pology $\pi$ is the finest locally convex topology on $E\otimes_{A}F$ making the canonical A-
bilinear multiPlicative map $\varphi$ continuous. On the other hand, the locally convex
A-algebra $(E\otimes_{A}F, (r_{(a.\lambda)}))\equiv E\otimes_{A}^{\pi}F$ (with the canonical map $\varphi$) is “the” projective
A-tensor Product of $E,$ $F$ (cf. Deflnition 5.1).

In the sequel we give another realization of the projective A-tensor product
of $E,$ $F$ : Thus, let $(E, (p_{a})),$ $(F, (q_{\lambda}))$ be locally convex A-algebras and $E\bigotimes_{\pi}F$

the corresponding projective tensor product locally convex algebra of $E,$ $F$, cf.
[12: Proposition 3.2], being, in fact, a locally convex A-algebra. If $I$ is the
closed 2-sided A-ideal of $E\bigotimes_{r}F$ as in (1.6), then $E\bigotimes_{\pi}F/I$ endowed with the cor-
responding quotient topology is a locally convex A-algebra such that the pair
$(E\bigotimes_{\pi}F/I, \varphi)$ , with $\varphi=\rho^{\circ}\varphi_{1}$ , where $\rho$ is the canonical quotient map and $\varphi_{1}$ : $E\times F$

$\rightarrow E\bigotimes_{\pi}F$ the canonical continuous bilinear map, is the projective A-tensor Product
A-algebra of $E,$ $F$. Moreover, if $(p_{a}\otimes q_{\lambda})$ is the family of continuous semi-norms
defining the projective topology on $E\otimes F$ (cf. [12: Lemma 3.1]), then $(p_{a}\otimes_{A}q_{\lambda})$

with

(5.3)
$(p_{a}\otimes_{A}q_{\lambda})(\dot{z})=\inf_{z\in i}(p_{a}\otimes q_{\lambda})(z),$

$z\in E\otimes F,\dot{z}\in E\otimes F/I$

makes $E\otimes F/I$ into a locally convex A-algebra, so that $(E\otimes F/I, (p_{a}\otimes_{A}q_{\lambda}))\equiv$

$E\bigotimes_{\pi}F/I$ (with the continuous map $\varphi=\rho^{Q}\varphi_{1}$ ) is the projective A-tensor Product
locally convex A-algebra of $E,$ $F$ (Definition 5.1).
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We examine now another expression of the projective A-tensor product (cf.
$[2, 7]$ for Banach A-algebras). If $(E, (p_{a})),$ $(F, (q_{\lambda}))$ are locally convex A-algebras,
the relation

$r_{(a.\lambda)}\equiv(p_{a}, q_{\lambda});\mathcal{F}(E, F)_{0}\rightarrow R_{+}:$ $f-r_{(a.\lambda)}(f)$ :
(5.4)

$:=\sum_{(x,y)}|f(x, y)|p_{a}(x)q_{\lambda}(y)$

defines a semi-norm on $\mathcal{F}(E, F)_{0}$ for every $(a, \lambda)$ , so that $(\mathcal{F}(E, F)_{0},$ $(r_{(a.\lambda)}))$ is
actually a locally convex A-algebra. Moreover, if $H$ is the closed vector subspace
of $\mathcal{F}(E, F)_{0}$ generated by elements of the form (1.3), being also a closed 2-sided
A-ideal of $(\mathcal{F}(E, F)_{0},$ $(r_{(a.\lambda)}))$, then $(\mathcal{F}(E, F)_{0}/I,$ $(r_{(a.\lambda)}))\equiv \mathcal{F}(E, F)_{0}/H$ is a locally
convex A-algebra, where $(\dot{r}_{(a.\lambda)})$ is the corresponding family of quotient semi-
norms of (5.4), such that the pair $(\mathcal{F}(E, F)_{0}/H,$ $\varphi=\rho^{\circ}\delta$) (cf. \S 1) is the projective
A-tensor product locally convex A-algebra of $E,$ $F$ (cf. Definition 5.1).

Summarizing the previous results, one has

Proposition 5.1. Let $E,$ $F$ be locally convex A-algebras. Then,

(5.5) $E\otimes_{A}^{\pi}F=E\bigotimes_{\pi}F/I=\mathcal{F}(E, F)_{0}/H$

within isomorphisms of locally convex A-algebras. In particular, if $E,$ $F$ have
continuous multiplications, then

(5.6) $ E\otimes_{A}^{\pi}F=E\bigotimes_{\pi}F/I=\mathcal{F}(E, F)_{0}/H\wedge\wedge\wedge$ ,

within isomorphism of locally convex A-algebras. $\blacksquare$

Analogous results are also obtained in case of locally m-convex A-algebras
(cf. also [12: Proposition 3.1]). Besides, the prOjectjve locally (m-) convex A-
tensor product toPology on $E\otimes_{\mathcal{A}}F$ is Hausdorff if and only if this is the case for
the topolOgies of each one of the algebras $E$ and $F$ (cf. (5.5) and also [11: Chapt.
VI, \S 3], [5: p. 105, Proposition 5]).

Remark 5.1. One can also topologize $E\otimes_{\mathcal{A}}F$ in different manners than the
previous one, either by means of a universal property analogous to (5.1) (cf., $e.g$ .
$[9a])$ or directly by the relation (1.6), using the known tensorial topologies on
the (usual) complex tensor product, setting, $e.g.,$ $\tau=\epsilon$ (: biprojective tensorial
topology;[4: Chap. I, Definition 5, p. 89] $and/or$ [ $11$ : Chapt. VI, Definition 2.3]),

or $\tau=i$ (: inductive tensorial topology;[4: Chap. I, Proposition 13]) with the
analogous arrangements. On the other hand, all the preceding results as well as
those of Section 1 are also valid (under suitable modifications) not only for
Iocally (m-) convex A-algebras or locally convex A-modules, but, more generally,
by defining in an obvious way topological $(A, B)$-tensor product algebras (or

modules; denoted by $E_{A}\otimes_{B}F$ ) for a given locally convex left A-algebra $E$ and a
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locally convex right B-algebra $F$ (cf. also [20: p. $157ff]$ for relevant reports).

Now, we introduce the concept of topological tensor products over topological
algebras in a similar way to [3], considering first the algebraic construction.
Thus, let $E,$ $F$ be A-algebras and $\mathcal{F}_{A}(E, F)_{0}$ the set of the maps $f:E\times F\rightarrow A$

with finite support being an algebra under a convolution (cf. [10: p. 107]) and,

in particular, an A-algebra by pointwise “multiplication of coefficients”. Fur-
thermore, defining

(5.7) $\chi_{a}$ ; $E\times F\rightarrow \mathcal{F}_{A}(E, F)_{0}$ : $(x, y)-\chi_{a}(x, y):=\alpha\cdot\delta_{(x.y)},$ $\alpha\in A$

(cf. \S 1), we obtain that every $f\in \mathcal{F}_{A}(E, F)_{0}$ is of the form $f=\sum_{(x.y)}\chi_{f(x.y)}(x, y)$ .
Thus, if $I_{A}$ is the vector subspace of $\mathcal{F}_{A}(E, F)_{0}$ generated by the functions

$x_{a}(x+x^{\prime}, y)-\chi_{a}(x, y)-\chi_{\alpha}(x^{\prime}, y)$ $\chi_{\alpha}(\lambda x, y)-\chi_{a}(x, \lambda y)$

(5.8) $x_{\alpha}(x, y+y^{\prime})-\chi_{a}(x, y)-\chi_{a}(x, y^{\prime})$ $\chi_{a}(\beta x, y)-\chi_{a}(x, \beta y)$

$\lambda\chi_{\alpha}(x, y)-\chi_{a}(\lambda x, y)$ $\beta^{\chi_{a}(x},$ $y$ ) $-\chi_{a}(\beta x, y)$

with $x,$ $x^{\prime}\in E,$ $y,$ $y^{\prime}\in F,$
$\alpha,$ $\beta\in A,$ $\lambda\in C,$ $I_{A}$ is a 2-sided A-ideal of $\mathcal{F}_{A}(E, F)_{0}$

such that the quotient A-algebra $\mathcal{F}_{A}(E, F)_{0}/I_{A}$ is called the tensor product of $E,$ $F$

over $A$ .
Now, if $(E, (p_{a})),$ $(F, (q_{\lambda}))$ are locally convex $(A, (\nu_{\mu}))$-algebras, then

$\gamma_{(\mu.a.\lambda)}\equiv(\nu_{\mu}, p_{a}, q_{\lambda});\mathcal{F}_{A}(E, F)_{0}\rightarrow R_{+}:$ $f\leftrightarrow\gamma_{(\mu.a.\lambda)}(f)$

(5.9)
$:=\sum_{(x.y)}\nu_{\mu}(f(x, y))p_{a}(x)q_{\lambda}(y)$

defines a semi-norm on $\mathcal{F}_{A}(E, F)_{0}$ , such that $(\mathcal{F}_{A}(E, F)_{0},$ $\gamma_{(\mu.a.\lambda)}$ ) is, of course,
a locally convex A-algebra.

In case $A,$ $E,$ $F$ have continuous multiplications (resp. are locally m-convex
algebras), $\mathcal{F}_{A}(E, F)_{0}$ is an algebra of the same type. If $E,$ $F$ have continuous
multiplications but $A$ has separately continuous multiplication, then $\mathcal{F}_{A}(E, F)_{0}$ is
a locally convex A-algebra with separately continuous multiplication.

Thus, if $I_{A}$ is the previous closed 2-sided A-ideal of $(\mathcal{F}_{A}(E, F)_{0},$ $\gamma_{(\mu.a.\lambda)}$ ) the
quotient locally convex A-algebra $\mathcal{F}_{A}(E, F)_{0}/I_{A}$ is said to be the topological tensor
product of $E,$ $F$ over $A$ . The next proposition provides a universal property
characterizing the previous tensor product (for Banach A-algebras cf. [7: $Threm$
$2.1])$ .

Throughout the sequel we suPpose that $A$ is a locally convex algebra with con-
tinuous mulfiplication.

Proposition 5.2. Given two locally convex A-algebras $E,$ $F$, the toPological
tensor product of $E,$ $F$ over $A$ is the projective A-tensor product of $A,$ $E,$ $F$, that is
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(5.10) $\mathcal{F}_{A}(E, F)_{0}/I_{A}=A\otimes_{A}^{\pi}E\otimes_{A}^{\pi}F^{-}$ ,

within an isomorphism of locally convex A-algebras.

Proof. The continuous maps $\chi;A\times E\times F\rightarrow \mathcal{F}_{A}(E, F)_{0}$ : $(\alpha, x, y)\leftrightarrow\chi(\alpha, x, y)$

$:=x_{a}(x, y)$ (cf. (5.7)) and $\rho:\mathcal{F}_{A}(E, F)_{0}\rightarrow \mathcal{F}_{A}(E, F)_{0}/I_{A}$ (: canonical quotient A-
morphism) define the continuous A-trilinear multiplicative map $\varphi:=\rho\circ\chi$, such that
if $u$ is a continuous A-trilinear multiplicative map of $A\times E\times F$ into a locally
convex A-algebra $M$, then one defines a map $h;\mathcal{F}_{A}(E, F)_{0}\rightarrow M:f\leftrightarrow h(f(:=$

$\sum_{(x.y)}u(f)x,$ $y$ )
$,$

$x,$ $y$ ) with $ u=h\circ\chi$, being a continuous A-morphism with $I_{A}\subseteqq ker(h)$ .
Thus, there exists a cintinuous A-morphism $\tilde{u};\mathcal{F}_{A}(E, F)_{0}/I_{A}\rightarrow M$ with $ h=\tilde{u}\circ\rho$ ,
so that $ u=\tilde{u}\circ\varphi$ . Now, $(\mathcal{F}_{A}(E, F)_{0}/I_{4},$

$\varphi$ ) satisfies the analogous of Definition 5.1,
and this completes the proof. $\blacksquare$

In particular, if the algebras $E,$ $F$ have continuous multiplications, then

(5.11) $\mathcal{F}_{A(E,F)_{0}/I_{A}=A\otimes_{A}^{\pi}E\otimes_{A}^{\pi}F}^{\wedge}\wedge\wedge$ ,

within an isomorphism of (complete) locally convex A-algebras.
Concerning the (numerical) spectrum of $\mathcal{F}_{A}(E, F)_{0}/I_{A}$ , we remark that if $\Delta$

is the diagonal of $\mathfrak{M}(A)\times \mathfrak{M}(A)$ and $\mu,$ $\nu,$
$\Delta^{+}$ as in Theorem 2.1, then by the

canonical injection
$\mathfrak{M}(A)\subset \mathfrak{M}(A)^{+}\rightarrow i$

one gets $(i\times\mu\times\nu)^{-1}(\Delta^{+})=(\mu X\nu)^{-1}(\Delta)(\subseteqq \mathfrak{M}(E)$

$\times \mathfrak{M}(F)$ closed), such that

(5.12) $\mathfrak{M}(\mathcal{F}_{A}(E, F)_{0}/I_{A})=(\mu\times\nu)^{-1}(\Delta)\subseteqq \mathfrak{M}(E)\times \mathfrak{M}(F)$

(cf. (5.10) and Theorem 2.1). Moreover, if $E,$ $F$ have continuous multiplications
and $A,$ $E,$ $F$ have locally equicontinuous spectra, then

(5.13) $\mathfrak{M}(\mathcal{F}_{A}(E, F)_{0}/I_{A})=(\mu\times\nu)^{-1}(\Delta)\subseteqq \mathfrak{M}(E)\times \mathfrak{M}(F)\wedge$

(cf. (5.11), (5.12) and also [11: Chapt. III, Theorem 2.1]).
In case $E,$ $F$ are Banach A-algebras the above specializes to [3: Theorem 1].
Considering now the generalized A-spectrum of $\mathcal{F}_{A}(E, F)_{0}/I_{A}$ and its com-

pletion the following comments are necessary: By the essential part of an A-
module $E$ we mean the vector subspace $[AE]$ of $E$ generated by the set $AE=$
$\{ax;a\in A, x\in E\}$ , being in particular an A-module. If $E$ is a topological A-
algebra, then $[AE]$ is also a topological A-algebra endowed with the relative
topology of $E$ . Moreover, $E$ is said to be an essential (A-algebra) if $[AE]$ is a
dense subset of $E$ (cf. also [21]).

Lemma 5.1. Let $E$ be a locally convex A-algebra, where $A$ has a $b.a.i$.
$(e_{\delta})_{\delta\in D}$ . Then,

(5.14) $A\otimes_{A}^{\pi}E=[AE]$ ,

within an isomorphism of locally convex A-algebras.
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Proof. The continuous A-bilinear multiplicative map $\omega;A\times E\rightarrow E:(a, x)-$

$\omega(a, x):=ax$ defines a unique continuous A-morphism $\tilde{\omega}$ : $A\otimes_{A}^{\pi}E\rightarrow E$ such that
$\omega=\tilde{\omega}\circ\varphi$ ( $\varphi$ is the canonical map of $A\times E$ into $A\otimes_{A}^{n}E$ , cf. Definition 5.1), hence
$\tilde{\omega}(A\otimes_{A}^{n}E)=[AE]$ . Now, for each $u\in(A\otimes_{A}^{\pi}E)_{*}^{\prime}$ , there exists $f\in X_{A}(E, A_{*}^{\prime})$ such
that $u(\sum_{i}a_{i}\otimes_{A}x_{l})=\sum_{\ell}f(x_{i})(a_{i})$ , and hence there exists a linear map $v:[AE]\rightarrow C$

with $v\circ\tilde{\omega}=u$ , which yields that $\overline{\omega}$ is injection, $i.e$ . a continuous A-isomorphism.
Concerning the continuity of $\overline{\omega}^{-1}$, let $\gamma$ be a continuous semi-norm on $A\otimes_{A}E$

(cf. (5.2)). Then, for each $\epsilon>0$, the relation $\lim_{\delta}(\sum_{\ell}(e_{\delta}a_{i})\otimes_{A}x_{\ell})=\sum_{\ell}a_{i}\otimes_{A}x_{\ell}$ , im-

plies $ r(\sum_{i}(e_{\delta}a_{i})\otimes_{A}x_{i}-\sum_{\ell}a_{i}\otimes_{A}x_{\ell})\leqq\epsilon$ , for every $\delta>\delta_{0}$, that is there exist $\lambda>0$ and

a continuous semi-norm $p$ on $E$ such that $r(a^{-1}(\sum_{\ell}a_{i}x_{\ell}))\leqq\lambda\cdot p(\sum_{l}a_{\ell}x_{\ell})$ , which

completes the proof. $\blacksquare$

Under the conditions of Lemma 5.1 and the supposition that $E$ is essential
with continuous multiplication, one gets

(5.15) $ A\otimes_{A}^{\pi}E=[AE]=E\wedge\wedge$ ,

within an isomorphism of locally convex A-algebras.
Now, if $A$ is unital, (5.14) implies $A\otimes_{A}^{\pi}E=E$ within an isomorphism of locally

convex A-algebras, and so (5.15) is valid without $E$ being an essential algebra.
In this case, the projective A-tensor product A-algebra of $E,$ $F$ (Deflnition 5.1)
and the topological tensor product of $E,$ $F$ over $A$ coincide, within an isomorphism
of locally convex A-algebras.

Proposition 5.3. Let $E,$ $F$ be locally convex A-algebras with $b.a.i$ . $s$ (A has
also $b.a.i.$ ) and continuous multiplications, where $E,$ $F$ are essential. Furthermore,
let $\ovalbox{\tt\small REJECT}_{A}(E, G),$ $\ovalbox{\tt\small REJECT}_{A}(F, G)$ be locally equicontinuous, where $G$ is a complete locally
convex A-algebra with continuous multiplication and let $Q$ be the set (3.6). Then,
one has

(5.16)
$\ovalbox{\tt\small REJECT}_{A}(\mathcal{F}_{A(E,F)_{0}/I_{A}}^{\wedge}, G)=Q=\ovalbox{\tt\small REJECT}_{A}(\mathcal{F}_{A}(E, F)_{0}/I_{A},$

$c$ ) $\subset\ovalbox{\tt\small REJECT}_{A}(E\rightarrow’ G)\times\ovalbox{\tt\small REJECT}_{A}(flG)$

$=R_{A}(E, c)\times m_{A}(F, G)$ .
In case $G$ is commutative the “inclusion sign” in (5.16) may be replaced by an
equality.

Proof. $E\otimes_{A}F$ is an essential algebra since $E,$ $F$ are essential, thus

(5.17) $\mathcal{F}_{A(E,F)_{0}/I_{A}=(5.11)A\otimes_{A}^{n}E\otimes_{A}^{\pi}F=(5.15)}^{\wedge}\wedge\wedge[A(E\otimes_{A}^{n}F)]=E\otimes_{A}^{\pi}F\bigwedge_{\wedge}$ ,

within isomorphisms of topological A-algebras. On the other hand, $\ovalbox{\tt\small REJECT}_{4}(E\otimes_{A}^{\pi}F, G)$

is locally equicontinuous (Lemma 3.1), so that $\ovalbox{\tt\small REJECT}_{A}(\mathcal{F}_{A}(E, F)_{0}/I_{A},$ $G$ ) $=$

$m_{A}(\mathcal{F}_{A}(E, F)_{0}/I_{A}\wedge,$
$G$ ) $=(5.17)\ovalbox{\tt\small REJECT}_{A}(E\otimes_{A}^{\pi}F\wedge, G)$ . The assertion now follows by Theo-
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rem 3.1. $\blacksquare$

Under the conditions of Proposition 5.3, where now the algebras $E,$ $F,$ $G$ are
unital and moreover, $R_{A}^{0}(E, G),$ $\ovalbox{\tt\small REJECT}_{A}^{0}(F, G)$ are locally equicontinuous, concerning
the continuous central A-morphisms deflned on (5.11), one gets

$\ovalbox{\tt\small REJECT}_{A}^{0}(\mathcal{F}_{A(E,F)_{0}/I_{A}}^{\wedge}, c)=m_{A}^{0}(E\otimes_{A}^{\pi}F\wedge, c)\subseteq\ovalbox{\tt\small REJECT}_{4}^{0}(E, G)\times\ovalbox{\tt\small REJECT}_{A}^{0}(flG)$

(5.18)
$\rightarrow\subset m_{A}^{0}(E, G)\times\ovalbox{\tt\small REJECT}_{A}^{0}(F, G)=\ovalbox{\tt\small REJECT}_{A}^{0}(E\otimes_{A}^{\pi}F, G)$

(cf. (4.14), (5.18)). Besides, analogous thoughts to those after Proposition 4.2
can be formulated for the present case (cf. (4.5), (5.18)).

Remark 5.2. Given a finite family of locally convex A-algebras (resp. A-
modules), we deflne the (projective) finite A-tensor product locally convex A-algebra
(resp. A-module) $\bigotimes_{\alpha\in J}\pi AE_{a}$ in a similar way to Definition 5.1. (The uniqueness and

existence of the last tensor $prQduct$ follow also as before). In this case we still
get results analogous to those of the preceding Sections. Moreover, one defines
the infinite toPological A-tensor product of an arbitrary family of locally convex
A-algebras $(E_{\alpha})_{a\in K}$ , with results analogous to those of the flnite case. A more
detailed analysis thereon will be given elsewhere (cf. [9], $[9a]$ ).
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