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0. Introduction.

In [2] 'Ogiue studied Kaehler submanifolds of complex space forms. Let
Px(C) be an N-dimensional complex projective space with the Fubini-Study
metric of constant holomorphic sectional curvature 2 and M a Kaehler submanifold
of complex dimension m in Py(C). Let 7(Pn(C)) (resp. 7(M)) be a holomorphic
tangent bundle of Py(C) (resp. M) and z(Py(C))|x a restriction of z(Px(C)) to
M. Then 7(M) is a holomorphic subbundle of it. Let u(M) be an orthogonal
complement of 7(M) in t(Py(C))|». The main purpose of this note is to show
that v(M) is a holomorphic hermitian vector bundle with local trivialities (holo-
morphic local frame fields) canonically induced by ¢ distinguished local charts” of
M, by which locally M is regarded as a graph of a certain holomorphic mapping
(Theorem 2.1). However v(M) is not a holomorphic subbundle of z(Px(C))|a,
but holomorphically isomorphic to a quotient bundle 7(Py(C))|x/7(M). Next by
means of the above holomorphic local frame fields we obtain the concretely
computable formulas of the connection and curvature matrices of v(M), second
fundamental form and scalar normal curvature. Last we apply the results to the
computations of the normal curvature tensor, its length and scalar normal
curvature of the Segre embedding.

1. Preliminaries.

Let C™ be the complex. vector space of all n-dimensional complex column
vectors and M(n, m; C) the complex vector space of all complex matrices of
type (n, m). Then C*=M(n, 1; C). For AeM(n, m; C), A* is the transposed-
conjugate matrix of A. Let H(n, C) be the real vector space of all hermitian
matrices of degree n and U(n) the n-dimensional unitary group. For A (aij)
eM(m, p; C) and B= (b,,v)eM(n q; C), AQB means the matrlx
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g ....... A:b#y ....... g EM(mn’ pq; C)’

where ay;b,, is the (m(p—1)47, p(v—1)+j)-component of ARQB. Hereafter we
use the following convention. If X=(§;;) and Y =(y;;) are a matrix of (p, ¢)-
forms and a matrix of (p’, ¢’)-forms respectively, then XY =({;;,) means the
matrix of (p+p’, ¢g+¢’)-forms obtained by multiplying X and Y in the usual way,
where {i: =2 &:jAn;. dX (resp. 0X, 6X) means the matrix (d&;;) (resp. (9:)),
(0€:5).

Let M be a complex manifold of complex dimension m and & a holomorphic
hermitian vector bundle over M with fibre C*. Suppose that (U; 2}, ---, z™) is
a local chart of M and that (e)=(e,, -+, ¢;) is a local holomorphic frame field on
U for &, that is, (e)=(e,, -:-, ¢;) induces a local triviality of & on U. Then the
hermitian metric of £ gives a H(k; C)-valued function # on U by the rule hag
=(eq, ep), i.€., h is a Gramian matrix for frame field (e)=(e,, -, e;). It is well
known that a hermitian metric on a holomorphic vector bundle induces uniquely
the metric connection compatible with the complex structure which is called a
canonical connection of a holomorphic hermitian vector bundle. Let & be the
connection matrix associated with the canonical connection of £ and the frame
field (e)=(ey, -*-, e;) and O the curvature matrix associated with the connection
matrix 6. By [1; (2.3) and (2.4)] we have

(1.1) @=h""oh,
(1.2) 6©=d6.

Let Gu,(C) be a complex Grassmann manifold of all linear subspaces of
complex dimensijon £+1 in C¥*! (0<k<N). For each matrix Xe M(N+1, k+1; C)
of rank k41, we denote by [X] a point of Gu,(C), i.e., a linear subspace of
complex dimension 241 in C¥** spanned by all column vectors of X. For each
point [X]eGy, (C), there exists a unitary matrix A€U(N-+1) such that

o[ 5]

where E .., is the (k4 1)-dimensional unit matrix and 0 M(N—k, k+1; C). Then
the mapping ¢,: M(N—k, k+1; C)—>Gy, (C) defined by

=[Py 5y

is a holomorphic local parametrization near [X]. Put U,=¢(M(N—E, k+1; C))
and ¢ =¢3': U M(N—k, k+1; C). Then {(Uy ¢.); A€UN+1)} is the sys-
tem of holomorphic local charts of Gy, :(C). The coordinate transformation
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Gropal: 64U sNUg)—¢s(UasNUsp) for Usn\Up#¢ is given by

@ ¢a(Z2)=(b+dZ)a+cZ) '=—(d*—Zb¥*)"(c*—Za¥*),
where

(Z ;):B-IAEU(N"H), asMk+1, B+1; C).

Put
T8, (O)={W, )Gy, (C)XCY*; ueWl,

T3, (C)={W, )ECN, H(C)XCV* ;v I W},

where v W means that v is orthogonal to W with respect to the usual hermitian
innner product of C¥*'. Define the mapping 7 : 7w, s(C)—Gy, +(C), 7. : 7% (C)
—Gy,x(C) by z(W, u)=W, =, (W, v)=W respectively. Then 7y, (C) and 1§ (C)
are holomorphic hermitian vector bundles over Gy, (C) with the following local
trivialities: Fa: U X C* 1o~} (U,), Fi:UsXCY >3 (Uy),

Figu2), 0=(g2), A("5")x),

FHGA2), =(92), A(5 2 )Mz5),

where Mz=Ey_,+ZZ* 7y x(C)and 7y :(C) are called the universal subbundle
and the universal quotient bundle respectively. The transition functions
884:UanUp—>GL(k+1; C), g4:Usn\Us—GL(N—Fk; C) of 7x,x(C), 74, 1(C)
are given by

(1.3) g4PuZ))=a+cZ,
(L.4) 884(PA(Z))=(d*—Zb*)™*
respectively, where

(Z ;)zB'lAeU(N—i—l), aeMk+1, k+1; C).

Now we regard Gy, o(C) as the N-dimensional complex projective space Py(C)
with the Fubini-Study metric of constant holomorphic sectional curvature 2. Let
p be an arbitrarily fixed point of Py(C). For AcU(N+1), the holomorphic local
parametrization ¢,: C¥—Py(C) near p is given by

v0=[4(p)]=4[;] @O=p.
Then the Gramian matrix of the natural frame (0,)=(3/0C%, 9/3C2, -, 8/9C%) is
(1.5) ((A4+COE NN,

where E, is the N-dimensional unit matrix, i.e., the Fubini-Study metric of Py(C)
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of constant holomorphic sectional curvature 2 is
K#L
dS2=—1—“l—‘2CT‘C—Z<5KL_ li_g*c )dCKdCL:
where 1<K, LZN.

Let M be a Kaehler submanifold of complex dimension m in Py(C) (.e.,
complex submanifold of Py(C) with the induced Kaehler structure) and U be a
non-empty open set in M. Hereafter unless otherwise stated, we put n=N—m
and use the following convention on the range of indices:

1=a, b, ¢, d, i, j<m;
m+l=a, B, 4, v, 0, tT=<m+n.

Suppose that (ci, -, ¢m) (resp. (dm+1, -, dm+n)) IS a unitary tangent (resp.
normal) frame field on U and that (§7, ---, §™) (resp. (p™*?, ---, p™*")) is the
dual frame field of (¢, =+, cm) (resp. (dpm+1, -, dm+n)) On U. Let o be the
second fundamental form of M in Px(C) and put

(1.6) o =3 ke R,

where ¢’ is the holomorphic part of ¢ and k9§, is a complex valued C*-function
on U. Denote by K the normal curvature tensor of M in Px(C), then

1.7 K=2 (da®n?)L§as€*NEY),

where L§,;5 is a complex valued C~-function on U. Let ||¢] be the length of o
and Ky the scalar normal curvature of the embedding of M in Py(C). Then by
[2; p. 80, p. 85 and p. 94], we have

(1.8) lolt=43 kgskss,

1.9 Ky=16 2 ki bk 5.R5, .

We define the square of the length of the normal curvature tensor K by
(1.10) IK|?: =3 LasL%as.

We now study the tangent projective space and Gauss mapping of a Kaehler
submanifold of the complex projective space. Let M be a Kaehler submanifold
of complex dimension m in Py(C) and p an arbitrarily fixed point of M. Then
there exist a unitary matrix A€U(N+1) and a holomorphic mapping f: D—C"
such that the mapping ¢4, : D—M defined by

1
Gar@:=¢u( © )=A[ z ] (w=£(2), £0)=0)
w .

is a holomorphic local parametrization of M near p, where D is a certain open
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neighborhood of 0 in C™ and ¢, (0)=p. Put Uus:=¢as(D) and ¢as:=¢a}.
Then U4y, ¢4s) is a holomorphic local chart of M near p. We call WU 4z, Pay)
a distinguished local chart in this note. Let z* be the i-th component of ¢,, and
w*=fe"™ the (a—m)-th component of fegs,. Then z*' (resp. w®) is the i-th
coordinate (resp. holomorphic) function on U,,;. Put

J:=J( f):<%_z: (Jacobian matrix of f).

We may regard J (resp. z, w) as a M(n, m; C)-valued (resp. M(m, 1; C)-valued,
M(n, 1; C)-valued) holomorphic function on U,,. The tangent projective space
P(M), of M at p is

1 0

P(M),,={[A(z Em)x]ePN(C); xeC"‘“—{O}},
w J

where p=¢.s(z). Hence the Gauss mapping [y : M—Gy,»(C) of the submanifold

M in Py(C) is given by

1 0
FM(¢'Af(Z))=A[ z Em]=¢4((w—jz, I
w J

where ¢, is the local parametrization of the complex Grassmann manifold G . »(C)
near a point

ga0=a Fo].
Therefore the local representation on U,, of the Gauss mapping [y is
(1.11) Pacly-¢35(2)=(w—Jz, J),

where ¢, is the coordinate mapping of the local chart (U, ¢4) of Gy, »(C) near

& 4(0).

2. Holomorphic local frame fields of the normal bundle.

Let M be a Kaehler submanifold of complex dimension m in Py(C). Let
7((Py(C)) (resp. ©(M)) be a holomorphic tangent bundle of Px(C) (resp. M) and
v(M) a normal bundle of M in Py(C). We regard the underlying set of v»(M)
as an orthogonal complement of 7(M) in z(Px(C))]x (a restriction of z(Px(C)) to
M). However v(M) is not a holomorphic subbundle of z(Px(C))|x, but holo-
morphically equivalent to the quotient z(Px(C))|x/t(M). We use the same
notations as in Section 1. We define a scalar-valued C*-function and some matrix-
valued C=-functions on U, by

2.1) A =Ary=14z*z4+w*w,
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(2.2) | Az =A;=Ement( S Y w),
. _ Em
23 G:=Gy=(Em, N4y ("] ),
_..J* -1
24 H:=H;={(=], E2aa( 3 )}
(2.5) L:=L,=iG,
(2.6) M:=M,=QH).

Put (04y):=(d/02%, -+, 0/0z™)=(0s, -+, On). Then (04;) (resp. (34)) is a holo-
morphic tangent frame field of M (resp. Py(C)) on U,y (resp. U,) and gives a
holomorphic local triviality of z(M) (resp. z(Py(C))). We denote by (3, the
restriction of (d4) to U,y. Then we have

@)= E]"‘ ).

Hence the Gramian matrix for the natural frame field (d4) is equal to G. Put
< —J*
@7 (ear): =(emu, -, emr)=@0AA( 5 )H-

Then (e4;) is a normal frame field and of class C=. In fact, since it follows
from (1.5) that the Gramian matrix of (d4y) is equal to (24)7%, the (n, m)-matrix

#—J, Enaaaar( )

whose (a, a)-component is the inner product of e, and 0, is zero, i.e., each
member of (e4,) is perpendicular to any member of (04y). The Gramian matrix
for (e4s) is equal to H, which is non-singular at any point of Uy, i.e., (e4y) is
linearly independent at any point of U,y. Then we may prove the following
theorem.

Theorem 2.1. The local triviality of v(M) induced by
~ — *
EECRIEY el

is holomorphic, i.e., the normal frame field (eay) on U4y is holomorphic and its
Gramian matrix is equal to H.

Proof. We calculate the transition function between such two distinct local
trivialities. Set

w

1 1
. r4
O gu@=0 1 )=A[f?z)]:B[ ngu)]:%( gy ) 7955
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() (anu=@04,( 5 YMiu=@ a5 YMrv=(ene,

where u, veC" and

I=(3): K=(75)-

Put

a c¢* e*
B-tA=|b S D*)EU(N+1),
d C T

where a€C; b, ceC™; d, e=C"; C, DeM(n, m; C); S&M(m, m;C) and T
M(n, n; C). Then from (i) we obtam

(3 )=~ )-Gem a0 (0)~(5)2)
—(( )-l-(S D*)(f))(a+c*z+e*f) '=¢p° ¢4( )

Jga=((5 pa)—(5)0% a9) (ateretersy

-1

(g=Ku, Ky=—(T*~(f~Jz, J)( %))

x(te D= =J2 1] ga)):

where J(¢p°¢3') is the Jacobian matrix of the coordinate transformation ¢z-¢z*
in Py(C), f=f(z) and g=g(z). Moreover we have

@p)=0)Qr, A,=QA,Q*",

e=rraipe, (K=o )er

(s A(E), (S )2 40)

r=a-+c*z+e*f.

where

Consequently it follows from (ii) that u=Pvr. Hence such a transition function
g8e.4r: UarNUp;—GL(n; C) is given by

28) 850,47 G 1 =(T* (2, o)) (@+c*ztexfyn

Thus gg, 4y is holomorphic on U, ,N\Usg,. This fact completes the proof.
qg.e.d.
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Let 7x,C)|x be a restriction of the Hopf bundle 7y (C) to M and
(rx,o(C)|x)* a dual bundle of 7x,o(C)|x. n.o(C)|x)* is called a hyperplane
bundle of M. It follows from (1.3) that the transition function hgg, 4y : UsrN\Usp,
—GL(1; C) of 7x4,C)|x is given by

heg, ar(Pas(@))=a-+c*z+e*f.
Hence the transition function ‘hg} 45 Of (Fu.o(C)|x)* is given by
'hpy, ar(Par(@)=(a+c*z+e*f)

Let I'y'(r%.=(C)) be a pull-back of 7} »(C) by the Gauss mapping Iy : M—
Gy.n(C). By (1.4) and (1.11) it is easily seen that its transition function
gsg, 45 UayNUpg—GL(n; C) is given by

d*\\-!
435,47 G 1@ =(T*~(f=J2, 1) )) -
Therefore by (2.8) we have the following corollary.

Corollary 2.2. v(M) is holomorphically isomorphic to a tensor product

L', m(O)QF v, o(C) | 1)*.

3. Hermitian differential geometry of the submanifold M.

We use the same notations as in Section 2. Let 8, (resp. §%;) be the
connection matrix associated with the canonical connection of (M) (resp. v(M))
and the holomorphic local frame field (04;) (resp. (e4ys)). Let O, (resp. 6*,)
be the curvature matrix associated with 8, (resp. +;). We prove the follow-
ing proposition.

Proposition 3.1.

0!:_ldz(z*+w*f)“l(z*er*J)dzEm-l-G“(Em, J*)(RA)'I( , )df,

2 2 E,
0 ,=(dzdz*)G—dz*GdzE ,+G 'dJ*Hd],
0%, =— > (¥t w*]VdzE +d J(E 0)(2/1)("‘1*)1{
I 2 n ms En »

Ot ,=—dz*GdzE,+dJG'dJ*H.

Proof. It can be shown that

A=(ER) B o A WL B, Bt i

S =—2-%2, 8/1=(Ej"‘)dz(z*, w¥, AAN=—@A) 34,
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aL=—%dz(z*+w*J>+(Em, Joa-( 15:),,)‘11, a(L-=—L-*@L)L"",

_j*
OM=—d J(En, O)A( s ) (M -1)=—M-@M)M-?,

=2, 9@ H=@@ ¥ dA4=04)* A=A,
OL=@L)* &(L-H=@LM* IM=0M)* M =@M )*

By these formulas, the proposition follows from 6,=G-'9G, €,=d0,, 6*‘;=
H-9H and ©*,=4560",. q.e.d.

Denote by @,, (resp. ©.p5) the (a, b)-component (resp. (@, B)-component) of
O, (resp. ©*,) and set

Ouv: =3 R§.adz°NdZ%, O.p5: =3 K§.adz°AdZ4,
Ribc&: =3 gﬁ.iRliJc&; Kﬁﬁcd =3 ha,uKﬁcd
where G=(gs;) and H=(hzg). Then we have the following corollary.

Corollary 3.2.
Rabcangbgca‘l‘gacgb&_E hapa?ﬁw“aﬁawﬂ,

Kpgea=03gca+2 g7 hps0%w*0%; w®

K&ﬁc&:h&ﬁgc&_i'z gﬁhayhﬁiagcwya;a w;,
where

Pt =g Ou=TE, G=(g)
Next we calculate the second fundamental form and scalar normal curvature
of the embedding of M in Py(C). Denote by ¥ (resp. V') the (1, 0)-part of the
covariant differential operator ¥ (resp. V) on Px(C) (resp. M) with respect to the
Fubini-Study (resp. induced Kaehler) metric. Let &, 7 be two C~-vector fields on
Py(C) of type (1, 0). Then on the coordinate neighborhood U4, we may put

E=@)x, =00y,

where x, y are two smooth C¥-valued functions on U, and we have

(%) Un=@((d3)x = e (1T 3052)),

l—i-IICII2

where (dy) is the Jacobian matrix of y. Let X, ¥ be two C>=vector fields on
M of type (1, 0). Then on the coordinate neighborhood U ,,;, we can set

x=@(“7Yu, v=6a("r).
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where both of u and v are smooth C"‘-valued functions on U4, by Proposition
3.1, we have

V}Y:({}A)(Ejm)((dv)u—%(u(z*+w* Yo u(z* 4 w* )

+GEm, PO g Ntwa, ),

where u=>u?, .-, u™), v="Q?, -+, V™),
o

(dv)yu=> aazva u®, (d*w)(u, v)=2—-a%lauz—bu“v”.

We denote by ¥ the restriction of ¥ to z(Py(C))|y. By (x), we have
5y =G(( 5. )@, 0+(57)(oru—F et ws oot ws w)))-

If we denote by ¢’ the holomorphic part of the second fundamental form ¢ of
M in Py(C), then it is easily shown that

~ - ._.]*
a’(X, Y)=V}Y—V&Y=(a,4)(2/1)( B )H(d”w)(u, ).

Consequently we have the following proposition.

Proposition 3.3.

o -—(eAf) > “8 —dz°®Rdz*=3 02,w*dz*Rdz*Qe. ,
where
aZ
Oantt® = Gegz -
Put

c:=(cy, *+, Cn)=(04s)G™3,
d:=(dnss, > dman)=(ea)H ',
g: =4, -, §M=G"dz,

pi =g, e, g =HYe ),

where (e4,)*=*t(e™*?, -, e™*") is a dual frame field of (e4s) on U4y. Then ¢
(resp. d) is a tangent (resp. normal) unitary frame field on U,, and & (resp. 7)
is a dual frame field of ¢ (resp. d) on U,;. Put

G-i=(g), G =(r), H'*=(pp), H-V*=(ch).
Then it follows that
Fi=rl, ps=pl, gU=37rr}, has=3 pip%.
By ¢'=X k3£°QRERd =3 52,w*dz°Rdz*Qe,, we have
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=2 74riegdiw’.
Hence by (1.8) and (1.9), we have the following proposition.
Proposition 3.4. ,
lol*=4tr(G-'Q), Ky=16tr(G-Q)",
where Q=(gas), qar="3 g”hapdly wBw?.

Remark. The Kaehler form @ of the Grassmann manifold Gy, »(C) is given

by —
P=+/—1tr(dZLFdZ*Mz"),

where Ly;=E .+2Z*Z, Mz=E,+ZZ* The pull-back of @ by the Gauss map-
ping I'y: M—Gy, »(C) is equal to

—+/—1dz*Qdz=~/—1tr(dJLdJ*M"").

Moreover the curvature matrix £* of the universal quotient bundle 7%, x(C)
associated with its canonical connection and frame field (g4) on U, is given by

3.1 Q4+ =dZ LFdZ*Mz;'=d(MzoMz?),
where

o iz

Now we compute the length of the normal curvature tensor K. By Corollary

3.2, we have
K=3 (e.Qe?)K §as(dz* NdZ"),

K3.5=0%8as+ > g h 0% w0%;wP.
Hence it follows from (1.7) that
L3as=37i7i(gii08+3 peotgth, 02w d%;w’),
where 7{=7} By (1.10), we have the following proposition.

Proposition 3.5.
| Kl2=mn—+2tr(G'Q)+tr(G Q)%

4. Applications to the Segre embedding.
Let e be a mapping of Pn(C)XPn(C) into Ppinsmn(C) dgﬁned. by
| e([€], [y : =[£®7].

Let P,(C)XP,(C) be equipped with a product metric of the Fubini-Study metrics.
Then e is an isometric embedding which is called the Segre embedding. For an
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arbitrarily fixed point [§,®7n.]€e(Pn(C)XPy(C)), there exists a unitary matrix
AeU({(m+1)(n+1)) such that the mapping ¢4s: C™*"—>Ppinima(C) defined by

1
b= % | ((2)-e)
uQu

gives a holomorphic local parametrization of e(Pn(C)XP,(C)) around

e@nl=4[; ],
where u=C™ and veC™ The Jacobian matrix J(f) of f is given by
J )y =(EnQv, uQE.)=M(mn, m+n; C),

where ueC™ and veC". Put

o=14u*u, S=E,+uu*,

r=14+v*v, T=E,+uvv* |
Then the following theorem on the Segre embedding ¢ is easily proved.

Theorem 4.1.

(eS)* 0
G=(aS)“@(rT)'1=< )
0 (=)
H=(0S5)"'QT)
Put
(6S)"'=(san), (zT)"'=(tap).
Then we have
usi®
o

Sab=%(5ar" ), l‘ap=%(5a,s— v?ﬁ )

Denote by w®* the (a-+m(a—m—1))-th component of weC™". For the mapping
f: C™*"—~C™" defined by

f(z)=f(:j)=u®v=w ,

we have
@D 05w =0=0%gw ",
4.2 08 a10? =385 = 0w,

Then the following corollary on the normal curvature tensor of the Segre
embedding ¢ is easily shown by the above theorem and Corollary 3.2.

Corollary 4.2.
Kaz 0p,c,a=(SasSca+SacSoaltas
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Kﬁ.bp,y,i’:O:KEZ,bp,j,ﬁ,
Koz 08, p5=Sas(taptus+tautps) -
By the above theorem, (4.1) and (4.2), we have

(@St 0
A3 )
0 meT)

Therefore the following corollary follows from Proposition 3.4 and Proposition 3.5.

Corollary 4.3.
lol|2=8mn, Ky=16mn(m-+n),

[ K|*=2mn(m+n+2).
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