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1. Introduction. Let

(L.1) f@)=z+a,2*+ -

denote a function analytic in the unit disk E={z: |z| <1} satisfying the condition
i1 z2f”(2)

(1.2) Re{e**(1+ e )}>0

for some real A(|2| <=z/2) and for all z in E. The class C? of the functions f
of the form and satisfying the condition has been studied by Robertson
Libera and Ziegler [4], Bajpai and Mehrok [1], and Kulshrestha [3]. If f
is in C? we say that f is a A-Robertson function. In Chichra has defined
the class C*(a) of functions f of the form [(1.I) and satisfying the condition

zf"(2)
f(2)
for some a, A(0=a<l, —n/2<A<z/2) and for all z in E. We say, a function
f of the form is a A-Robertson function of order « if and only if f is a
member of C#(a). The class C*(a) has also been studied by Sizuk who called
zf’(z) A-spiral-shaped of order a.

In [6], Mogra and the author have introduced the class, S*(a, B), of A-spiral-
like functions of order @ and type 5. Accordingly, a function f of the form
belongs to S*(a, B) if and only if for all z in E, the inequality

(1.4) zf'(2)/ f(z2)—1
) 2B(zf'(z)/ f(2)—14+(1—a)e~t* cos A)—(zf'(z)/ f(2)—1)

holds for some a, B, A(0=a<l, 0<B=<1, —7/2<2A<=x/2), and for all z in E.
Motivated from our class S*ew, B), we, in the present paper, introduce the con-
cept of ‘type’ for the class, C*(a), of A-Robertson functions of order a as follows:

(1.3) Re{ w1+ 272 }>acosz

A function f(z)=z+ f} a,z", analytic in E, is said to be a A-Robertson func-
n=2

tion of order « and type B if and only if for all z in the unit disk E, the in-
equality
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z2f"(2)/ f'(2)

ZB(ZI”(Z)/f (2)+(1—a)e'“0052)—2f "(2)/f'(2)
holds for some a, f§, 2 as above We shall denote the class of all such functions
by C¥a, B). '

It follows immediately from the definitions of S*(a, 8) and C*(a, B) that a
function f is in the class C*(e, B) if and only if zf'(z) is in the class S*(a, B).

We observe that by taking the suitable values of the parameters a, 8, 2 our
class C*(a, B) gives rise to a number of classes previously studied; for instance,
C*0, 1)=C* and C*a, 1)=C*(a). Further, the classes C*(0, QM—1)/2M)=C;,
C%a, 1)=C(a) have been introduced and investigated, respectively, by Kulshrestha
and Robertson [7]. The class C(a) is known as the class of functions which
are convex of order a.

It is to be noted that for general values of a, 8, 20=a<1, 0<B=1, —n/2<
A<x/2), a function in C*(@, B) may not be univalent in E. For example, the
function

(1.5)

fR)=i(l—2)'—i=z+ -

belongs to C*/#(0, 1), but it has a zero at each of the points 1—e~%"**(n=0, 1, 2, ---).

In the present paper, using the results proved in we establish a repre-
sentation formula, distortion properties, and coefficient estimates for a A-Robertson
function of order « and type B. Finally, the radius of convexity for C*a, B)
have been obtained. For the appropriate choices of the parameters, our theorems
in this paper not only give rise to a number of results previously known, but
can also yield many new interesting results for a number of classes earlier
studied.

2. The Representation Formula. Let A denote the class of functions which
are analytic in the unit disk £ and which satisfy |@(z)| =1 for all z in E. Since
f is in C*(a, B) if and only if zf’(z) is in S*(a, B), the following theorem follows
immediately from [5, Theorem 1].

Theorem 1. Let f(z)=z-+a,z*+ -+ be analytic in E. Then f is in the class
CYa, B) if and only if

. t
2.1) f@=exp{~2p1—ae i cos 2| o zg( )1)t¢(t) dt}

for some @ in A.
For a=0, B=1 we deduue the following result:

Corollary 1. Lot f(z)=z4a,2*+ -+ be analytic in the unit disk E. Then f
is a A-Robertson function if and only if
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2.2) f/(2)=exp{—2¢-** cos ZS:¢(t)/(1—|—t¢(t))dt}
for some ¢ in A.
For a=0=41, =1, the above theorem yields the following resuit.

Corollary 2. Lot f(2)=z+a,2*+ .- be analytic in E. Then [ is a convex
Sfunction if and only if

2.3) fr@y=exp{—2{ p(6)/(1+tg(e)dt}

for some ¢ in A.

3. The Sufficient Condition.

Theorem 2. Let f(z)=z-+a,z®+ --- be analytic in E. Then f is in the class
CXa, B), if for some a(0Sa<1) and A(—r/2<i<n/2),

3.1) é}zn 2(1—B)yn—1+|1—28+28(1—a)e * cos 2|} | an|
=2B(1—a)cos 2, whenever 0<B=1/2,
(3.2) E}zn {n—14[@2p—1)(n—1)+28(1—a)e~** cos 1]} | aa|

=2B(1—a)cos A, whenever 1/2=p=1
holds.

Proof. The proof follows from [5, Theorem 2] on using the fact that
feC¥a, B) @zf'(2)eS*a, B), z€E.

Corollary 3. A function f(z)=z+a,z*+ -+, analytic in E, is a A-Robertson
function if

én {n—1+4+/TF2n cos @H)+7n% |a.| <2cos 1

holds for some A(—r/2<A<m/2).

Remark. By fixing the parameters a, 8 and 2 in we can obtain
sufficient conditions for a function to be in the classes C*a), C1 x, Cla), and
many others.

4. Distortion Theorem. in together with the fact that ‘f is in
C(e, B) if and only if zf'(z) is in S*(a, B)’ yields the following distortion pro-
perties for the class C*(a, B).
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Theorem 3. Let f(2)=z+a,2*+ -+ be analytic in the unit disk E. If f isin
C¥a, B), then for |z|=r<1 and for all ac[0,1), B(0, 1/2)J(1/2, 1], 2
(—=/2, =/2),

e =
42 el )
whereas for a<[0, 1), f=1/2, 2&e(—=r/2, =/2),

4.3) | f'(z)| <exp((l—a)cosa:7),

and

4.4 | f'(2)| Zexp(—(1—a)cos A-7).

The functz'bn given by

1/ {1—(2‘3—1)8':02} 28(1-a) cos 2-e=4/(28-1) R ‘thl/z
4.5) f6(2)=[
exp{(l—a)cos 2-¢t9-0z}, p=1/2

provides equality in (4.1) and (4.3) when 6 is given by
1—-@28—1r
1+@2B—1)r

Further, the above function gives equality in (4.2) and when 0 is given by
the equation

(4.6) tan §/2= cot(n/2—2/2).

1—-@2p—L)r
1+@2p—1)r

Corollary 4. If f(z)=z-+a.z*+ -+, analytic in E, is a A-Robertson function
of order a, then for |z|=r<l,

“.7 tan 8/2= cot(—A4/2).

(1—7r)2-co8 D) y (1-a) cos 2
e

The estimates are sharp.

) (14-7)@-cos )y 1-a)cos i
=|f (z)lé{_—(—i:_)m}

Corollary 5. If f(z)=z+a,2*+ -+, analytic in E, is a convex function of
order a, then for |z|=r,
1 , 1
Wélf (@Iéw.
The estimates are sharp.

Remark. For suitable values of «, 8, 2 the above theorem can yield the
distortion properties for the classes C%, C; x, and many others.
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5. Coefficient Estimates.

Theorem 4. Let f(z)=z+a,2*+ -+ be in CX(a, f).
(a) If fl—a) C—a) cos?*A>(1—B) (1+(1—a)cos®), let

T 28(1—a)(2—a) cos?®A
N—[ 1—B)1+(1—a) cos’;t)] ’

where N is the greatest integer of the expression within the square bracket. Then

5.1) |l S ——TT 128—1)(k—2)+2B(1—a)e~* cos 2],

nl k=2

for n=2,3, .-, N+2; and

1
n(n—1)(N+1)!

(b) If B(l—a)2—a)cos’A=(1—B)(1+(1—a) cos?R), then

2p(1—a)cos A
n(n—1) ’

The estimates in are sharp for the function given by

L 7@ _ 1=(2B—D—28(1—a)e*} cos Dz
IZ%) 1—(26—1D)z '

(6.2) la.l=

Ili-:_i: |28—1)(k—2)+28(1—a)e t*cos A|, n>N+2.

(5.3) lan| = n=2.

(5.4) 1+

where
B(l—a)(2—a) cos?*2>(1—B)(1+(1—a) cos?i) ,

while the estimates in are sharp for the functions given by
(5.5) f;,(Z)—_— {1—(2‘3—1)2"'1} -2,8(1—a)e-“cosl/(2,B-1)(n-1)
for B#1/2; whereas for f=1/2

— -1
(5.6) friay=exp {(1T0T 0B8N ) ().

Proof. Since
z2f'(e)=z+2a,2%+ -

is a Z-spiral-like function of order a and type B, this theorem is an immediate
consequence of [5, Theorem 4].

Corollary 6. If f(z)=z+a,2*+ --- is a A-Robertson function of order a, then
|an|g—;lrli;I:[Z(l—a)cos}Z-e"‘—i-kl, (n=2)

and these bounds are sharp.

Corollary 7. Let f(z2)=z+a,2®+ -+ be in C; .
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(a) If M>(4+tan?d)/4, let

_r2eM—1)
N—[ 2-4-tan2d ] ’
Then
anl S——TT |Uc+E=D)|,  n=2,3, -, N+2;
n! k=o ,

1 N+3

where c=(1+10)cosA-e"**/l—1, I=1—1/M.
(b) If 1/72<M<(4+tanR)/4, then

(140)cos 4
n(n—1) '’

The bounds are sharp.

6. Radius of convexity. In Mogra and the author have determined
the radius of starlikeness for the class S*(a, 8). Making use of the relationship
between C*(a, B) and S*(a, ), we may write the following as a consequence of
[5, Theorem 5].

Theorem 5. Let f(z)=z+a,z*+ -+ be analytic in E, and f is a member of
C¥a, B). Then f is convex in
1
B(l—a) cos 2++/ B2 (1—a)? cos?A+(25—1)*—28(1—a)(28—1) cos®A
The estimate for |z| is sharp for the function given by (4.5), where 6 is given
by 4.7).

Corollary 8. The radius of convexity of C* is {|sin A|+cos A} ~*. The result
is sharp.

6.1) |zI<

The above result has also been determined, by using different method, by
Libera and Ziegler [4]. Fixing f=1, the last theorem [gives the following result
due to Chichra [2].

Corollary 9. Let f be in C*a). Then f is convex in

1

lz| < (1—a) cos 24++/sin22+a®cos®d -~

The estimate is sharp.

On taking the appropriate values of the parameters «, 3, 4 the above theorem
can give the corresponding radius of convexity for the functions in the classes
C%, C;,. x, and others.
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