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1. Introduction

Let {X,},>, be a sequence of i.i.d. random variables with common distribution F
and let S,=X;+---+X,, So=0. Throughout this paper we suppose that the
following weak law of large numbers holds for some a, 0 <a <2,

§))] lim P(|S,|>n"g)=0  for every &>0.

As was shown in [3] and [5], (1) holds if and only if the following two conditions are
satisfied:

2 P X |>n'"™)=o0(n""),
where X=X, and

3) j xF(dx)=o(n'*"1),
|x|>nl/a

Note that if 0<a<1 then (2) implies (3), if 1<a<2 then (2) and E(X)=0 are
sufficient for (3).
It is well-known ([1], [5],[6)) that

@) Y P(S,|>n'"g)< w0 for every &>0,

n=1

| if and only if E| X |**< oo and (3) hold. If (4) holds then
%) lim ) Px=S,<x+h)=0
X0 0<n<(x/e)*

for every ¢ >0 and 2>0. However as will be shown later (1) does not imply (5). In this
note we give a sufficient condition for (5), and show that it is close to the best possible
one. Note that (5) can be written as follows:
6) lim EN((x/¢e)*, [x, x+h])=0,
where N(x, I) is the number of S,, 0<k < x, falling within an interval I.

This paper stemmed from an attempt to improve Bickel and Yahav’s renewal
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theorem in the plane [2] Let |-|| be a norm in R? such that its unit ball B= {x;
x| <1} is a convex polygon. Let {X,} be a sequence of i.i.d. two-dimensional
random vectors having finite non-zero expectation, and let S,=X, + - - - +X,. Sup-
pose that the distribution of X is not supported by a proper closed subgroup of RZ.
Bickel and Yahav showed that if either E| X, | < o0 or E(X,) is not parallel to sides of
B then the following Blackwell type renewal theorem:

lim ) P(x<IIS,| =x+h)=h/|EX,)I
x=p=1

holds for A>0. Our theorem enables us to show that when E(X,) is parallel to a side
of B the condition E|X, |?> < o cannot be weakened to E|X, |"< o0, r<3/2.

2. Results

The main result we are going to prove is the following:
Theorem. (i) If (3) and
@) P(| X|>n)=o0(n"3?)

are satisfied then (5) holds for every ¢>0 and h>0.
(ii) In the preceding statement condition (7) cannot be replaced by

(®) P(| X |>n)=o(n">**y(n)) .
where (x) is an arbitrary nonnegative function on [0, c0) which increases to + .

Note that a random walk which satisfies (1) and fails to satisfy (5) must be
recurrent. In fact suppose {S,} is transient. If E|X|=oco then

lim ) P(x<S,<x+h)=0
X~ p=1
(see [4], p. 368) and therefore {S,} satisfies (5). If E|X|<oo then we must have
E(X)#0 since {S,} is transient. In this case (1) does not hold 1 Sa <2, and both (1)
and (5) hold if 0<a < 1.
As is well-known E| X |3**2 < oo implies (7). Furthermore if

P(|X|>n)~n"32logn,
then E| X |3*2 = oo, while E| X |" < oo for r < 3a/2. Therefore we obtain the following:

Corollary. (i) If O<a<]1 then E|X|3*? <00 implies (5). If 1Sa<2 then
E| X|3*? <0 and E(X)=0 imply (5).

(ii) In the above statements the condition E| X | 3412 < oo cannot be replaced by the
following: E| X |"< oo for every r <3u/2.

Proof of Theorem.
(1) It is obvious that if (5) holds for h=1 then it holds every finite 2>0. Our
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method of proof does not depend on the choice of ¢ >0. Therefore we may assume
h=1 and e=1. Furthermore it suffices to prove (5) for nondegenerate X, since the
statement (i) is obvious for degenerate random variables. For nondegenerate case we

have (see [7], p. 49)

©) supP(x<S,£x+1)SCn" 12,
where C is a constant depending only on the distribution of X. Therefore we obtain
(10 sup EN(x* [y, y+1])SC } n™'2=0(x"?)

y " nSx®

as x—00. The following inequality is also well-known ([7], p. 50)
(11) P( max Sk—m(Sk—Sn)gx)§2P(S";x),
1SksSn

where m(X) is a median of a random variable X. From (1) we have m(S,)=o(n'"),
and therefore for large n

12) P( max Skgn’/“>§2P(S,,>2'1n1’“) .
1sksn
It follows from a theorem of Heyde-Rohatgi [5] that (3) and (7) implies
(13) P(S,|>2"'nt"=0(n"17?).
From and we obtain
(14) P( max Sk;n)=o(n'“’2) .
15ksne

Let T denote the first time the random walk {S,} hits a set K:

and Tx= oo if S, ¢ K for every k. In what follows we write for simplicity 7=[0, 1]
and J=[—1,1]. Then we have
x%]
EN(x*, I+x)= ) E[N(x*, I+Xx), T;.,=k]
k=0

[x%]

=Y P(Ty4,=K) E[NGA I+x)| Tyy,=k]
k=0

[x%]
< Y P(T;..=k)-EN(x*—k, J)
k=0

<EN(x* J): P(S, €I+ x for some k < x%)

<EN(x* J)-P( max Skgx> .

1Sksn®
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It follows from and that this tends to zero as x— 0.

(ii) We shall construct a sequence {X,} of i.i.d. symmetric random variables
which satisfies (8) and fails to satisfy (6). Let 0 <y/(x) 1 0. Choose ¢(x) satisfying
0<@(x)1 00, x™*2¢(x) | 0, and ¢(x)/(x)—0 as x— co. Let {X, 9}, ;50 be a double
sequence of mutually independent random variables such that X,9, X,¢, --- have a
common distribution for every j=0. Let X, be uniformly distributed over [—1, 1],
and for j=1 let '

P(Xn(j)=aj)=P(Xn(j)= _'aj) =pj s
}«X;Uh=0)=l'_2pja
where a;>0 and p;>0 are determined later.

For every k=1,

n k-1

56 v=Y ¥ X,0

m=1j=0

is a sum of » i.i.d. random variables, each having an absolutely continuous distri-
bution with zero mean and finite variance. Hence by Shepp’s local limit theorem (see
[71 p. 214) we can find for every k=1 two constants ¢, >0 and n,>0 such that

(15) PO<S,* V<s)22¢n 12 for nzn,.

By we can choose an increasing sequence {a,}, a,>0, such that

> ]

(16) .Zl a;"*Pla)< o0,
j=
a17) 23a/2aj_+3:/2¢(aj+1)éaj—aa/2¢(aj) s
and
i
(18) Y POsS,* Vshza*/Pla) for k21,
n=l

where /,=[a,*/2] and m; =[a;"]. Let
pj=min(a;">*2¢(a), 1/2).
Then we have by

M8

J

P(X,9|#0)=2 Y p;<.
1 j=1

Hence by Borel-Cantelli lemma i X, converges a.s. to a random variable X, for
j=1

each n=1. Thus we obtain a sequence {X,} of i.i.d. random variables satisfying (3).

From we have 2a;_, <a; and therefore a, + - - - +a;_, <a; for j=2. Hence it

follows from that for 2¢;_; Sx<2q;
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(19) P(X,|>x)<P(X,®#0 for some k=j)

ns2 ¥ a0l

II/\
IMS

2

2(1 2" 3a/2) 1231/2x—3a/2¢(x) .

The last inequality follows from the fact that ¢(x) is increasing and x"32p(x) is
decreasing. shows that X, satisfies (8).

It remains to prove that S,=X; + - - - + X, does not satisfy (6). Again we suppose
that h=1 and ¢=1. Let

N,=N(a*, [ar, a,+1])
=no. of n<m, such that 0<S,—a, <1,
N,’=no. of n<m, such that 0<S5,¥—q, <1,
N,”’=no. of n such that ,<n<m, and 0<S,* V<1,
A, ={X,9=0 for every 1Sm=<m,, j2k+1},
B, ={there exists only one m</, satisfying X,®=a,, and X;¥=0 for every
l#£m, 1=1sm,}.

1A

llMs

(2 - 3a/2)z - 3¢/2¢(a1)

IIA

Then we obtain
(20) EngENk' 1A1¢=EN’(,. lAk=ENk,.P(Ak)-%ENk,. ldkBk.P(Ak)
gENk”' lAkBk'P(Ak)gENk”'P(Ak)ZP(Bk) .
It follows from that
[+ o} ¢ o} [+ o}
Z Pjéatf z aj—aalzd’(aj)é ; . aj_a/2¢(aj)"0
j=k+

j=k+1 j=k+1

as k— o0, and therefore

1) P(A)= ﬁ (1-2p)™—>1 as k—ooo.

j=k+1
It is easy to see that
(22) P(B) ~27'my p(1—2p )™
~271gla, 7> P P(a)[l —2a,” 32 (a)]™
~27'a, P P(ay) .
At last we have from that
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(23) | EN,/= Y POSS,%"Vg1)
n= lk

=Y 27'P(S,* V=)

n=Ix

227 e /P(ay)
for k=1. From (21), and we have
limsupEN,=1/4.

k— o
Therefore

limsup EN(x* [x,x+1])=1/4.

X a0

This completes the proof.

Remark. We can modify the above construction to show the existence of {X,}

satisfying (8) and
limsup EN(x* [x, x+h])=0 .

X~ 00
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