A SUPPLEMENT TO CONVERGENCE RATES IN THE LAW OF LARGE NUMBERS

By

Toshio Mori

(Received June 20, 1982)

1. Introduction

Let $\{X_n\}_{n\geq 1}$ be a sequence of i.i.d. random variables with common distribution F and let $S_n = X_1 + \cdots + X_n$, $S_0 = 0$. Throughout this paper we suppose that the following weak law of large numbers holds for some α , $0 < \alpha < 2$,

(1)
$$\lim_{n} P(|S_n| > n^{1/\alpha} \varepsilon) = 0 \quad \text{for every } \varepsilon > 0.$$

As was shown in [3] and [5], (1) holds if and only if the following two conditions are satisfied:

(2)
$$P(|X| > n^{1/\alpha}) = o(n^{-1}),$$

where $X = X_1$, and

(3)
$$\int_{|x|>n^{1/\alpha}} xF(dx) = o(n^{1/\alpha-1}).$$

Note that if $0 < \alpha < 1$ then (2) implies (3), if $1 \le \alpha < 2$ then (2) and E(X) = 0 are sufficient for (3).

It is well-known ([1], [5], [6]) that

(4)
$$\sum_{n=1}^{\infty} P(|S_n| > n^{1/\alpha} \varepsilon) < \infty \quad \text{for every } \varepsilon > 0,$$

if and only if $E|X|^{2\alpha} < \infty$ and (3) hold. If (4) holds then

(5)
$$\lim_{x \to \infty} \sum_{0 \le n \le (x/\varepsilon)^{\alpha}} P(x \le S_n \le x + h) = 0$$

for every $\varepsilon > 0$ and h > 0. However as will be shown later (1) does not imply (5). In this note we give a sufficient condition for (5), and show that it is close to the best possible one. Note that (5) can be written as follows:

(6)
$$\lim_{x\to\infty} EN((x/\varepsilon)^{\alpha}, [x, x+h]) = 0,$$

where N(x, I) is the number of S_k , $0 \le k \le x$, falling within an interval I.

This paper stemmed from an attempt to improve Bickel and Yahav's renewal

166 T. MORI

theorem in the plane [2]. Let $\|\cdot\|$ be a norm in R^2 such that its unit ball $B = \{x; \|x\| \le 1\}$ is a convex polygon. Let $\{X_n\}$ be a sequence of i.i.d. two-dimensional random vectors having finite non-zero expectation, and let $S_n = X_1 + \cdots + X_n$. Suppose that the distribution of X_1 is not supported by a proper closed subgroup of R^2 . Bickel and Yahav showed that if either $E |X_1|^2 < \infty$ or $E(X_1)$ is not parallel to sides of B then the following Blackwell type renewal theorem:

$$\lim_{x \to \infty} \sum_{n=1}^{\infty} P(x \le ||\mathbf{S}_n|| \le x + h) = h/||E(\mathbf{X}_1)||$$

holds for h>0. Our theorem enables us to show that when $E(X_1)$ is parallel to a side of B the condition $E|X_1|^2 < \infty$ cannot be weakened to $E|X_1|^r < \infty$, r < 3/2.

2. Results

The main result we are going to prove is the following:

Theorem. (i) If (3) and

(7)
$$P(|X| > n) = o(n^{-3\alpha/2})$$

are satisfied then (5) holds for every $\varepsilon > 0$ and h > 0.

(ii) In the preceding statement condition (7) cannot be replaced by

(8)
$$P(|X| > n) = o(n^{-3\alpha/2}\psi(n)).$$

where $\psi(x)$ is an arbitrary nonnegative function on $[0, \infty)$ which increases to $+\infty$.

Note that a random walk which satisfies (1) and fails to satisfy (5) must be recurrent. In fact suppose $\{S_n\}$ is transient. If $E|X| = \infty$ then

$$\lim_{x\to\infty}\sum_{n=1}^{\infty}P(x\leq S_n\leq x+h)=0$$

(see [4], p. 368) and therefore $\{S_n\}$ satisfies (5). If $E|X| < \infty$ then we must have $E(X) \neq 0$ since $\{S_n\}$ is transient. In this case (1) does not hold $1 \leq \alpha < 2$, and both (1) and (5) hold if $0 < \alpha < 1$.

As is well-known $E|X|^{3\alpha/2} < \infty$ implies (7). Furthermore if

$$P(|X|>n)\sim n^{-3\alpha/2}\log n,$$

then $E|X|^{3\alpha/2} = \infty$, while $E|X|^r < \infty$ for $r < 3\alpha/2$. Therefore we obtain the following:

Corollary. (i) If $0 < \alpha < 1$ then $E|X|^{3\alpha/2} < \infty$ implies (5). If $1 \le \alpha < 2$ then $E|X|^{3\alpha/2} < \infty$ and E(X) = 0 imply (5).

(ii) In the above statements the condition $E|X|^{3\alpha/2} < \infty$ cannot be replaced by the following: $E|X|^r < \infty$ for every $r < 3\alpha/2$.

Proof of Theorem.

(i) It is obvious that if (5) holds for h=1 then it holds every finite h>0. Our

method of proof does not depend on the choice of $\varepsilon > 0$. Therefore we may assume h=1 and $\varepsilon=1$. Furthermore it suffices to prove (5) for nondegenerate X, since the statement (i) is obvious for degenerate random variables. For nondegenerate case we have (see [7], p. 49)

(9)
$$\sup_{x} P(x \le S_n \le x + 1) \le Cn^{-1/2},$$

where C is a constant depending only on the distribution of X. Therefore we obtain

(10)
$$\sup_{y} EN(x^{\alpha}, [y, y+1]) \leq C \sum_{n \leq x^{\alpha}}^{\infty} n^{-1/2} = O(x^{\alpha/2})$$

as $x \to \infty$. The following inequality is also well-known ([7], p. 50)

(11)
$$P\left(\max_{1 \leq k \leq n} S_k - m(S_k - S_n) \geq x\right) \leq 2P(S_n \geq x),$$

where m(X) is a median of a random variable X. From (1) we have $m(S_n) = o(n^{1/\alpha})$, and therefore for large n

(12)
$$P\left(\max_{1 \le k \le n} S_k \ge n^{1/\alpha}\right) \le 2P(S_n > 2^{-1}n^{1/\alpha}).$$

It follows from a theorem of Heyde-Rohatgi [5] that (3) and (7) implies

(13)
$$P(|S_n| > 2^{-1}n^{1/\alpha}) = o(n^{-1/2}).$$

From (12) and (13) we obtain

(14)
$$P\left(\max_{1 \le k \le n^{\alpha}} S_k \ge n\right) = o(n^{-\alpha/2}).$$

Let T_K denote the first time the random walk $\{S_n\}$ hits a set K:

$$T_{\kappa} = \inf\{k \geq 0; S_{\kappa} \in K\}$$

and $T_K = \infty$ if $S_k \notin K$ for every k. In what follows we write for simplicity I = [0, 1] and J = [-1, 1]. Then we have

$$EN(x^{\alpha}, I + x) = \sum_{k=0}^{\lfloor x^{\alpha} \rfloor} E[N(x^{\alpha}, I + x), T_{I+x} = k]$$

$$= \sum_{k=0}^{\lfloor x^{\alpha} \rfloor} P(T_{I+x} = k) \cdot E[N(x^{\alpha}, I + x) | T_{I+x} = k]$$

$$\leq \sum_{k=0}^{\lfloor x^{\alpha} \rfloor} P(T_{I+x} = k) \cdot EN(x^{\alpha} - k, J)$$

$$\leq EN(x^{\alpha}, J) \cdot P(S_k \in I + x \text{ for some } k \leq x^{\alpha})$$

$$\leq EN(x^{\alpha}, J) \cdot P\left(\max_{1 \leq k \leq n^{\alpha}} S_k \geq x\right).$$

168 T. MORI

It follows from (10) and (14) that this tends to zero as $x \to \infty$.

(ii) We shall construct a sequence $\{X_n\}$ of i.i.d. symmetric random variables which satisfies (8) and fails to satisfy (6). Let $0 < \psi(x) \uparrow \infty$. Choose $\phi(x)$ satisfying $0 < \phi(x) \uparrow \infty$, $x^{-\alpha/2}\phi(x) \downarrow 0$, and $\phi(x)/\psi(x) \to 0$ as $x \to \infty$. Let $\{X_n^{(j)}\}_{n \ge 1, j \ge 0}$ be a double sequence of mutually independent random variables such that $X_1^{(j)}, X_2^{(j)}, \cdots$ have a common distribution for every $j \ge 0$. Let $X_n^{(0)}$ be uniformly distributed over [-1, 1], and for $j \ge 1$ let

$$P(X_n^{(j)} = a_j) = P(X_n^{(j)} = -a_j) = p_j,$$

 $P(X_n^{(j)} = 0) = 1 - 2p_j,$

where $a_i > 0$ and $p_i > 0$ are determined later.

For every $k \ge 1$,

$$S_n^{(k-1)} = \sum_{m=1}^n \sum_{j=0}^{k-1} X_m^{(j)}$$

is a sum of n i.i.d. random variables, each having an absolutely continuous distribution with zero mean and finite variance. Hence by Shepp's local limit theorem (see [7], p. 214) we can find for every $k \ge 1$ two constants $c_k > 0$ and $n_k > 0$ such that

(15)
$$P(0 \le S_n^{(k-1)} \le 1) \ge 2c_k n^{-1/2} \quad \text{for} \quad n \ge n_k.$$

By (15) we can choose an increasing sequence $\{a_n\}$, $a_n > 0$, such that

(16)
$$\sum_{j=1}^{\infty} a_j^{-\alpha/2} \phi(a_j) < \infty ,$$

(17)
$$2^{3\alpha/2} a_{j+1}^{-3\alpha/2} \phi(a_{j+1}) \leq a_j^{-3\alpha/2} \phi(a_j) ,$$

and

(18)
$$\sum_{n=l_{k}}^{m_{k}} P(0 \le S_{n}^{(k-1)} \le 1) \ge a_{k}^{\alpha/2} / \phi(a_{k}) \quad \text{for } k \ge 1,$$

where $l_k = [a_k^{\alpha}/2]$ and $m_k = [a_k^{\alpha}]$. Let

$$p_j = \min(a_j^{-3\alpha/2}\phi(a_j), 1/2)$$
.

Then we have by (16)

$$\sum_{j=1}^{\infty} P(|X_1^{(j)}| \neq 0) = 2 \sum_{j=1}^{\infty} p_j < \infty.$$

Hence by Borel-Cantelli lemma $\sum_{j=1}^{\infty} X_n^{(j)}$ converges a.s. to a random variable X_n for each $n \ge 1$. Thus we obtain a sequence $\{X_n\}$ of i.i.d. random variables satisfying (3). From (17) we have $2a_{j-1} < a_j$ and therefore $a_1 + \cdots + a_{j-1} < a_j$ for $j \ge 2$. Hence it follows from (17) that for $2a_{j-1} \le x \le 2a_j$

(19)
$$P(|X_1| > x) \le P(X_1^{(k)} \ne 0 \text{ for some } k \ge j)$$

$$\le 2 \sum_{k=j}^{\infty} p_k \le 2 \sum_{k=j}^{\infty} a_k^{-3\alpha/2} \phi(a_k)$$

$$\le 2 \sum_{i=0}^{\infty} (2^{-3\alpha/2})^i a_j^{-3\alpha/2} \phi(a_j)$$

$$\le 2(1 - 2^{-3\alpha/2})^{-1} 2^{3\alpha/2} x^{-3\alpha/2} \phi(x).$$

The last inequality follows from the fact that $\phi(x)$ is increasing and $x^{-3\alpha/2}\phi(x)$ is decreasing. (19) shows that X_1 satisfies (8).

It remains to prove that $S_n = X_1 + \cdots + X_n$ does not satisfy (6). Again we suppose that h=1 and $\varepsilon=1$. Let

$$N_k = N(a_k^{\alpha}, [a_k, a_k+1])$$

 $= \text{no. of } n \leq m_k \text{ such that } 0 \leq S_n - a_k \leq 1,$
 $N_k' = \text{no. of } n \leq m_k \text{ such that } 0 \leq S_n^{(k)} - a_k \leq 1,$
 $N_k'' = \text{no. of } n \text{ such that } l_k \leq n \leq m_k \text{ and } 0 \leq S_n^{(k-1)} \leq 1,$
 $A_k = \{X_m^{(j)} = 0 \text{ for every } 1 \leq m \leq m_k, j \geq k+1\},$
 $B_k = \{\text{there exists only one } m \leq l_k \text{ satisfying } X_m^{(k)} = a_k, \text{ and } X_l^{(k)} = 0 \text{ for every } l \neq m, 1 \leq l \leq m_k\}.$

Then we obtain

(20)
$$EN_{k} \ge EN_{k} \cdot 1_{A_{k}} = EN_{k}' \cdot 1_{A_{k}} = EN_{k}' \cdot P(A_{k}) \ge EN_{k}' \cdot 1_{A_{k}B_{k}} \cdot P(A_{k})$$
$$\ge EN_{k}'' \cdot 1_{A_{k}B_{k}} \cdot P(A_{k}) \ge EN_{k}'' \cdot P(A_{k})^{2} P(B_{k}).$$

It follows from (16) that

$$m_k \sum_{j=k+1}^{\infty} p_j \le a_k^{\alpha} \sum_{j=k+1}^{\infty} a_j^{-3\alpha/2} \phi(a_j) \le \sum_{j=k+1}^{\infty} a_j^{-\alpha/2} \phi(a_j) \to 0$$

as $k \to \infty$, and therefore

(21)
$$P(A_k) = \prod_{j=k+1}^{\infty} (1 - 2p_j)^{m_k} \to 1 \quad \text{as} \quad k \to \infty.$$

It is easy to see that

(22)
$$P(B_{k}) \sim 2^{-1} m_{k} p_{k} (1 - 2p_{k})^{m_{k}}$$

$$\sim 2^{-1} a_{k}^{\alpha} a_{k}^{-3\alpha/2} \phi(a_{k}) [1 - 2a_{k}^{-3\alpha/2} \phi(a_{k})]^{m_{k}}$$

$$\sim 2^{-1} a_{k}^{-\alpha/2} \phi(a_{k}) .$$

At last we have from (18) that

(23)
$$EN_{k}'' = \sum_{n=l_{k}}^{m_{k}} P(0 \le S_{n}^{(k-1)} \le 1)$$

$$= \sum_{n=l_{k}}^{m_{k}} 2^{-1} P(|S_{n}^{(k-1)}| \le 1)$$

$$\ge 2^{-1} a_{k}^{\alpha/2} / \phi(a_{k}),$$

for $k \ge 1$. From (20), (21), (22), and (23) we have

$$\limsup_{k\to\infty} EN_k \ge 1/4.$$

Therefore

$$\limsup_{x\to\infty} EN(x^{\alpha}, [x, x+1]) \ge 1/4.$$

This completes the proof.

Remark. We can modify the above construction to show the existence of $\{X_n\}$ satisfying (8) and

$$\limsup_{x\to\infty} EN(x^{\alpha}, [x, x+h]) = \infty.$$

References

- [1] L. E. Baum and M. Katz: Convergence rates in the law of large numbers. Trans. Amer. Math. Soc. 120 (1965), 108-123.
- [2] P. J. Bickel and J. A. Yahav: Renewal theory in the plane. Ann. Math. Statist. 36 (1965), 946-955.
- [3] C. M. Deo and D. R. Truax: A note on the weak law. Ann. Math. Statist. 39 (1968), 2159-2160.
- [4] W. Feller: An introduction to probability theory and its applications vol. 2. Wiley, New-York, 1966.
- [5] C. C. Heyde and V. K. Rohatgi: A pair of complementary theorems on convergence rates in the law of large numbers. Proc. Camb. Phil. Soc. 63 (1967), 73-82.
- [6] M. Katz: The probability in the tail of a distribution. Ann. Math. Statist. 34 (1963), 312-318.
- [7] V. V. Petrov: Sums of independent random variables. Springer, Berlin, 1975.

Department of Mathematics Yokohama City University 22-2 Seto, Kanazawa-ku Yokohama 236, Japan