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ABSTRACT. We study crossed products of $C^{*}$-dynamical systems $(A, R, \alpha)$ when $\alpha$ is
asymptotically abelian. In particular we show that the crossed product is simple if and only if
the system has neither ground states nor ceiling states, provided that $A$ is $\alpha$-simple and unital
and $\alpha$ is faithful. In the aPpendix we study the case where $\alpha$ is uniformly continuous, and
remark that it gives us proof of some of the well-known results on inner implementability of
derivations.

1. Introduction

Given a $C^{*}$ -dynamical system $(A, R, \alpha)$ one forms another $C^{*}$-algebra, $A\times_{\alpha}R$ ,
called the crossed product of $A$ by $R$ (or by $\alpha$). A characterization of the crossed
product being prime (or simple) has been given in terms of spectral property of $\alpha$ (cf.
[9], [4]). In this note we shall further study the ideal structure of the crossed product
under some assumption (given below).

If $A$ has a ground state or a ceiling state, the crossed product is not simple. In [6]
Kusuda has elaborated on this point to show that the existence of a ground state (or a
ceiling state) is equivalent to the existence of a proper ideal of the crossed product
which is monotonely increasing up to the whole algebra under (the inverse of) the
dual action. In our case we shall show that any primitive ideal of the crossed product
is contained in an ideal of the kind just described. Hence in particular the crossed
product is simple if and only if there are neither ground states nor ceiling states.

The situation we shall deal with is the. following:

Assumption 1.1. Let $A$ be a $C^{*}$-algebra and $\alpha$ a strongly continuous one-
parameter automorphism group of A. They are assumed to satisfy:

(i) $A$ has an identity,
(ii) $A$ is $\alpha$-simple, i.e., $A$ does not have any non-tirvial $\alpha$-invariant ideals (an ideal

is always assumed to be closed and two-sided),
(iii) $\alpha$ is faithful, i.e., $\alpha_{t}$ is the identity automorphism if and only if $t=0$ .

It is further assumed that
(iv) There exists an automorphism $\gamma$ of $A$ with $\gamma\circ\alpha_{t}=\alpha_{t}\circ\gamma,$ $t\in R$ , such that $\gamma$ is

asymptotically abelian, i.e., for any $x,$ $y$ in $A$ ,

$\lim_{|n|\rightarrow\infty}\Vert\gamma^{n}(x)y-y\gamma^{n}(x)\Vert=0$ .
We shall give main results in Sect. 2 and the proofs in Sect. 3 and 4. We shall give
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a more precise description of ideals of the crossed product, in Sect. 5, when $\alpha$ is
assumed to be periodic instead of (iii).

In the appendix we shall deal with the opposite case: $\alpha$ is supposed to be
uniformly continuous. It is known that $A\times_{\alpha}R$ is isomorphic to $A\otimes C_{0}(R)$ under an
isomorphism which preserves $A$ (regarded canonically as multipliers) if and only if $\alpha$

is inner (in the multiplier algebra). By using this our method gives different proof of
some of the well-known derivation theorems. In particular we improve Pedersen’s
result [8] slightly: Any *-derivation $\delta$ of a separable $C^{*}$-algebra $A$ is implemented by a
positive element $h$ of $M^{\infty}(A)$ with $\Vert h\Vert=\Vert\delta\Vert$ in the way $\delta(x)=i(hx-xh),$ $x\in A$ . (The
improvement is just on the norm of $h.$ )

2. Results

We borrow most of the material on the crossed products from Pedersen’s book
[9]. For example, the crossed product $A\times_{\alpha}R$ of a $C^{*}$-algebra $A$ by a strongly
continuous one-parameter automorphism group $\alpha$ of $A$ is the closed linear span of
elements of the form $a\lambda(f),$ $a\in A,$ $f\in L^{1}(R)$ , where $A$ is regarded as multipliers of
$A\times_{\alpha}R$ and $\lambda$ is the canonical group ofunitary multipliers of $A\times_{\alpha}R$ . The dual action $\hat{\alpha}$

on $A\times_{\alpha}R$ is the action of $R$ satisfying

$\hat{\alpha}_{p}(a)=a$ , $\hat{\alpha}_{p}(\lambda(t))=e^{ipt}\lambda(t)$ , $a\in A$ , $t\in R$ ,

where $\hat{\alpha}$ also denotes the unique extension of $\hat{\alpha}$ to an action on $M(A\times_{\alpha}R)$ , the
multiplier algebra of $A\times_{\alpha}R$ .

Let $(\pi, u)$ be a covariant representation of $(A, \alpha)$ , i.e., $\pi$ is a representation of $A$

on some Hilbert space $H,$ $u$ is a strongly continuous one-parameter unitary group on
$H$, and they satisfy

$u(t)\pi(x)u(t)^{*}=\pi\circ\alpha_{t}(x)$ , $x\in A$ , $t\in R$ .

Then there is associated a representation $\pi\times u$ of $A\times_{\alpha}R$ such that

$(\pi\times u)(a\lambda(f))=\pi(a)\int f(t)u(t)dt$ , $a\in A,$ $f\in L^{1}(R)$ .
Theorem 2.1. Under Assumption 1.1, let $(\pi, u)$ be an irreducible covariant

representation of $(A, \alpha)$ , i.e., $\pi(A)^{\prime}\cap u(R)^{\prime}=C1$ . Then either $Sp(u)=R$ or Sp $(u)$ is
semi-bounded. In the case $Sp(u)=R,$ $\pi\times u$ is a faithful representation of $A\times_{\alpha}R$ .

To an invariant state $\phi$ of $(A, \alpha)$ there is associated a covariant representation
$(\pi_{\phi}, u_{\phi}):\pi_{\phi}$ is the GNS representation of $A$ associated with $\phi$ , on the Hilbert space
$H_{\phi}$ , with the canonical cyclic vector $\Omega_{\phi}$ , and $u_{\phi}$ is defined by

$u_{\phi}(t)\pi_{\phi}(x)\Omega_{\phi}=\pi_{\phi}\circ\alpha_{t}(x)\Omega_{\phi}$ , $x\in A$ , $t\in R$ .

We remark that the above theorem is well-known for $(\pi_{\phi}, u_{\phi})$ with an extreme
invariant state $\phi$ if $\alpha$ itself is asymptotically abelian (cf. [3]).

We call $\phi$ aground state if Sp $(u_{\phi})\subset R_{+}$ , anda ceiling state if Sp $(u_{\phi})\subset R_{-}$ .
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Corollary 2.2. Under Assumption 1.1 $A\times_{\alpha}R$ is simple if and only if $(A, \alpha)$ has
neither ground states nor ceiling states.

To prove the corollary it suffices to show that if there is a covariant repre-
sentation $(\pi, u)$ with Sp $(u)$ semi-bounded, then there is a ground state or a ceiling
state for $(A, \alpha)$ . But this is well-known (cf. [6]).

We note that $A\times_{\alpha}R$ is prime under Assumption 1.1. This follows from the
general theory [9, 8.11] by showing that the Connes spectrum of $\alpha$ is R.

3. Invariant states

We denote by $H^{\alpha}(A)$ the set ofnon-zero $\alpha$-invariant hereditary $C^{*}$-subalgebras of
$A$ . We recall the reader the following (cf. [4]):

Theorem 3.1. Let $(\pi, u)$ be a covariant representation of $(A, \alpha)$ . Then $\pi\times u$ is a
faithful representation of $A\times_{\alpha}R$ if and only if $\pi$ is faithful and

Sp $(u|[\pi(B)H])=R$

for all $B\in H^{\alpha}(A)$ .

Now assuming $\pi$ is faithful we give a preliminary consideration on an irreducible
covariant representation $(\pi, u)$ of $(A, \alpha)$ . If $\pi$ is not irreducible one has the non-trivial
action $\beta_{t}=Adu_{t}$ of $R$ on $\pi(A)^{\prime}$ . Let $B\in H^{a}(A)$ . Since for any $x^{\prime}\in\pi(A)^{\prime},$ $x^{\prime}[\pi(B)H]$ is
contained in $[\pi(B)H]$ and $x^{\prime}[\pi(B)H]=(0)$ implies $x^{\prime}=0$ , we obtain

$Sp(u|[\pi(B)H])+Sp(\beta)\subset Sp(u|[\pi(B)H])$ .

Since $\beta$ is ergodic, Sp $(\beta)$ forms a closed group. There are two possibilities.
(1) $\beta$ is faithful. In this case $\pi\times u$ is faithful since Sp $(\beta)=R$ and so

Sp $(u|[\pi(B)H])=R$ for any $B\in H^{\alpha}(A)$ .
(2) $\beta$ is periodic. If $\lambda$ is defined by the equality Sp $(\beta)=\lambda Z$ , then Sp $(u|[\pi(B)H])$

is invariant under the addition of $\lambda$ , i.e., the kemel of $\pi\times u$ is invariant under $\hat{\alpha}_{\lambda}$ .

Lemma 3.2. Under Assumption 1.1 let $\omega$ be an extreme $\alpha-$ and $\gamma$-invariant state

of A. Then

Sp $(u_{\omega}|[\pi_{\omega}(B)H_{\omega}])+Sp(u_{\omega})\subset Sp(u_{\omega}|[\pi_{\omega}(B)H_{\omega}])$

for all $B\in H^{\alpha}(A)$ , where $u_{\omega}$ is the unitary group corresponding to $\alpha$ . In particular Sp $(u_{\omega})$

forms a closed subsemigroup of $R$ which generates $R$ as a closed group.

Proof. Fix $B\in H^{\alpha}(A)$ . Notice that $\pi_{\omega}$ is faithful. Let $p\in Sp(u.|[\pi.(B)H.])$ ,
$q\in Sp(u_{\omega})$ , and $\epsilon>0$ . Let $R_{B}$ be the right (closed) ideal of $A$ generated by $B$ . Then
there are $x\in R_{B}$ and $y\in A$ such that

$Sp_{\alpha}(x)\subset p+(-\epsilon, \epsilon)$ , $\pi_{\omega}(x)\Omega_{\omega}\neq 0$ ,

$Sp_{\alpha}(y)\subset q+(-\epsilon, \epsilon)$ , $\pi_{\omega}(y)\Omega_{\omega}\neq 0$ .
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(See [1] or [9] for the spectral theory.) We assert that $\pi_{\omega}(x\gamma^{n}\circ\alpha_{t}(\gamma))\Omega_{\omega}\neq 0$ for some $n$

and $t$ . Then the first result follows because
$\pi_{\omega}(x\gamma^{n}\circ\alpha_{t}(\gamma))\Omega_{\omega}\in[\pi_{\omega}(B)H_{\omega}]$ ,

$Sp_{u_{w}}(\pi_{\omega}(x\gamma^{n}\circ\alpha_{t}(\gamma))\Omega_{\omega})\subset p+q+(-2\epsilon, 2\epsilon)$ .
To prove that $\pi_{\omega}(x\gamma^{n}\circ\alpha_{t}(\gamma))\Omega_{\omega}\neq 0$ for some $n$ and $t$ , we use the asymptotic abelianess
with respect to $\gamma$ and the extremality of $\omega$ (cf. [1]). The average of $\Vert\pi_{\omega}(x\gamma^{n}\circ\alpha_{t}(y))\Omega_{\omega}\Vert^{2}$

over $n\in Z$ and $t\in R$ tends to $\Vert\pi_{\omega}(y)\Omega_{\omega}\Vert^{2}\Vert\pi_{\omega}(x)\Omega_{\omega}\Vert^{2}$ , which implies the desired result.
The second statement follows from taking $A$ for $B$ . Since $\alpha$ is faithful, the closed

group generated by Sp $(u_{\omega})$ must be R.

Lemma 3.3. Let $\omega$ be an $\alpha-$ (and $\gamma-$) invariant state of A. Then there exists an
extreme $\alpha-(and\gamma-)$ invariant state $\omega_{0}$ such that
$(*)$ Sp $(u_{\omega_{0}}|[\pi_{\omega_{O}}(B)H_{\omega_{O}}])\subset Sp(u_{\omega}|[\pi_{\omega}(B)H_{\omega}])$

for all $B\in H^{\alpha}(A)$ .

Proof. Let $S$ be the set of invariant states $\omega_{0}$ satisfying $(*)$ for all $B\in H^{\alpha}(A)$ .
Then $S$ is a face of the invariant states, since if an invariant state $\omega_{1}$ satisfies $\omega_{1}<\lambda\omega_{2}$

with $\omega_{2}\in S$ and $\lambda>0$ , then $(\pi_{\omega_{1}}, u_{\omega_{1}})$ is just the restriction of $(\pi_{\omega_{2}}, u_{\omega_{2}})$ to a sub-
space of $H_{\omega_{2}}$ . To show that $S$ is closed, let $\omega_{1}$ be a weak* limit point of $S$ . Then $\omega_{1}$ is
invariant. For $p\not\in Sp(u_{\omega}|[\pi_{\omega}(B)H_{\omega}])$ , there is $\epsilon>0$ such that for $x\in R_{B}$ with Sp $(x)\subset$

$(p-\epsilon, p-\epsilon)$ ,
$\omega(x^{*}x)=0$ .

Hence $\omega_{2}(x^{*}x)=0$ for such $x$, and for any $\omega_{2}$ in $S$, and so for $\omega_{2}=\omega_{1}$ . This implies
that $p\not\in Sp(u_{\omega_{1}}|[\pi_{\omega_{1}}(B)H_{\omega_{1}}])$ . Thus $S$ is closed. Take any extreme point of $S$, which
satisfies $(*)$ and is extremely invariant.

Lemma 3.4. Under Assumption 1.1 let $\phi$ be an extreme $\alpha$-invariant state. Then
there exists a closed subsemigroup $G$ of $R$ which generates $R$ as a closedgroup such that

Sp $(u_{\phi}|[\pi_{\phi}(B)H_{\phi}])+G\subset Sp(u_{\phi}|[\pi(B)H_{\phi}])$

for all $B\in H^{\alpha}(A)$ .

Proof. Choose a net $N_{l}$ such that

$\frac{1}{2N_{\iota}+1}\sum_{n=-N_{l}}^{N_{l}}\phi\circ\gamma^{n}$

converges weakly to a state $\omega$ . Then $\omega$ is $\alpha-$ and $\gamma$-invariant. Fix $B\in H^{\alpha}(A)$ . Let
$p\in Sp(u_{\phi}|[\pi_{\phi}(B)H_{\phi}]),$ $q\in Sp(u_{\omega})$ , and $\epsilon>0$ . Then there are $x\in R_{B}$ and $y\in A$ such that

$Sp_{\alpha}(x)\subset p+(-\epsilon, \epsilon)$ , $\pi_{\phi}(x)\Omega_{\phi}\neq 0$ ,

$Sp_{\alpha}(y)\subset q+(-\epsilon, \epsilon)$ , $\pi_{\omega}(y)\Omega_{\omega}\neq 0$ .
We assert that $\pi_{\phi}(x\gamma^{n}\circ\alpha_{t}(\gamma))\Omega_{\phi}\neq 0$ for some $n$ and $t$ . Then it follows that



$C^{*}$-CROSSED PRODUCTS BY $R$ 155

Sp $(u_{\phi}|[\pi_{\phi}(B)H_{\phi}])+Sp(u_{\omega})\subset Sp(u_{\phi}|[\pi_{\phi}(B)H_{\phi}])$ .
To prove that $\pi_{\phi}(x\gamma^{n}\circ\alpha_{t}(\gamma))\Omega_{\phi}\neq 0$ for some $n$ and $t$ , we may suppose that

$\frac{1}{2N_{l}+1}\sum_{n=-N_{1}}^{N_{l}}\pi_{\varphi}\circ\gamma^{n}(y^{*}y)$

converges weakly to an element $T$ in $\pi_{\phi}(A)^{\prime\prime}\cap\pi_{\phi}(A)^{\prime}$ . Then if $\pi_{\phi}(x\gamma^{n}\circ\alpha_{t}(y))\Omega_{\phi}=0$ for
all $n$ and $t$, we obtain

$(\Omega_{\phi}, \pi_{\phi}(x^{*}x)u_{\phi}(t)Tu_{\phi}(t)^{*}\Omega_{\phi})=0$ .
Since $\pi_{\phi}(A)^{\prime}\cap u_{\phi}(R)^{\prime}=C1$ , this implies, by taking the average over $t$,

$(\Omega_{\phi}, \pi_{\phi}(x^{*}x)\Omega_{\phi})(\Omega_{\phi}, T\Omega_{\phi})=0$ .
Since $(\Omega_{\phi}, T\Omega_{\phi})=\omega(y^{*}y)$ , this is a contradiction. Now we can obtain the conclusion
by Lemmas 3.2 and 3.3.

Lemma 3.5. Let $G$ be a closed subsemigroup of $R$ which generates $R$ as a closed
group. Then either $G=R,$ $G\subset R_{+}$ , or $G\subset R_{-}$ . If $G\subset R_{+}$ , thenfor any $\epsilon>0$ , there exists
$N>0$ such that

$G+(-\epsilon, \epsilon)\supset[N, \infty)$ .

Proof. The first part is well-known (cf. [3]).
Let $\tilde{G}$ be the subgroup generated by $G\subset R_{+}$ . Fix $\lambda\in G$ with $\lambda>0$ . For any

positive integer $n$ there exist $g_{1},$ $\cdots,$ $g_{n}$ in $\tilde{G}$ such that

$ 0\equiv g_{0}<g_{1}<\cdots<g_{n}<g_{n+1}\equiv\lambda$ , $\max_{0\leq k\leq n}|g_{k+1}-g_{k}|<\lambda/n$ .

since $g_{k}$ is of the form $h_{1}-h_{2}$ with $h_{i}\in G$ , there is $h$ in $G$ such that $h+g_{k}\in G$ for all $k$ .
Then for any $t\geq h$ there are $k(0\leq k\leq n)$ and a non-negative integer $j$, such that

$|t-(h+g_{k}+j\lambda)|<\lambda/2n$ .
Lemma 3.6. Under Assumption 1.1 let $(\pi, u)$ be a covariant representation of

$(A, \alpha)$ , and let $B\in H^{\alpha}(A)$ . Then $Sp(u)$ is semi-bounded if and only if Sp $(u|[\pi(B)H])$ is
semi-bounded.

Proof. Suppose that Sp $(u)$ is not semi-bounded. We denote by $R_{B}^{\alpha}(-N, N)$ the
$\alpha$-spectral subspace of $R_{B}$ corresponding to $(-N, N)$ . Since $A$ is $\alpha$-simple and unital,
the linear span of $R_{B^{*}}R_{B}$ contains the identity. Thus for sufficiently large $N$, there
exist $x_{1},$ $\cdots,$ $x_{k}$ in $R_{B}^{\alpha}(-N, N)$ such that

$\sum_{i=1}^{k}x_{i}^{*}x_{i}\geq 1$

This implies that for any non-zero vector $\Phi,$ $\pi(x_{j})\Phi$ is a non-zero vector of $[\pi(B)H]$ for
some $i$. Hence Sp $(u|[\pi(B)H])$ is not semi-bounded.

The following is a special case of Theorem 2.1.
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Proposition 3.7. Under Assumption 1.1 let $\phi$ be an extreme $\alpha$-invariant state of
A. Then either Sp $(u_{\phi})=R$ or Sp $(u_{\phi})$ is semi-bounded. In the case $Sp(u_{\phi})=R,$ $\pi\times u$ is a
faithful representation of $A\times_{\alpha}R$ .

Proof. Suppose that Sp $(u_{\phi})$ is not semi-bounded. By Lemmas 3.3 and 3.4,
supposing $G\subset R_{+}$ , for any $\epsilon>0$ there exists $N$ such that

Sp $(u_{\phi}|[\pi_{\phi}(B)H_{\phi}])+[N, \infty)\subset Sp(u_{\phi}|[\pi_{\phi}(B)H_{\phi}])+(-\epsilon, \epsilon)$ .
Since Sp $(u_{\phi}|[\pi_{\phi}(B)H_{\phi}])$ is not semi-bounded below, the left-hand side equals $R$ ,
which implies that Sp $(u_{\phi}|[\pi_{\phi}(B)H_{\phi}])$ is dense in $R$ and so equal to R. Hence $\pi\times u$ is
faithful by 3.1. The case $G\subset R$ -can be treated in a similar way.

4. Proof of Theorem 2.1

Lemma 4.1. Under Assumption 1.1 let $(\pi, u)$ be an irreducible covariant repre-
sentation of $(A, \alpha)$ . If $\pi$ is not irreducible, $\pi\times u$ is faithful.

Proof. Suppose that $\pi\times u$ is not faithful and that $\pi$ is not irreducible. Then
by the remark given after 3.1 there is $\lambda>0$ such that

Sp $(u|[\pi(B)H])+\lambda=Sp(u|[\pi(B)H])$

for all $B\in H^{\alpha}(A)$ .
Let $p\in Sp(u),$ $\epsilon>0$ sufficiently small, and $\Phi$ a unit vector with

$Sp_{u}(\Phi)\subset(p-\epsilon,p+\epsilon)$ .
Define a state $\phi_{T}$ of $A$ by

$\phi_{T}(x)=\frac{1}{2T}\int_{-T}^{T}(\Phi, \pi\circ\alpha_{t}(x)\Phi)dt$ , $x\in A$ .

Let $\phi$ be a weak limit point of $(\phi_{T})$ as $ T\rightarrow\infty$ . Then $\phi$ is $\alpha$-invariant and satisfies
Sp $(u_{\phi}|[\pi_{\phi}(B)H_{\phi}])\subset$ Sp $(u|[\pi(B)H])+[-\epsilon, \epsilon]-p$ .

By Lemma 3.3 we may suppose that $\phi$ is an extreme $\alpha$-invariant state. Then by 3.4
and 3.5, supposing $G\subset R_{+}$ , we have $N$ such that

$[N, \infty)\subset Sp(u|[\pi(B)H])+(-2\epsilon, 2\epsilon)-p$ .
Since Sp $(u|[\pi(B)H])$ is invariant under the addition of $\lambda$ we obtain

Sp $(u|[\pi(B)H])+(-2\epsilon, 2\epsilon)=R$

which is a contradiction for some $B\in H^{\alpha}(A)$ and $\epsilon>0$ .
Proofof Theorem 2.1. Suppose that $\pi\times u$ is not faithful. Let $\Phi$ be a unit vector

as before, i.e., $\Phi$ satisfies

$Sp_{u}(\Phi)\subset(p-\epsilon,p+\epsilon)$ .
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Define a state $\omega_{N}$ of $A$ by

$\omega_{N}(x)=\frac{1}{2N+1}\sum_{n=-N}^{N}(\Phi, \pi\circ\gamma^{n}(x)\Phi)$ .

Let $\omega$ be a weak limit point of $(\omega_{N})$ . Note that any weak limit point of

$\frac{1}{2N+1}\sum_{n=-N}^{N}\pi\circ\gamma^{n}(x)$

is a multiple of the identity operator because $\pi$ is irreducible. Thus one can conclude
that $\omega$ is $\alpha-$ and $\gamma$-invariant.

Let $\lambda\in Sp(u|[\pi(B)H]),$ $\mu\in Sp(u_{\omega})$ , and $\epsilon>0$ . Then there exist $x\in R_{B}$ and $y\in A$

such that
$Sp_{\alpha}(x)\subset(\lambda-p-2\epsilon, \lambda-p+2\epsilon)$ , $\pi(x)\Phi\neq 0$ ,

$Sp_{\alpha}(y)\subset(\mu-\epsilon, \mu+\epsilon)$ , $\pi(y)\Omega_{\omega}\neq 0$ .
We shall assert that $\pi(x\gamma^{n}(y))\Phi\neq 0$ for some $n$ . Then since

$Sp_{u}(\pi(x\gamma^{n}(\gamma))\Phi)\subset\lambda+\mu+(-4\epsilon, 4\epsilon)$ ,

we obtain

Sp $(u|[\pi(B)H])+(-4\epsilon, 4\epsilon)\supset Sp(u|[\pi(B)H])+Sp(u_{\omega})$ .
If Sp $(u|[\pi(B)H])$ is not semi-bounded, Lemmas 3.3 and 3.5 imply that

Sp $(u|[\pi(B)H])+(-5\epsilon, 5\epsilon)=R$ ,

which is a contradiction for some $B\in H^{\alpha}(A)$ and $\epsilon>0$ . Hence Sp $(u|[\pi(B)H])$ is semi-
bounded for some $B$ and so is Sp $(u)$ by 3.6.

To prove that $\pi(x\gamma^{n}(\gamma))\Phi\neq 0$ for some $n$ , we choose a net $(N_{\ell})$ such that

$\lim\frac{1}{2N_{l}+1}\sum_{n=-N_{1}}^{N_{i}}\pi\circ\gamma^{n}(y^{*}y)=oXy^{*}y)1$ .

Hence

$\lim\frac{1}{2N,+1}\sum_{n=-N}^{N_{l}}\Vert\pi(x\gamma^{n}(y))\Phi\Vert^{2}=\Vert\pi(x)\Phi\Vert^{2}aXy^{*}y)\neq 0$ .

5. Periodic systems

When $\alpha$ is periodic, say $\alpha_{1}$ is the identity automorphism of the $C^{*}$-algebra $A$ , one
forms the crossed product $A\times_{\alpha}T$ , where $\alpha$ is considered as an action of $T=R/Z$ on $A$ .
Then we can adapt the preceding proof to this case to conclude:

Theorem 5.1. Under Assumption 1.1 (i), (ii), and (iv), suppose that $\alpha_{t}$ is the
identity automorphism ifand only if $t$ is an integer. Thenfor any non-zero primitive I of
$A\times_{\alpha}T$ , there exist a ground or ceiling state $\phi$ of $A$ and $n\in Z=I$ such that I is the kernel
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of $\pi_{\phi}\times u_{\phi}\circ\hat{\alpha}_{n}$ .

Proof. Let $(\pi, u)$ be an irreducible covariant representation of $(A, \alpha)$ . Then one
may conclude that Sp $(u)$ is either $Z$ or semi-bounded, and that if Sp $(u)=Z,$ $\pi\times u$

is a faithful representation of $A\times_{\alpha}T$ . Suppose that Sp $(u)$ is bounded below. If
infSp $(u)=\lambda$ , then take any unit vector $\Phi$ with $ u_{t}\Phi=e^{i\lambda t}\Phi$ . The state $\phi$ of $A$ defined by

$\phi(x)=(\Phi, \pi(x)\Phi)$

is a ground state and $\pi$ is equivalent to $\pi_{\phi}$ , since $[\pi(A)\Phi]$ is $(\pi\times u)(A\times_{\alpha}T)$-invariant,
and so is the whole space. Thus we obtain the conclusion as the case Sp $(u)$ is bounded
above can be treated similarly.

This can be considered as a generalization of the result on the ideal structure of
the crossed product of the CAR algebra by the gauge action, due to Bratteli.

Probably we can not expect this kind of result for general (non-periodic) $\alpha$ .
Because there are states of finite energy which are disjoint from any of the ground
states, in general, which might induce an ideal which is not of the type given in the
theorem. Here a state $\phi$ is called to be of finite energy if there exists $p\geq 0$ such that
$\phi(x^{*}x)=0$ for any $x\in A$ with $Sp_{\alpha}(x)\subset(-\infty, -p)$ . (Note that $\phi$ is a ground state if
$p=0.)$ The states of finite energy are not invariant in general but covariant (cf. [1],
[9]).

Appendix

Let $A$ be a $C^{*}$-algebra and $\delta$ a $*$-derivation of $A$ . Then $\delta$ is bounded and
generates a uniformly continuous one-parameter automorphism group $\alpha$ of $A$ . We
study the crossed product $A\times_{\alpha}R$ in order to know whether or not $\delta$ is inner.

In the proof of the following lemma we use the Dauns-Hoffmann theorem.

Lemma A.l. Let $B$ be a $C^{*}$ -algebra and $\beta$ a strongly continuous one-parameter
automorphism group of B. Let I be a (closed two-sided) ideal of B. Suppose that
$I+\beta_{t}(I)=B$ for non-zero $t$ ,

$\bigcap_{t\in R}\beta_{t}(I)=(0)$ ,

and

$\bigcup_{n=1|t}^{\infty}\bigcap_{|\geq n}\beta_{t}(I)$

is dense in B. Let $D$ be the quotient of $B$ by I and let $C_{0}(R)$ be the continuousfunctions
on $R$ vanishing at infinity with the action $\tau$ of $R$ by translations. Then $(B, \beta)$ is isomor-
phic to $(D\otimes C_{0}(R), \iota\otimes\tau)$ , where $\iota$ is the trivial action of R. More precisely the isomor-
phism $F$ of $B$ onto $D\otimes C_{0}(R)$ is given by

$(Fx)(s)=\beta_{-s}(x)+I$ , $s\in R$ , $x\in B$ .
Proof. For $x\in B,$ $Fx$ defines a D-valued continuous function on R. Since for

$s$ with $|s|\geq n$ ,
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$\Vert(FxXs)\Vert=\Vert x+\beta_{s}(I)\Vert\leq\Vert x+\bigcap_{|t|\geq n}\beta_{t}(I)\Vert$
,

$\Vert(Fx)(s)\Vert$ goes to zero as $|s|\rightarrow\infty$ . Sinoe $\cap\beta_{t}(I)=(0)$ ,

$\Vert Fx\Vert\equiv\sup\Vert(Fx)(s)\Vert=\Vert x\Vert$ .
Since $F\beta_{t}(x)(x)=\beta_{t-s}(x)+I=Fx(s-t)$ , it follows that $F\circ\beta_{t}=\iota\otimes\tau_{t}\circ F$. In this way
we can conclude that $F$ defines an isomorphism of $B$ into $D\otimes C_{0}(R)$ .

Now we have to show that $F$ is surjective. Let $J$ be a primitive ideal of $B$. Then
for large $n,$ $\cap\{\beta_{t}(I);|t|\geq n\}$ is not contained in $J$, which implies

$\cap\{\beta_{t}(I);|t|\leq n\}\subset J$ .
For each $k$ , there exists $t_{k}\in[-n, n]$ such that

$\cap\{\beta_{t}(I);|t-t_{k}|<1/k\}\subset J$ .
Let $t_{0}$ be a limit point of $(t_{k})$ . Then since

$\bigcup_{k=1}^{\infty}\cap\{\beta_{t}(I);|t-t_{0}|<1/k\}$

is dense in $\beta_{t_{O}}(I)$ (cf. [4]), it follows that $\beta_{t_{O}}(I)\subset J$. Since $\beta_{t_{O}}(I)+\beta_{t}(I)=B$ for $t\neq t_{0},$ $t_{0}$ is
unique. By setting $\Phi(J)=t_{0}$ we define a map $\Phi$ from Prim $B$ to R. Then $\Phi$ is
continuous, because for a closed subset $S$ of $R$ ,

$\Phi^{-1}(S)=\{J\in PrimB;J\supset\cap\{\beta_{t}(I), t\in S\}\}$ .
For a bounded continuous function $f$ on $R,$ $ f\circ\Phi$ defines a bounded continuous
function on Prim $B$, and can be regarded as a central multiplier of $B[9,4.4.8]$ .
Denoting by $F$ again the unique extension of $F$ to a map of $M(B)$ , one calculates:

$F(f\circ\Phi)(s)=\beta_{-s}(f\circ\Phi)+I$

which is mapped into
$f\circ\Phi+\beta_{s}(I)=f(s)1$

under the isomorphism of $D=B/I$ with $B/\beta_{s}(I)$ defined by

$\beta_{-s}(x)+I\mapsto x+\beta_{s}(I)$ , $x\in B$ .
This shows that $F(f\circ\Phi)=f$, i.e., $1\otimes C_{b}(R)$ are multipliers of the image of $F$. By using
this fact we can easily conclude that $F$ is surjective.

We now show how to use this lemma to prove Sakai’s theorem [10] that every
derivation of a simple $C^{*}$-algebra is inner. Let $\delta$ be $a*$-derivation of $A$ and $\alpha$ the
automorphism group generated by $\delta$ . In an irreducible representation $\pi$ of $A$ there
exists a uniformly continuous unitary group $u$ such that $u_{t}\pi(x)u_{-t}=\pi\circ\alpha_{t}(x),$ $x\in A$ ,
$t\in R$ . Let $B=A\times_{\alpha}R$ and $I$ the kernel of $\pi\times u$ . Let $q$ be the quotient map of $B$ onto
$D\equiv B/I$. Then $q$ has a unique extension to a map from $M(B)$ into $M(D)$ , which is
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denoted by $q$ again. Since $u$ is uniformly continuous, we have that $q(B)\supset q(A)\cong A$ ,
i.e., for each $a\in A$ there is $x\in B$ such that $(a-x)B\subset I$. Hence there exists a maximal
ideal (including $I$) of $B$, say $I$ again.

If $p\neq 0$ , since $I\neq\hat{\alpha}_{p}(I)$ and $I+\hat{\alpha}_{p}(I)$ is closed, we must have that $B=I+\hat{\alpha}_{p}(I)$ .
Since $q(\lambda(t))$ is uniformly continuous, it is easy to conclude that the remaining
assumptions on $I$ in Lemma A. 1 are satisfied. Hence

$B\cong D\otimes C_{0}(R)=C_{0}(D;R)$ .
Suppose $f\in C_{0}(D;R)$ has compact support. Then $x=F^{-1}f$ belongs to $\cap\{\hat{\alpha}_{p}(I)$ ;

$|p|\geq n\}$ for some $n>0$ . For $g\in L^{1}(R)\cap L^{2}(R),$ $\lambda(g)^{*}x\lambda(g)$ is $\hat{\alpha}$-integrable and

$\int\hat{\alpha}_{p}(\lambda(g)^{*}x\lambda(g))dp\in A$ .

Thus

$\int_{-n}^{n}F(\lambda(g)^{*}x\lambda(g)Xp)dp\in q(A)$

because the map $q$ of $M(B)$ into $M(D)$ is continuous with respect to $\sigma(M(B), B^{*})$-and
$\sigma(M(D), D^{*})$-topology (the kernel of $q$ is the closure of $I$ in the strict topology). This
implies that

$\int f(p)dp\in q(A)$

for any$f\in C_{0}(D;R)$ with compact support. Hence we can conclude that $D=q(A)\cong A$ .
Sinoe $\lambda(t)=q(\lambda(t))$ is a multiplier of $D$ , by identifying $D$ with $A$ under the map of $A$

onto $q(A)=D$ , one obtains that $\lambda(t)$ is a multiplier of $A$ . Thus the generator of $\dot{\lambda}$ is
also a multiplier of $A$ .

Apparantly this method can be applied to the situation treated in [5], where $\alpha$ is
not assumed to be uniformly continuous, but $\alpha^{*}$ is assumed to be strongly
continuous, and under this assumption it is shown that there exists an ideal $I$ of
$A\times_{\alpha}R$ such that $q(A\times_{\alpha}R)\supset q(A)$ , that is what we need in the above argument.

As another application of Lemma A.1 we consider $M^{\infty}(A)$ with a derivation
which leaves $A$ invariant, when $A$ is separable, to prove Pedersen’s result [8] that such
a derivation is inner.

Here $M^{\infty}(A)$ is defined as follows (cf. [2], [8]). The set of essential ideals of $A$

forms a directed set when ordered under the inverse inclusion and the set of the
multiplier algebras of those ideals forms an inductive system, whose inductive limit is
the $C^{*}$-algebra $M^{\infty}(A)$ .

Let $\delta$ be $a^{*}$-derivation of $A$ . Then $\delta$ has a unique extension 5 to $a^{*}$-derivation of
$M^{\infty}(A)$ with $\Vert 5\Vert=\Vert\delta\Vert$ . Let $\alpha$ be the automorphism group generated by 5 and form
the crossed product $M^{\infty}(A)\times_{\alpha}R$ . Note that for any essential ideal $J$ of $A$ , naturally,

$J\times_{\alpha}R\subset A\times_{\alpha}R\subset M(J)\times_{\alpha}R\subset M^{\infty}(A)\times_{\alpha}R$ .
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First we consider $A\times_{\alpha}R$ , and let $I$ be amaximal ideal of $A\times_{\alpha}R$ satisfying
$(*)$ $\cap\hat{\alpha}_{p}(I)=(0)$ .

Lemma A.2. Let $\epsilon>0$ and let

$I(\epsilon)=\cap\{\hat{\alpha}_{q}(I);|q|\leq\epsilon/2\}$ .
Let $ p>\epsilon$ or $ p<-\epsilon$ . Then the ideal $J$ of A defined by
$(**)$ $\cap\hat{\alpha}_{q}(I(\epsilon)+\hat{\alpha}_{p}(I(\epsilon)))=J\times_{\alpha}R$

is essential in $A$ .
Proof. It is known (cf. [9]) that any $\hat{\alpha}$-invariant ideal of $A\times_{\alpha}R$ is given as in the

right hand side of $(**)$ . For any primitive ideal $P$ of $A\times_{\alpha}R$ containing $J\times_{\alpha}R$ there
must be $r$ such that

$P\supset\hat{\alpha}_{r}(I(\epsilon)+\hat{\alpha}_{p}(I(\epsilon)))$ .
Then since $P\supset\hat{\alpha}_{r}(I(\epsilon))$ and $P\supset\hat{\alpha}_{r+p}(I(\epsilon))$ , there exist $\delta_{1}$ and $\delta_{2}$ in $[-\epsilon/2, \epsilon/2]$ such that

$P\supset\hat{\alpha}_{r+\delta_{1}}(I)$ , $P\supset\hat{\alpha}_{r+p+\delta_{2}}(I)$ .
Hence we can conclude that

$P\supset\bigcap_{q}\hat{\alpha}_{q}(I+\hat{\alpha}_{p}(I(2\epsilon)))\equiv K\times R$ .

Since this is true for any primitive ideal $P$ with $P\supset J\times_{\alpha}R$ , we obtain that
$J\times_{\alpha}R\supset K\times_{\alpha}R$ , i.e., $J\supset K$. Thus it suffices to show that $K$ is essential in $A$ . Since
$I\neq\hat{\alpha}_{p}(I(2\epsilon))$ , if $K^{\perp}\equiv\{x\in A;xK=(0)\}$ were non-zero, $I+\hat{\alpha}_{p}(I(2\epsilon))\cap K^{\perp}\times_{\alpha}R$ would be
strictly greater than $I$ and satisfy $(*)$ instead of $I$, which contradicts the maximality of
I.

Lemma A.3. I is closed in $A\times_{\alpha}R$ with the strict topology as a multiplier algebra
of $J\times_{\alpha}R$ , for any essential ideal $J$ of $A$ .

Proof. The closure of $I$ equals

$\overline{I}=\{x\in A\times_{\alpha}R;ax\in I, a\in J\}$ .
Since $\overline{I}\cap J\times_{\alpha}R=I\cap J\times_{\alpha}R$ ,

$(\cap\hat{\alpha}_{q}(\overline{I}))\cap J\times_{\alpha}R=\cap(\hat{\alpha}_{q}(\overline{I})\cap J\times_{a}R)=(0)$ .
Hence

$\cap\hat{\alpha}_{q}(\overline{I})=(0)$

which implies that $\overline{I}=I$ since $bI$.
Let $J$ be an essential ideal of $A$ and let $I(J)$ be the closure of $I$ in $M(J)\times_{\alpha}R$ with

the strict topology as a multiplier algebra of $J\times_{\alpha}R$ , or equivalently, with
$\sigma(M(J)\times_{\alpha}R, (J\times_{\alpha}R)^{*})$-topology, i.e.,
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$I(J)=\{x\in M(J)\times_{\alpha}R;ax\in I, a\in J\}$ .
Clearly $I(J)$ is an ideal of $M(J)\times_{\alpha}R$ and by Lemma A.3 $I(J)\cap A\times_{\alpha}R=I$. If $J_{1}$ and $J_{2}$

are essential ideals of $A$ with $J_{1}\subset J_{2}$ , then $I(J_{1})\cap M(J_{2})\times_{\alpha}R\supset I(J_{2})$ . Let $I^{\infty}$ be the
norm closure of the union of $I(J)$ with all essential ideals $J$ of $A$ . Then of course $I^{\infty}$ is
an ideal of $M^{\infty}(A)\times_{\alpha}R$ and $I^{\infty}\cap A\times_{\alpha}R$ equals $I$. Hence the ideal $K$ of $M^{\infty}(A)$

defined by

$\cap\hat{\alpha}_{q}(I^{\infty})=K\times_{\alpha}R$

satisfies $K\cap A=(0)$ . As $K\cap J=(0)$ implies $K\cap M(J)=(0)$ for an essential ideal $J$ of
$A,$ $K$ must be (0).

It is known that the sum of two norm-closed ideals is closed. For the strict
topology we have the following

Lemma A.4. Let $B$ be a separable $C^{*}$ -algebra and let I and $J$ be ideals of $M(B)$
which are closed under the strict topology. Then $I+J$ is also closed under the strict
topology.

Proof. Let $q$ be the quotient map of $M(B)$ onto $M(B)/I$ and let $\pi$ be the unique
extension of the quotient map of $B$ onto $B/B\cap I$ to a normal map of $M(B)$ into
$M(B/B\cap I)$ , where $M(B)$ is regarded as in $B^{**}$ . Then the kernel of $\pi$ is

$\{x\in M(B);ax, xa\in I\cap B, a\in B\}$

which is $I$ since $I$ is closed. Thus $\pi=q$ , by regarding $M(B)/I$ as a subalgebra of
$M(B/B\cap I)$ . Since $B$ is separable, in fact $M(B)/I$ equals $M(B/B\cap I)$ by [9, 3.12.10].

Let $x$ be a positive element of the closure of $I+J$ in $M(B)$ and let $b=q(x)$ . Then $b$

is in the closure of $q(B\cap J)=q(B\cap(I+J))$ in $M(q(B))$ . Then there are sequences
$(x_{n})$ in $q(B\cap J)_{+}$ and $(y_{n})$ in $(q(B\cap J)+C1)_{+}$ such that $x_{n}\uparrow b$ and $y_{n}\downarrow b$ (cf. [9,
3.12.9]). Let $(u_{n})$ be a countable approximate unit for $B\cap I\cap J$.

Choose self-adjoint elements $v_{1}$ in $B\cap J$ and $w_{1}$ in $B\cap J+C1$ such that $q(v_{1})=x_{1}$ ,
$q(w_{1})=y_{1}$ , and $0\leq v_{1}\leq w_{1}$ . Put

$v_{1}$
$’=v_{1}+(w_{1}-v_{1})^{1/2}u_{1}(w_{1}-v_{1})^{1/2}\in B\cap J$ .

Then $q(v_{1}^{\prime})=x_{1}$ and $v_{1}\leq v_{1}^{\prime}\leq w_{1}$ . In this way we choose $(v_{k}),$ $(v_{k}^{\prime})$ in $B\cap J$, and $(w_{k})$ in
$J\cap B+C1$ such that

$v_{k-1}\leq v_{k}\leq w_{k}\leq w_{k-1}$

$q(v_{k})=q(v_{k}^{\prime})=x_{k}$ , $q(w_{k})=y_{k}$

$v_{k}^{\prime}=v_{k}+(w_{k}-v_{k})^{1/2}u_{k}(w_{k}-v_{k})^{1/2}$

The proof goes exactly as the proof of [9, 3.12.10], with a simple check on [9, 1.5.10]

due to the additional assumption $(v_{k})\subset B\cap J$. Thus the limit $a$ of $(v_{k})$ is a multiplier of
$B$, and belongs to $J$ since $J$ is closed in $M(B)$ . Since $q(a)=b,$ $a-x$ belongs to $I$, i.e.,
$x\in I+J$.
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Lemma A.5. The set of elements $x$ of $M(J\times_{\alpha}R)$ satisfying that
$p\rightarrow\hat{\alpha}_{p}(x)$ , $t\rightarrow\lambda(t)x$ , and $t\rightarrow x\lambda(t)$

are norm-continuous, is equal to $M(J)\times_{\alpha}R$ .

Proof. The set of those elements clearly includes $M(J)\times_{\alpha}R$ , and forms an R-
product [9, 7.8.2]. To prove the converse inclusion, it suffices to show that any
element $x$ of $M(J\times_{\alpha}R)$ satisfying $\hat{\alpha}_{p}(x)=x,$ $p\in R$ , and $t\rightarrow\lambda(t)x\lambda(t)^{*}$ is continuous,
belongs to $M(J)$ . For such an element $x$ , there is a net $(x_{i})$ is $J\times_{\alpha}R$ which converges to
$x$ in the strict topology. For $f\in L^{1}(R)\cap L^{2}(R)$ and $a\in J$,

$\int\hat{\alpha}_{p}(\lambda(f)^{*}x_{i}a\lambda(f))dp\in J$

which converges in norm to

$\int\hat{\alpha}_{p}(\lambda(f)^{*}xa\lambda(f))dp=\int\lambda(t)^{*}xa\lambda(t)|f(t)|^{2}dt$ .

Since $f$ is arbitrary, this implies that $xa\in J$, and similarly $ax\in J$. Thus $x\in M(J)$ . Cf.
[9, 7.10.4].

Now we resume the proof. For $\epsilon>0$ , let
$I^{\infty}(\epsilon)=\cap\{\hat{\alpha}_{q}(I^{\infty});|q|\leq\epsilon/2\}$ .

Fix $p$ with $|p|>\epsilon$ . Then by Lemma A.2 there exists an essential ideal $J$ of $A$ such that
$I^{\infty}(\epsilon)+\hat{\alpha}_{p}(I^{\infty}(\epsilon))\supset J\times_{\alpha}R$ .

Now by Lemma A.4 for any element $x$ in $M(J)\times_{\alpha}R$ , there exist $a$ and $b$ in the closure
of $I^{\infty}(\epsilon)\cap J\times_{\alpha}R$ , and $\hat{\alpha}_{p}(I^{\infty}(\epsilon))\cap J\times_{\alpha}R$ , respectively, in $M(J\times_{\alpha}R)$ such that
$x=a+b$ . Then for $f\in L^{1}(R)$ and $g\in L^{1}(R)$ with supp $(g)\subset[-\epsilon/2, \epsilon/2]$ , one has

$a_{1}=\lambda(f)^{*}\int\hat{\alpha}_{q}(a)g(q)dq\lambda(f)\in M(J)x_{\alpha}R$ ,

$b_{1}=\lambda(f)^{*}\int\hat{\alpha}_{q}(b)g(q)dq\lambda(f)\in M(J)\times_{\alpha}R$ .

$ThensinceI^{\infty}\cap M(J)\times_{\alpha}RisclosedinM(J)\times_{\alpha}R(asamultiplieralgebraofJ\times_{\alpha}R)$ ,
we obtain

$a_{1}\in I^{\infty}$ , $b_{1}\in\hat{\alpha}_{p}(I^{\infty})$ .
Hence it follows for $x=1$ that $\lambda(f)^{*}\lambda\omega\in I^{\infty}+\hat{\alpha}_{p}(I^{\infty})$ , which implies that

$I^{\infty}+\hat{\alpha}_{p}(I^{\infty})\supset M(J)\times_{\alpha}R$ .
We can now slightly improve Pedersen’s theorem:
Theorem A.6. Let $A$ be a separable $C^{*}$ -algebra and $\delta a^{*}$ -derivation. Let $5be$ the
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unique extension of $\delta$ to a $*$-derivation of $M^{\infty}(A)$ . Then there exists a positive $h$ in
$M^{\infty}(A)$ with $\Vert h\Vert=\Vert\delta\Vert$ such that $5(x)=i(hx-xh),$ $x\in M^{\infty}(A)$ .

Proof. In the atomic representation $\pi$ of $A$ there exists a uniformly continuous
unitary group $u$ in $\pi(A)^{\prime\prime}$ such that the generator $H$ of $u$ satisfies that $ 0\leq H\leq\Vert\delta\Vert$ , and

$u_{t}\pi(x)u_{t}^{*}=\pi\circ\alpha_{t}(x)$ , $x\in A$

where $\alpha$ is the automorphism group generated by $\delta$ . We take for $I$ in the above
argument a maximal ideal $I$ of $A\times_{\alpha}R$ including ker $\pi\times u$ such $that\cap\hat{\alpha}_{p}(I)=(0)$ . (The

closure $I$ of the union of an increasing family of ideals $J$ of $\pi\times u(A\times_{\alpha}R)$ with
$J\cap\pi(A)=(0)$ satisfies that $I\cap\pi(A)=(0).)$ From the above proof it follows that
$M^{\infty}(A)\times_{\alpha}R/I^{\infty}\cong M^{\infty}(A)$ . Then the generator $h$ of the image of $\lambda(\cdot)$ under the
quotient map clearly satisfies the above properties.

Apparently the same method can be applied to a single automorphism $\alpha$ of a
separable $C^{*}$-algebra $A$ if the Borchers spectrum of $\alpha$ is trivial. Because in this case
there exists a maximal ideal $I$ of $A\times_{\alpha}Z$ such $that\cap\hat{\alpha}_{p}(I)=(0)$ and for this $I,$ $I\neq\hat{\alpha}_{p}(I)$

for non-zero $p\in T$ . Then it would follow that $I^{\infty}+\hat{\alpha}_{p}(I^{\infty})=M^{\infty}(A)\times_{\alpha}Z$ and that $\alpha$ is
inner in $M^{\infty}(A)$ (see [7, 6.6]).
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