
YOKOHAMA MATHEMATICAL
JOURNAL VOL. 30, 1982

UNIVERSALLY WEAKLY INNER ONE-PARAMETER
AUTOMORPHISM GROUPS OF

$C^{*}$-ALGEBRAS

By

AKITAKA KISHIMOTO

(Received May 22, 1982)

ABSTRACT. If a one-parameter automorphism group of a C’-algebra has a strongly
continuous action on its dual, it is shown to be universally weakly inner. If a single
automorphism of a separable $C^{*}$-algebra is extendible in each irreducible representation, it
is shown to be universally weakly inner.

1. Introduction

Let $A$ be a $C^{*}$-algebra and $\alpha$ a one-parameter automorphism group of $A$ . One
may consider the following four conditions on $\alpha$ :

(i) $\alpha$ is uniformly continuous, i.e., $\Vert\alpha_{t}-\iota\Vert\rightarrow 0$ as $t\rightarrow 0$ (where $\iota$ denotes the
identity automorphism).

(ii) $\alpha$ is universally weakly inner, i.e., there exists a $weakly^{*}$ continuous one-
parameter unitary group $u$ in the second dual $A^{**}$ of $A$ such that $\alpha_{t}(x)=u_{t}xu_{t}^{*},$ $x\in A$ .

(iii) $\alpha^{*}$ is strongly continuous, i.e., $\Vert\phi\circ\alpha_{t}-\phi\Vert\rightarrow 0$ as $t\rightarrow 0$ for any $\phi\in A^{*}$ (or,
equivalently, for any pure state $\phi$ of $A$).

(iv) $\alpha$ is strongly continuous, i.e., $\Vert\alpha_{t}(x)-x\Vert\rightarrow 0$ as $t\rightarrow 0$ for any $x\in A$ .
Then $(i)\Rightarrow(ii)\Rightarrow(iii)\Rightarrow(iv);(i)\Rightarrow(ii)$ follows from Sakai’s theorem on derivations

([9], 4.1) and the other implications are standard (see, e.g., [1], 3.1.8). In general
$(iv)\neq(iii)$ and $(ii)\neq(i)$ . In this note we shall show that (iii) implies (ii).

For the proof we introduce the following notion: $\alpha$ is said to be almost uniformly
continuous if, for any $\alpha$-invariant (closed two-sided) proper ideal $I$ of $A$ , the action on
the quotient $A/I$ induced by $\alpha$ has a non-zero invariant hereditary $C^{*}$-subalgebra on
which the induced action is uniformly continuous.

Now we state our main result:

Theorem 1.1. Let $A$ be a $C^{*}$-algebra and $\alpha$ $a$ one-parameter automorphism
group of A. Then the following conditions are equivalent:

(1) $\alpha^{*}$ is strongly continuous,
(2) $\alpha$ is almos $t$ uniformly continuous,
(3) $\alpha$ is universally weakly inner.

For another characterization of those automorphism groups, see Elliott [3] (and
also [2]).
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If $\alpha$ is uniformly continuous on an $\alpha$-invariant hereditary $C^{*}$-subalgebra $B$ of $A$ ,
and if $F$ is a subset of $A$ whose $\alpha$-spectrum is compact, then $\alpha$ is uniformly continuous
on the closed linear span of $\alpha_{t}(x)B\alpha_{s}(y^{*}),$ $x,$ $y\in F,$ $t,$ $s\in R$ (e.g., as shown by using [1],
3.2.42). Thus if the $C^{*}$-algebra is simple and unital, ’almost uniform continuity’
implies ‘uniform continuity’. In this way the above theorem implies 7 in [4] and,
similarly 2.4 in [5]. In fact the proof of the theorem is obtained by combining the
techniques used in those papers.

We show that (1) $\supset(2)$ in Sect. 2, and that (2) $\Rightarrow(3)$ in Sect. 3. We give a similar
result on single automorphisms of separable $C^{*}$-algebras in Sect. 4. Finally we show
that the Connes spectrum of an automorphism of a separable $C^{*}$-algebra $A$ depends
only on its action on the spectrum $\hat{A}$ of $A$ .

2. Proof (1) \Rightarrow (2)

In this section $\alpha$ denotes a one-parameter automorphism group of a $C^{*}$-algebra
$A$ and is assumed to have a strongly continuous action on the dual $A^{*}$ .

Since $\alpha$ is extendible in every irreducible representation, it leaves any (primitive)
ideal invariant. If $I$ is a (closed two-sided) ideal of $A$ , the induced action $\dot{\alpha}$ on the
quotient $A/I$ is defined by

$\dot{\alpha}_{t}\circ q(x)=q\circ\alpha_{t}(x)$ , $x\in A$ ,

where $q$ is the quotient map from $A$ onto $A/I$. If $\phi\in(A/I)^{*}$ , then
$\Vert\phi\circ\dot{\alpha}_{t}-\phi\Vert=\Vert(\phi\circ\dot{\alpha}_{t}-\phi)\circ q\Vert=\Vert\phi\circ q\circ\alpha_{t}-\phi\circ q\Vert$ .

This implies that $\dot{\alpha}^{*}$ is strongly continuous on $(A/I)^{*}$ .
By using this fact, to prove that $\alpha$ is almost uniformly continuous, it suffices to

show that there exists a non-zero $\alpha$-invariant hereditary $C^{*}$-algebra $B$ of $A$ such that
$\alpha|B$ is uniformly continuous.

Lemma 2.1. Let $B_{0}$ be a non-zero hereditary $C^{*}$ -algebra of $A$ and $r<1$ . Then
there exist $\delta>0$ and a non-zero hereditary $C^{*}$ -subalgebra $B$ of $B_{0}$ such that

$\inf\{\Vert x\alpha_{t}(x)\Vert;x\in B, 0\leq x, \Vert x\Vert=1,0<t<\delta\}>r$ .
Proof. Suppose the contrary. Then there are $B_{0}$ and $r<1$ such that for any

$\delta>0$ and $B$ the infimum is not larger than $r$ . Then as in the proof of 2.1 in [5], we may
find $e_{1},$ $a_{1}\in B_{0}$ , and $t_{1}\in(0,1)$ such that

$e_{1},$ $a_{1}\geq 0$ , $\Vert e_{1}\Vert=\Vert a_{1}\Vert=1$ , $e_{1}a_{1}=a_{1}$ , $\Vert e_{1}\alpha_{\iota_{1}}(e_{1})\Vert\leq r$ .
Similarly we find $e_{2},$

$a_{2}\in\overline{a_{1}B_{0}a_{1},}$ and $t_{2}\in(0,1/2)$ satisfying the same conditions as for
$(e_{1}, a_{1}, t_{1})$ . In this way we construct $e_{n},$ $a_{n}\in a_{n-1}B_{0}a_{n-1}$ , and $t_{n}\in(0,1/2^{n})$ . Since
$e_{n}e_{n-1}=e_{n}$ for all $n$ , there is a pure state $\phi$ of $A$ satisfyig that $\phi(e_{n})=1$ for all $n$ . Then

$\Vert\phi-\phi\circ\alpha_{t_{n}}\Vert\geq\phi(e_{n})-\phi\circ\alpha_{t_{n}}(e_{n})\geq 1-\Vert e_{n}\alpha_{t_{n}}(e_{n})\Vert\geq 1-r$ .
Thus $t\mapsto\phi\circ\alpha_{t}$ is not norm-continuous, which is a contradiction.
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Lemma 2.2. Let $B_{0}$ be a non-zero hereditary $C^{*}$ -subalgebra of $A$ and $\epsilon>0$ . Then
there exist $\delta>0$ and $e\in B_{0}$ with $e\geq 0,$ $\Vert e\Vert=1$ , such that

$sup\{\Vert e(\alpha_{t}(x)-x)e\Vert;x\in A, \Vert x\Vert=1,0<t<\delta\}<\epsilon$ .
Proof. Suppose the contrary. There are $B_{0}$ and $\epsilon>0$ such that for any $\delta>0$ and

$e$ the supremum is not smaller than $\epsilon$ . Then we can adopt the proof of Lemma 6 in [4]
with obvious modifications and would obtain a pure state $\phi$ with the property that
$t\mapsto\phi\circ\alpha_{t}$ is not norm-continuous, which is a contradiction.

Lemma 2.3. In the atomic representation $\pi$ of $A$ , there exists a unitary group $V$

in $\pi(A)^{\prime\prime}$ such that

$V_{t}\pi(x)V_{t}^{*}=\pi\circ\alpha_{t}(x)$ , $x\in A$ ,

and

$ I\equiv$ { $x\in A;t\mapsto V_{t}\pi(x)$ is norm-continuous}
is a non-zero ideal of $A$ .

Proof. By Lemma 2.2 there exist $\delta>0$ and $e\in A$ with $e\geq 0,$ $\Vert e\Vert=1$ , such that
$(*)$ $sup\{\Vert e(\alpha_{t}(x)-x)e\Vert;x\in A, \Vert x\Vert=1,0<t<\delta\}<1/3$ .
We may suppose that there is $a\in A$ with $a\geq 0,$ $\Vert a\Vert=1,$ $ea=a$ . Let $r<1$ be a number
given for $\epsilon=1/3$ in the following lemma. By Lemma 2.1, there exist $\delta_{1}\in(0, \delta)$ and a
non-zero hereditary $C^{*}$-subalgebra $B_{1}of\overline{aAa}$such that

$\inf\{\Vert x\alpha_{t}(x)\Vert;x\in B_{1},0\leq x, \Vert x\Vert=1,0<t<\delta_{1}\}>r$ .
We may further suppose that there is $e_{1}\in\overline{aAa}$with $e_{1}\geq 0$ , such that

$B_{1}=\{x\in A;e_{1}x=xe_{1}=x\}$ .
Note that $(*)$ holds for $e_{1},$

$\delta_{1}$ instead of $e,$
$\delta$ respectively.

Let $\rho$ be an irreducible representation of $A$ with $\rho(B_{1})\neq(0)$ . Then there exists a
weakly continuous unitary group $u$ on $H_{\rho}$ such that

$u_{t}\rho(x)u_{t}^{*}=\rho\circ\alpha_{t}(x)$ , $x\in A$ .
Let $\Phi$ be a unit vector in $[\rho(B_{1})H_{\rho}]$ . Then $\rho(e_{1})\Phi=\Phi$ , and $\Phi$ satisfies

$|(\Phi, u_{t}\Phi)|\geq r$

for $t\in(O, \delta_{1})$ (see ([7], 5.3) or proof of ([5], 1.1)). Then, since $r$ is chosen for $\epsilon=1/3$ in
the following lemma, we have for some $\lambda\in R$ ,

$\Vert\Phi-e^{i\lambda t}u_{t}\Phi\Vert<1/3$ , $t\in[0, \delta_{1}]$ .
$Nowwedenotee^{i\lambda t}u_{t}byu_{t}$ . As in the proof of Lemma5in [4],
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$\Vert(\rho(e_{1})u_{t}-\rho(e_{1}))\rho(x)\Phi\Vert\leq\Vert\rho(e_{1})u_{t}\rho(x)u_{t}^{*}\rho(e_{1})\Phi-\rho(e_{1})\rho(x)\rho(e_{1})\Phi\Vert+\Vert\rho(x)\Vert\cdot\Vert u_{t}^{*}\Phi-\Phi\Vert$

$\leq\Vert e_{1}(\alpha_{t}(x)-x)e_{1}\Vert+\Vert x\Vert\cdot\Vert\Phi-u_{t}\Phi\Vert$

Hence, since $\rho$ is irreducible,

$\Vert\rho(e_{1})u_{t}-\rho(e_{1})\Vert<2/3$ , $0<t<\delta_{1}$ .
For each irreducible representation $\rho$ with $\rho(B_{1})\neq(0)$ , we fix $u$ in the above way, and
for $\rho$ with $\rho(B_{1})=(0)$ , we choose $u$ arbitrarily (such that $u_{t}\rho(x)u_{t}^{*}=\rho\alpha_{t}(x),$ $x\in A$). By
taking the direct sum $V$ of $u$ so obtained in the atomic representation $\pi$ of $A$ , we have
that

$\Vert\pi(x)V_{t}-\pi(x)\Vert\leq 2/3$ , $0<t<\delta_{1}$

for $x\in B_{1}$ with $\Vert x\Vert=1$ . This implies that $B_{1}\subset I$ (Lemma 4 in [4]).

Remark. In the above proof we have used that

$sup\{\Vert e(\alpha_{t}(x)-x)e\Vert;x\in A, \Vert x\Vert=1,0<t<\delta\}$

can be small for some $e$ and $\delta$ . Instead of this we could use, with straightforward
modifications, that

$sup\{\Vert\alpha_{t}(x)-x\Vert;x\in B, \Vert x\Vert=1,0<t<\delta\}$

can be small for some non-zero hereditary $C^{*}$-subalgebra $B$ of $A$ and some $\delta>0$ ,
which is shown by Lemma 2.1 and ([7], 5.1).

Lemma 2.4. Let $\epsilon>0,$ $\Phi$ a unit vector, and $u$ a weakly continuous unitary group.
Then there exist $r<1$ , which depends only on $\epsilon$ , and $\lambda\in R$ such that iffor some $\delta>0$

$|(\Phi, u_{t}\Phi)|\geq r$ , $t\in(0, \delta)$ ,

then
$\Vert\Phi-e^{i\lambda t}u_{t}\Phi\Vert<\epsilon$ , $t\in(0, \delta)$ .

Proof. Suppose that $r$ is close to 1. Define $f$ as a continuous function on $[0, \delta]$

by

exp if$(t)=(\Phi, u_{t}\Phi)/|(\Phi, u_{t}\Phi)|$ , $f(O)=0$ .
By changing $u_{t}$ by exp $(-if(\delta)t/\delta)u_{t}$ , we may suppose that $f(\delta)=0$ . Now for $t\in[0, \delta]$ ,

$|(\Phi, u_{t+s}\Phi)-(\Phi, u_{t}\Phi)(\Phi, u_{s}\Phi)|=|(\Phi-e^{-if\langle t)}u_{t}\Phi, u_{t+s}\Phi)-(\Phi, u_{t}\Phi-e^{t\gamma\langle t)}\Phi)(\Phi, u_{s}\Phi)|$

$\leq 2\Vert\Phi-e^{-if\langle t)}u_{t}\Phi\Vert<2\sqrt{2}\sqrt{1-r}$ .

Hence for $t,s\in[0, \delta]$ with $t+s\in[0, \delta]$

$|\exp\iota f(t+s)$ -exp if$(t)+if(s)|\leq|(\Phi, u_{t+s}\Phi)-(\Phi, u_{t}\Phi)(\Phi, u_{s}\Phi)|+1-r+1-r^{2}$

$\leq 2\sqrt{2}\sqrt{1-r}+2-r-r^{2}\equiv 2$ sin $\theta/2$ ,
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where $\theta$ is chosen from $(0, \pi/6)$ for $r$ sufficiently close to 1. Thus, using the continuity
of $f$, we have

$|f(t+s)-f(t)-f(s)|\leq\theta$ .
Let $t_{0}$ be a point of $[0, \delta]$ such that

$|f(t_{0})|=\max\{|f(t)|;0\leq t\leq\delta\}$ .
Suppose that $ f(t_{0})>3\theta$ . Then $t_{0}>\delta/2$ . Because, otherwise $|f(2t_{0})-2f(t_{0})|\leq\theta$ implies
that $ f(2t_{0})\geq 2f(t_{0})-\theta>f(t_{0})+2\theta$ , a contradiction. Since $|f(t_{0})+f(\delta-t_{0})|\leq\theta$, we
obtain

$ f(\delta-t_{0})\leq-f(t_{0})+\theta$

and so
$f(2\delta-2t_{0})\leq 2f(\delta-t_{0})+\theta\leq-2f(t_{0})+3\theta<-f(t_{0})$

which is a contradiction. Hence $ f(t_{0})\leq 3\theta$ . Similarly $ f(t_{0})\geq-3\theta$ i.e., $|f(t)|\leq 3\theta$ for
$t\in[0, \delta]$ .

Lemma 2.5. The Borchers spectrum $T_{B}(\alpha_{t})$ of $\alpha_{t}$ is {1} for each $t\in R$ (see ([8], 8.8)
for Borchers spectrum).

Proof. Using Lemma 2.1 we take $\delta>0$ and a non-zero hereditary $C^{*}-$

subalgebra $B$ of $A$ such that

$\inf\{\Vert x\alpha_{t}(t)\Vert;x\in B, 0\leq x, \Vert x\Vert=1,0<t<\delta\}>1/2$ .
If $I$ denotes the ideal generated by $B$, then $T_{B}(\alpha_{t}|I)=\{1\}$ for all $t$ . Otherwise there
exist $t\in(O, \delta)$ and an ideal $J$ of $I$ such that $\alpha_{t}$ is freely acting on $J$. Then, since
$B\cap J\neq(O)$ , we must have

$\inf\{\Vert x\alpha_{t}(x)\Vert;x\in B\cap J, x\geq 0, \Vert x\Vert=1\}=0$

which is a contradiction (cf. [6]).
Let $(I_{i})$ be a maximal family of such ideals such that $I_{i}I_{j}=(0)$ for $t\neq j$. Then, by

Lemma 2.1, the ideal generated by $(I_{i})$ is essential in $A$ . Therefore it follows that
$T_{B}(\alpha_{t})=\{1\}$ .

Now we come to the proof of $\alpha$ being almost uniformly continuous.
Let $V$ be the unitary group on the atomic representation space given in Lemma

2.3. Let $H$ be the infinitesimal generator of $V$ and $E$ its spectral resolution:
$H=\int\lambda dE(\lambda)$ .

Let, for $n>0$ ,

$D_{n}=\{x\in A;E[-n, n]\pi(x)E[-n, n]=\pi(x)\}$ .
Then $D_{n}$ is an $\alpha$-invariant hereditary $C^{*}$-subalgebra of $A$ and the restriction of $\alpha$ to $D_{n}$

is uniformly continuous. Hence we have only to show that $D_{n}$ is non-zero for large $n$ .
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Since $T_{B}(\alpha_{1})=\{1\}$ , by ([8], 8.8.7) there is a non-zero $\alpha_{1}$ -invariant hereditary
$C^{*}$-subalgebra $B$ of $A$ such that $B\subset I$ and

Sp $(\alpha_{1}|B)\subset\{e^{is};|s|<\pi/2\}$ .
Then, for an irreducible representation $\rho$ with $\rho(B)\neq(O)$ , there is $\lambda\in R$ such that

Sp $(u_{1}|[\rho(B)H_{\rho}])\subset\{e^{i\langle\lambda+s)};|s|<\pi/4\}$ ,

where $u$ is the unitary group which implements $\alpha$ (chosen in the proof of Lemma 2.3).
Since $u_{t}u_{1}u_{t}^{*}=u_{1}$ and $u_{t}^{*}$ maps the subspace $[\rho\circ\alpha_{t}(B)H_{\rho}]$ onto $[\rho(B)H_{\rho}]$ ,

Sp $(u_{1}|[\rho\circ\alpha_{t}(B)H_{\rho}])=Sp(u_{t}u_{1}u_{t}^{*}|[\rho\circ\alpha_{t}(B)H_{\rho}])$

$=Sp(u_{1}|[\rho(B)H_{\rho}])$ .

Let $B_{1}$ be the $\alpha$-invariant hereditary $C^{*}$-subalgebra generated by $B$, i.e., the closed
linear span of $\alpha_{t}(B)I\alpha_{s}(B),$ $0\leq t,$ $s\leq 1$ . Then, since $[\rho(B_{1})H_{\rho}]$ is the closed linear span of
$[\rho\circ\alpha_{t}(B)H_{\rho}],$ $0\leq t\leq 1$ , we obtain

Sp $(u_{1}|[\rho(B_{1})H_{\rho}])=Sp(u_{1}|[\rho(B)H_{\rho}])$ ,

which implies

Sp (Ad $u_{1}|\rho(B_{1})$) $\subset\{e^{is};|s|<\pi/2\}$ .

Since this is true for any irreducible representation $\rho$ with $\rho(B_{1})\neq(0)$ , which is
equivalent to $\rho(B)\neq(O)$ , we have

Sp $(\alpha_{1}|B_{1})\subset\{e^{is};|s|\leq\pi/2\}$ .
Then one can define $\delta={\rm Log}\alpha_{1}|B_{1}$ as an operator on $B_{1}$ , which is $a^{*}$-derivation

commuting with $\alpha_{s}|B_{1},$ $s\in R$ . Define an automorphism group $\beta$ of $B_{1}$ by

$\beta_{t}=\alpha_{t}\circ e^{-t\delta}=e^{-t\delta}\circ\alpha_{t}$ .
Let $h$ be a self-adjoint element of $\pi(B_{1})^{\prime\prime}$ satisfying

$\pi\circ\delta(x)=[ih, \pi(x)]$ , $x\in B_{1}$ .
Since $V_{t}\in\pi(A)^{\prime\prime}$ , and $(V_{t}hV_{t}^{*}-h)|[\pi(B_{1})H_{\pi}]\in\pi(B_{1})^{\prime}$ , it follows that

$V_{t}hV_{t}^{*}=h$ .

Since $\beta$ is periodic, there exists $e\in B_{1}^{\beta}$ such that $e\geq 0,$ $\Vert e\Vert=1$ and the hereditary $C^{*}-$

subalgebra

$D=\{x\in B_{1};ex=xe=x\}$

is non-zero. Since $t\rightarrow e^{-ith}V_{t}\pi(e)$ is norm-continuous, the restriction of $H-h$ to the
range $P$ of $\pi(D)$ must be bounded. Since the spectral projection of $H-h$ correspond-
ing to the interval $[-p,p]$ is majorized by $E[-p-\Vert h\Vert,p+\Vert h\Vert]$ , there exists $n$ such
that $P\leq E[-n, n]$ . This implies that $D\subset D_{n}$ , which concludes the proof.
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Remark. If $\alpha$ is almost uniformly continuous on $A$ , there exists an $\alpha$-invariant
hereditary $C^{*}$-subalgebra $B$ of $A$ such that $B$ generates an essential ideal of $A$ and
$\alpha|B$ is uniformly continuous. In particular the Borchers spectrum of $\alpha$ is trivial.

To show this one notes that if $\alpha|B$ is uniformly continuous, then, for any $\epsilon>0$ ,
there exists a non-zero $\alpha$-invariant hereditary $C^{*}$-subalgebra $B_{1}$ of $B$ such that the
generator of $\alpha|B_{1}$ has norm less than $\epsilon$ (e.g., pick up a non-zero $x$ of $B$ whose $\alpha-$

spectrum is contained in $(\Vert\delta\Vert-\epsilon/2, \Vert\delta\Vert$ ], where $\delta$ is the generator of $\alpha|B$, and let $B_{1}$

be the closed linear span of $\alpha_{t}(x)B\alpha_{s}(x^{*}),$ $t,s\in R$). One can form a maximal family $(B\cdot)$

of $\alpha$-invariant hereditary $C^{*}$-subalgebras such that $B_{i}AB_{j}=(0)$ for $i\neq j$ and the
generator of $\alpha|B_{i}$ has norm less than one for each $j$. Then the closed linear span of
$(B_{i})$ has the desired property.

3. Proof (2) \Rightarrow (3)

In this section we show that if $\alpha$ is almost uniformly continuous, then it is
universally weakly inner. The proof is straightforward if we admit the following:

Lemma 3.1. Let $B$ be an $\alpha$-invariant hereditary $C^{*}$-subalgebra of $A$ such that
$\alpha|B$ is uniformly continuous. Let I be the ideal generated by B. Then I is $\alpha$-invariant and
$\alpha|I$ is universally weakly inner.

Proof. This follows from the fact that $\alpha|B$ is universally weakly inner ([9],
4.1.7). See, e.g. ([8], 8.9.1).

Lemma 3.2. Let I and $J$ be $\alpha$-invariant ideals of $A$ with $I\subset J$. Suppose that $\alpha|I$

and di $|J/I$ are universally weakly inner, where $\dot{\alpha}$ is the action on $A/I$ induced by $\alpha$ . Then
$\alpha|J$ is universally weakly inner.

Proof. The universal representation of $I$ extends uniquely to a representation
of $J$ through the canonical map from $J$ into the multiplier algebra of $I$. The universal
representation of $J/I$ can be regarded as a representation of $J$. Those operations are
consistent with the actions $\alpha$ , Ct, and the direct sum of those representations is quasi-
equivalent to the universal representation of $J$.

Lemma 3.3. Let $(I_{i})$ be a family of $\alpha$-invariant ideals ofA. Suppose that $\alpha|I_{i}$ is
universally weakly innerfor each $i$. Then the restriction of $\alpha$ to the ideal generated by $(I_{i})$

is universally weakly inner.

Proof. Assuming the index set to be a well-ordered set, define for each ordinal
$k,$ $J_{k}$ to be the ideal generated by $I_{i},$ $i<k$ .

Let $k$ be an ordinal and suppose that $\alpha|J_{i}$ is universally weakly inner for each
$i<k$ . If $k$ is isolated, $J_{k}/J_{k-1}=I_{k-1}/J_{k-1}$ , and so $\alpha|J_{k}$ is universally weakly inner. If $k$

is a limit ordinal, $J_{k}$ is the closure of the union of $J_{i},$ $i<k$ . By considering the universal
representation of $J_{i}$ as a subrepresentation of the one $ofJ_{k}$ we can easily conclude that
$\alpha|J_{k}$ is universally weakly inner.

Now we can prove that $\alpha$ is universally weakly inner under the assumption that $\alpha$
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is almost uniformly continuous. Let $I$ be the maximal $\alpha$-invariant ideal of $A$ such that
$\alpha|I$ is universally weakly inner. If $I\neq A$ , we find a non-zero $\dot{\alpha}$-invariant hereditary $C^{*}-$

subalgebra $B$ of $A/I$ such that $\dot{\alpha}|B$ is uniformly continuous. By Lemmas 3.1 and 3.2
this contradicts the maximality of $I$.

4. Single automorphisms

We give a result on single automorphisms similar to the one-parameter case.
We call an automorphism $\alpha$ of a $C^{*}$-algebra $A$ to be almost derivable if, for any

$\alpha$-invariant ideal $I$ of $A$ , the automorphism $\dot{\alpha}$ of $A/I$ induced by $\alpha$ has a non-zero
$\dot{\alpha}- invarian_{t}$ hereditary $C^{*}$-subalgebra $B$ of $A/I$ on which $\dot{\alpha}$ is derivable, i.e., $\dot{\alpha}|B=$

exp $\delta$ with some *-derivation $\delta$ on $B$ .
Theorem 4.1. Let $\alpha$ be an automorphism ofa separable $C^{*}$-algebra A. Then the

following conditions are equivalent:
(1) $\alpha$ is extendible in every irreducible representation,
(2) $\alpha$ is almost derivable,
(3) $\alpha$ is universally weakly inner.

Proof. Suppose that $\alpha$ satisfies (1). Then $\alpha$ does not have an ideal on which $\alpha$ is
freely acting, i.e., $T_{B}(\alpha)=\{1\}$ ([6], [7]). Then there exists a non-zero $\alpha$-invariant
hereditary $C^{*}$-subalgebra $B$ of $A$ such that $\alpha|B=\exp\delta$ with some *-derivation $\delta$ of $B$.
Since the above procedure applies to quotients of $A$ , we have the implication (1) $\Rightarrow(2)$ .
Since automorphisms of the type exp $\delta$ are universally weakly inner, we obtain the
implication (2) $\Rightarrow(3)$ by the same reasoning as given in Sect. 3. (3) $\Rightarrow(1)$ is obvious.

The Connes spectrum $T(\alpha)$ of an automorphism $\alpha$ of a separable $C^{*}$-algebra $A$

depends only on the behaviour of $\alpha$ on the spectrum $\hat{A}$ of $A$ . Namely,

Proposition 4.2. Let $\alpha,$
$\beta$ be automorphisms of a separable $C^{*}$-algebra $A$ .

Suppose that $\pi\circ\alpha=\pi\circ\beta,$
$\pi\in\hat{A}$ . Then the set of $\alpha$-invariant ideals of $A$ equals the set of

$\beta$-invariant idelas, and $T(\dot{\alpha}|J/I)=T(\beta|J/I)$ . for any pair $I,$ $J$ of invariant ideals with
$I\subset J$.

Proof. The statement on invariant ideals is obvious.
Suppose that there is a pair $I,$ $J$ such that $T(\dot{\alpha}|J/I)\neq T(\beta|J/I)$ . Since $\pi\circ\dot{\alpha}=\pi\circ\beta$

for $\pi\in(J/I)^{r}$ , we may assume that $T(\alpha)\neq T(\beta)$ . Further by ([6], 3.1) we may as well
assume that $T_{B}(\alpha)=T(\alpha)$ and $T_{B}(\beta)=T(\beta)$ . Suppose that the order of $T(\alpha)$ is finite, say
$n$ . Then there is a non-zero $\alpha$-invariant hereditary $C^{*}$-subalgebra $B$ of $A$ such that

Sp $(\alpha^{n}|B)\subset\{e^{is};|s|<2\pi/3\}$ .

Let $I$ be the ideal generated by $B$. Then there is a unitary $u$ of $I^{**}$ such that $\alpha^{n}(x)=$

$uxu^{*},$ $x\in I$, and $\overline{\alpha}(u)=u$, where $\overline{\alpha}$ denotes the unique extension of $\alpha|I$ to $I^{**}$ . Since
$\beta\circ\alpha^{-1}$ is extendible in every irreducible representation, there is a unitary $w$ of $I^{**}$

such that $\beta(x)=w\alpha(x)w^{*},$ $x\in I$. Then $\beta^{n}|I$ is implemented by $v=w\overline{\alpha}(w)\cdots\overline{\alpha}^{n-1}(w)u$ .
Since $\beta(v)=v$ by calculation and $T_{B}(\beta^{n}|I)=\{1\}$ , there exists, for any $\epsilon>0$, a non-zero
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$\beta$-invariant hereditary $C^{*}$-subalgebra $B_{1}$ of $I$ such that

Sp $(\beta^{n}|B_{1})\subset\{e^{is};|s|<\epsilon\}$

(cf. [6], 3.3). This implies that $T(\beta)$ is contained in the subgroup of order $n$ of $T$, i.e.,
$T(\beta)\subset T(\alpha)$ .

By changing the roles of $\alpha,$ $\beta$, we would eventually have $T(\alpha)=T(\beta)$ , which is a
contradiction.
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