Yokohama Mathematical Journal Vol. 30, 1982

UNIVERSALLY WEAKLY INNER ONE-PARAMETER AUTOMORPHISM GROUPS OF C*-ALGEBRAS

By

AKITAKA KISHIMOTO

(Received May 22, 1982)

ABSTRACT. If a one-parameter automorphism group of a C^* -algebra has a strongly continuous action on its dual, it is shown to be universally weakly inner. If a single automorphism of a separable C^* -algebra is extendible in each irreducible representation, it is shown to be universally weakly inner.

1. Introduction

Let A be a C*-algebra and α a one-parameter automorphism group of A. One may consider the following four conditions on α :

(i) α is uniformly continuous, i.e., $\|\alpha_t - \iota\| \to 0$ as $t \to 0$ (where ι denotes the identity automorphism).

(ii) α is universally weakly inner, i.e., there exists a weakly* continuous oneparameter unitary group u in the second dual A^{**} of A such that $\alpha_t(x) = u_t x u_t^*, x \in A$.

(iii) α^* is strongly continuous, i.e., $\|\phi \circ \alpha_t - \phi\| \to 0$ as $t \to 0$ for any $\phi \in A^*$ (or, equivalently, for any pure state ϕ of A).

(iv) α is strongly continuous, i.e., $\|\alpha_t(x) - x\| \to 0$ as $t \to 0$ for any $x \in A$.

Then $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv)$; $(i) \Rightarrow (ii)$ follows from Sakai's theorem on derivations ([9], 4.1) and the other implications are standard (see, e.g., [1], 3.1.8). In general $(iv) \Rightarrow (iii)$ and $(ii) \Rightarrow (i)$. In this note we shall show that (iii) implies (ii).

For the proof we introduce the following notion: α is said to be *almost uniformly* continuous if, for any α -invariant (closed two-sided) proper ideal I of A, the action on the quotient A/I induced by α has a non-zero invariant hereditary C*-subalgebra on which the induced action is uniformly continuous.

Now we state our main result:

Theorem 1.1. Let A be a C*-algebra and α a one-parameter automorphism group of A. Then the following conditions are equivalent:

- (1) α^* is strongly continuous,
- (2) α is almost uniformly continuous,
- (3) α is universally weakly inner.

For another characterization of those automorphism groups, see Elliott [3] (and also [2]).

A. KISHIMOTO

If α is uniformly continuous on an α -invariant hereditary C*-subalgebra B of A, and if F is a subset of A whose α -spectrum is compact, then α is uniformly continuous on the closed linear span of $\alpha_t(x)B\alpha_s(y^*)$, $x, y \in F$, $t, s \in \mathbb{R}$ (e.g., as shown by using [1], 3.2.42). Thus if the C*-algebra is simple and unital, 'almost uniform continuity' implies 'uniform continuity'. In this way the above theorem implies 7 in [4] and, similarly 2.4 in [5]. In fact the proof of the theorem is obtained by combining the techniques used in those papers.

We show that $(1)\Rightarrow(2)$ in Sect. 2, and that $(2)\Rightarrow(3)$ in Sect. 3. We give a similar result on single automorphisms of separable C^* -algebras in Sect. 4. Finally we show that the Connes spectrum of an automorphism of a separable C^* -algebra A depends only on its action on the spectrum \hat{A} of A.

2. Proof $(1) \Rightarrow (2)$

In this section α denotes a one-parameter automorphism group of a C*-algebra A and is assumed to have a strongly continuous action on the dual A^* .

Since α is extendible in every irreducible representation, it leaves any (primitive) ideal invariant. If I is a (closed two-sided) ideal of A, the induced action $\dot{\alpha}$ on the quotient A/I is defined by

$$\dot{\alpha}_t \circ q(x) = q \circ \alpha_t(x) , \qquad x \in A ,$$

where q is the quotient map from A onto A/I. If $\phi \in (A/I)^*$, then

$$\|\phi \circ \dot{\alpha}_t - \phi\| = \|(\phi \circ \dot{\alpha}_t - \phi) \circ q\| = \|\phi \circ q \circ \alpha_t - \phi \circ q\|.$$

This implies that $\dot{\alpha}^*$ is strongly continuous on $(A/I)^*$.

By using this fact, to prove that α is almost uniformly continuous, it suffices to show that there exists a non-zero α -invariant hereditary C*-algebra B of A such that $\alpha \mid B$ is uniformly continuous.

Lemma 2.1. Let B_0 be a non-zero hereditary C*-algebra of A and r < 1. Then there exist $\delta > 0$ and a non-zero hereditary C*-subalgebra B of B_0 such that

$$\inf \{ \|x\alpha_t(x)\|; x \in B, 0 \le x, \|x\| = 1, 0 < t < \delta \} > r.$$

Proof. Suppose the contrary. Then there are B_0 and r < 1 such that for any $\delta > 0$ and B the infimum is not larger than r. Then as in the proof of 2.1 in [5], we may find $e_1, a_1 \in B_0$, and $t_1 \in (0, 1)$ such that

$$e_1, a_1 \ge 0$$
, $||e_1|| = ||a_1|| = 1$, $e_1a_1 = a_1$, $||e_1\alpha_{t_1}(e_1)|| \le r$.

Similarly we find e_2 , $a_2 \in \overline{a_1 B_0 a_1}$, and $t_2 \in (0, 1/2)$ satisfying the same conditions as for (e_1, a_1, t_1) . In this way we construct e_n , $a_n \in \overline{a_{n-1} B_0 a_{n-1}}$, and $t_n \in (0, 1/2^n)$. Since $e_n e_{n-1} = e_n$ for all *n*, there is a pure state ϕ of *A* satisfying that $\phi(e_n) = 1$ for all *n*. Then

$$\|\phi - \phi \circ \alpha_{t_n}\| \ge \phi(e_n) - \phi \circ \alpha_{t_n}(e_n) \ge 1 - \|e_n \alpha_{t_n}(e_n)\| \ge 1 - r$$

Thus $t \mapsto \phi \circ \alpha_t$ is not norm-continuous, which is a contradiction.

Lemma 2.2. Let B_0 be a non-zero hereditary C^* -subalgebra of A and $\varepsilon > 0$. Then there exist $\delta > 0$ and $e \in B_0$ with $e \ge 0$, ||e|| = 1, such that

$$\sup \{ \|e(\alpha_t(x) - x)e\|; x \in A, \|x\| = 1, 0 < t < \delta \} < \varepsilon .$$

Proof. Suppose the contrary. There are B_0 and $\varepsilon > 0$ such that for any $\delta > 0$ and ε the supremum is not smaller than ε . Then we can adopt the proof of Lemma 6 in [4] with obvious modifications and would obtain a pure state ϕ with the property that $t \mapsto \phi \circ \alpha_t$ is not norm-continuous, which is a contradiction.

Lemma 2.3. In the atomic representation π of A, there exists a unitary group V in $\pi(A)''$ such that

$$V_t \pi(x) V_t^* = \pi \circ \alpha_t(x) , \qquad x \in A ,$$

and

 $I \equiv \{x \in A; t \mapsto V_t \pi(x) \text{ is norm-continuous}\}$

is a non-zero ideal of A.

Proof. By Lemma 2.2 there exist $\delta > 0$ and $e \in A$ with $e \ge 0$, ||e|| = 1, such that

(*)
$$\sup \{ \|e(\alpha_t(x) - x)e\|; x \in A, \|x\| = 1, 0 < t < \delta \} < 1/3 .$$

We may suppose that there is $a \in A$ with $a \ge 0$, ||a|| = 1, ea = a. Let r < 1 be a number given for $\varepsilon = 1/3$ in the following lemma. By Lemma 2.1, there exist $\delta_1 \in (0, \delta)$ and a non-zero hereditary C*-subalgebra B_1 of \overline{aAa} such that

 $\inf \{ \|x\alpha_t(x)\|; x \in B_1, 0 \le x, \|x\| = 1, 0 < t < \delta_1 \} > r.$

We may further suppose that there is $e_1 \in \overline{aAa}$ with $e_1 \ge 0$, such that

 $B_1 = \{x \in A; e_1 x = x e_1 = x\}$.

Note that (*) holds for e_1 , δ_1 instead of e, δ respectively.

Let ρ be an irreducible representation of A with $\rho(B_1) \neq (0)$. Then there exists a weakly continuous unitary group u on H_{ρ} such that

$$u_t \rho(x) u_t^* = \rho \circ \alpha_t(x), \qquad x \in A.$$

Let Φ be a unit vector in $[\rho(B_1)H_{\rho}]$. Then $\rho(e_1)\Phi = \Phi$, and Φ satisfies

$$|(\Phi, u_t\Phi)| \ge r$$

for $t \in (0, \delta_1)$ (see ([7], 5.3) or proof of ([5], 1.1)). Then, since r is chosen for $\varepsilon = 1/3$ in the following lemma, we have for some $\lambda \in \mathbf{R}$,

$$\|\Phi - e^{i\lambda t}u_t\Phi\| < 1/3$$
, $t \in [0, \delta_1]$.

Now we denote $e^{i\lambda t}u_t$ by u_t . As in the proof of Lemma 5 in [4],

$$\begin{aligned} \|(\rho(e_1)u_t - \rho(e_1))\rho(x)\Phi\| &\leq \|\rho(e_1)u_t\rho(x)u_t^*\rho(e_1)\Phi - \rho(e_1)\rho(x)\rho(e_1)\Phi\| + \|\rho(x)\| \cdot \|u_t^*\Phi - \Phi\| \\ &\leq \|e_1(\alpha_t(x) - x)e_1\| + \|x\| \cdot \|\Phi - u_t\Phi\| \end{aligned}$$

Hence, since ρ is irreducible,

$$\|\rho(e_1)u_t - \rho(e_1)\| < 2/3$$
, $0 < t < \delta_1$.

For each irreducible representation ρ with $\rho(B_1) \neq (0)$, we fix u in the above way, and for ρ with $\rho(B_1) = (0)$, we choose u arbitrarily (such that $u_t \rho(x) u_t^* = \rho \alpha_t(x), x \in A$). By taking the direct sum V of u so obtained in the atomic representation π of A, we have that

$$\|\pi(x)V_t - \pi(x)\| \le 2/3$$
, $0 < t < \delta_1$

for $x \in B_1$ with ||x|| = 1. This implies that $B_1 \subset I$ (Lemma 4 in [4]).

Remark. In the above proof we have used that

$$\sup \{ \|e(\alpha_t(x) - x)e\|; x \in A, \|x\| = 1, 0 < t < \delta \}$$

can be small for some e and δ . Instead of this we could use, with straightforward modifications, that

$$\sup \{ \|\alpha_t(x) - x\|; x \in B, \|x\| = 1, 0 < t < \delta \}$$

can be small for some non-zero hereditary C*-subalgebra B of A and some $\delta > 0$, which is shown by Lemma 2.1 and ([7], 5.1).

Lemma 2.4. Let $\varepsilon > 0$, Φ a unit vector, and u a weakly continuous unitary group. Then there exist r < 1, which depends only on ε , and $\lambda \in \mathbb{R}$ such that if for some $\delta > 0$

 $|(\Phi, u_t \Phi)| \ge r$, $t \in (0, \delta)$,

then

 $\|\Phi - e^{i\lambda t}u_t\Phi\| < \varepsilon, \qquad t \in (0, \delta).$

Proof. Suppose that r is close to 1. Define f as a continuous function on $[0, \delta]$ by

 $\exp i f(t) = (\Phi, u_t \Phi) / |(\Phi, u_t \Phi)|, \quad f(0) = 0.$

By changing u_t by $\exp(-if(\delta)t/\delta)u_t$, we may suppose that $f(\delta) = 0$. Now for $t \in [0, \delta]$,

$$|(\Phi, u_{t+s}\Phi) - (\Phi, u_t\Phi)(\Phi, u_s\Phi)| = |(\Phi - e^{-if(t)}u_t\Phi, u_{t+s}\Phi) - (\Phi, u_t\Phi - e^{if(t)}\Phi)(\Phi, u_s\Phi)| \le 2\|\Phi - e^{-if(t)}u_t\Phi\| < 2\sqrt{2}\sqrt{1-r}.$$

Hence for $t, s \in [0, \delta]$ with $t + s \in [0, \delta]$

$$|\exp if(t+s) - \exp if(t) + if(s)| \le |(\Phi, u_{t+s}\Phi) - (\Phi, u_t\Phi)(\Phi, u_s\Phi)| + 1 - r + 1 - r^2 \le 2\sqrt{2}\sqrt{1 - r} + 2 - r - r^2 \equiv 2\sin\theta/2,$$

144

where θ is chosen from $(0, \pi/6)$ for r sufficiently close to 1. Thus, using the continuity of f, we have

$$|f(t+s) - f(t) - f(s)| \le \theta$$

Let t_0 be a point of $[0, \delta]$ such that

$$|f(t_0)| = \max \{|f(t)|; 0 \le t \le \delta\}.$$

Suppose that $f(t_0) > 3\theta$. Then $t_0 > \delta/2$. Because, otherwise $|f(2t_0) - 2f(t_0)| \le \theta$ implies that $f(2t_0) \ge 2f(t_0) - \theta > f(t_0) + 2\theta$, a contradiction. Since $|f(t_0) + f(\delta - t_0)| \le \theta$, we obtain

$$f(\delta - t_0) \le -f(t_0) + \theta$$

and so

$$f(2\delta - 2t_0) \le 2f(\delta - t_0) + \theta \le -2f(t_0) + 3\theta < -f(t_0)$$

which is a contradiction. Hence $f(t_0) \le 3\theta$. Similarly $f(t_0) \ge -3\theta$ i.e., $|f(t)| \le 3\theta$ for $t \in [0, \delta]$.

Lemma 2.5. The Borchers spectrum $\mathbf{T}_{B}(\alpha_{t})$ of α_{t} is {1} for each $t \in \mathbf{R}$ (see ([8], 8.8) for Borchers spectrum).

Proof. Using Lemma 2.1 we take $\delta > 0$ and a non-zero hereditary C^* -subalgebra B of A such that

$$\inf \{ \|x\alpha_t(t)\|; x \in B, 0 \le x, \|x\| = 1, 0 < t < \delta \} > 1/2.$$

If *I* denotes the ideal generated by *B*, then $T_B(\alpha_t | I) = \{1\}$ for all *t*. Otherwise there exist $t \in (0, \delta)$ and an ideal *J* of *I* such that α_t is freely acting on *J*. Then, since $B \cap J \neq (0)$, we must have

$$\inf \{ \|x\alpha_t(x)\|; x \in B \cap J, x \ge 0, \|x\| = 1 \} = 0$$

which is a contradiction (cf. [6]).

. . . .

Let (I_i) be a maximal family of such ideals such that $I_iI_j = (0)$ for $i \neq j$. Then, by Lemma 2.1, the ideal generated by (I_i) is essential in A. Therefore it follows that $\mathbf{T}_B(\alpha_i) = \{1\}$.

Now we come to the proof of α being almost uniformly continuous.

Let V be the unitary group on the atomic representation space given in Lemma 2.3. Let H be the infinitesimal generator of V and E its spectral resolution:

$$H=\int \lambda dE(\lambda)$$
.

Let, for n > 0,

$$D_n = \{x \in A; E[-n, n]\pi(x)E[-n, n] = \pi(x)\}$$

Then D_n is an α -invariant hereditary C^* -subalgebra of A and the restriction of α to D_n is uniformly continuous. Hence we have only to show that D_n is non-zero for large n.

A. KISHIMOTO

Since $T_B(\alpha_1) = \{1\}$, by ([8], 8.8.7) there is a non-zero α_1 -invariant hereditary C*-subalgebra B of A such that $B \subset I$ and

$$\operatorname{Sp}(\alpha_1 | B) \subset \{e^{is}; |s| < \pi/2\}$$
.

Then, for an irreducible representation ρ with $\rho(B) \neq (0)$, there is $\lambda \in \mathbf{R}$ such that

Sp
$$(u_1 | [\rho(B)H_{\rho}]) \subset \{e^{i(\lambda+s)}; |s| < \pi/4\},\$$

where u is the unitary group which implements α (chosen in the proof of Lemma 2.3). Since $u_t u_1 u_t^* = u_1$ and u_t^* maps the subspace $[\rho \circ \alpha_t(B)H_\rho]$ onto $[\rho(B)H_\rho]$,

$$\operatorname{Sp}(u_1 | [\rho \circ \alpha_t(B)H_\rho]) = \operatorname{Sp}(u_t u_1 u_t^* | [\rho \circ \alpha_t(B)H_\rho])$$
$$= \operatorname{Sp}(u_1 | [\rho(B)H_\rho]).$$

Let B_1 be the α -invariant hereditary C*-subalgebra generated by B, i.e., the closed linear span of $\alpha_t(B)I\alpha_s(B), 0 \le t, s \le 1$. Then, since $[\rho(B_1)H_\rho]$ is the closed linear span of $[\rho \circ \alpha_t(B)H_\rho], 0 \le t \le 1$, we obtain

$$\operatorname{Sp}(u_1 | [\rho(B_1)H_{\rho}]) = \operatorname{Sp}(u_1 | [\rho(B)H_{\rho}]),$$

which implies

Sp (Ad
$$u_1 | \rho(B_1)) \subset \{e^{is}; |s| < \pi/2\}$$
.

Since this is true for any irreducible representation ρ with $\rho(B_1) \neq (0)$, which is equivalent to $\rho(B) \neq (0)$, we have

$$\operatorname{Sp}(\alpha_1 | B_1) \subset \{e^{is}; |s| \leq \pi/2\}$$
.

Then one can define $\delta = \text{Log } \alpha_1 | B_1$ as an operator on B_1 , which is a *-derivation commuting with $\alpha_s | B_1$, $s \in \mathbb{R}$. Define an automorphism group β of B_1 by

$$\beta_t = \alpha_t \circ e^{-t\delta} = e^{-t\delta} \circ \alpha_t$$

Let h be a self-adjoint element of $\pi(B_1)^{\prime\prime}$ satisfying

$$\pi \circ \delta(x) = [ih, \pi(x)], \qquad x \in B_1.$$

Since $V_t \in \pi(A)''$, and $(V_t h V_t^* - h) | [\pi(B_1) H_{\pi}] \in \pi(B_1)'$, it follows that

$$V_t h V_t^* = h$$
.

Since β is periodic, there exists $e \in B_1^{\beta}$ such that $e \ge 0$, ||e|| = 1 and the hereditary C*-subalgebra

$$D = \{x \in B_1; ex = xe = x\}$$

is non-zero. Since $t \to e^{-ith}V_t\pi(e)$ is norm-continuous, the restriction of H-h to the range P of $\pi(D)$ must be bounded. Since the spectral projection of H-h corresponding to the interval [-p, p] is majorized by E[-p - ||h||, p + ||h||], there exists n such that $P \le E[-n, n]$. This implies that $D \subset D_n$, which concludes the proof.

146

A ONE-PARAMETER AUTOMORPHISM GROUP OF A C*-ALGEBRA

Remark. If α is almost uniformly continuous on A, there exists an α -invariant hereditary C^* -subalgebra B of A such that B generates an essential ideal of A and $\alpha \mid B$ is uniformly continuous. In particular the Borchers spectrum of α is trivial.

To show this one notes that if $\alpha | B$ is uniformly continuous, then, for any $\varepsilon > 0$, there exists a non-zero α -invariant hereditary C^* -subalgebra B_1 of B such that the generator of $\alpha | B_1$ has norm less than ε (e.g., pick up a non-zero x of B whose α spectrum is contained in $(||\delta|| - \varepsilon/2, ||\delta||]$, where δ is the generator of $\alpha | B$, and let B_1 be the closed linear span of $\alpha_t(x)B\alpha_s(x^*)$, $t, s \in \mathbb{R}$). One can form a maximal family (B_i) of α -invariant hereditary C^* -subalgebras such that $B_iAB_j = (0)$ for $i \neq j$ and the generator of $\alpha | B_i$ has norm less than one for each i. Then the closed linear span of (B_i) has the desired property.

3. **Proof** $(2) \Rightarrow (3)$

In this section we show that if α is almost uniformly continuous, then it is universally weakly inner. The proof is straightforward if we admit the following:

Lemma 3.1. Let B be an α -invariant hereditary C*-subalgebra of A such that $\alpha \mid B$ is uniformly continuous. Let I be the ideal generated by B. Then I is α -invariant and $\alpha \mid I$ is universally weakly inner.

Proof. This follows from the fact that $\alpha | B$ is universally weakly inner ([9], 4.1.7). See, e.g. ([8], 8.9.1).

Lemma 3.2. Let I and J be α -invariant ideals of A with $I \subset J$. Suppose that $\alpha | I$ and $\dot{\alpha} | J/I$ are universally weakly inner, where $\dot{\alpha}$ is the action on A/I induced by α . Then $\alpha | J$ is universally weakly inner.

Proof. The universal representation of I extends uniquely to a representation of J through the canonical map from J into the multiplier algebra of I. The universal representation of J/I can be regarded as a representation of J. Those operations are consistent with the actions α , $\dot{\alpha}$, and the direct sum of those representations is quasi-equivalent to the universal representation of J.

Lemma 3.3. Let (I_i) be a family of α -invariant ideals of A. Suppose that $\alpha | I_i$ is universally weakly inner for each i. Then the restriction of α to the ideal generated by (I_i) is universally weakly inner.

Proof. Assuming the index set to be a well-ordered set, define for each ordinal k, J_k to be the ideal generated by $I_i, i < k$.

Let k be an ordinal and suppose that $\alpha | J_i$ is universally weakly inner for each i < k. If k is isolated, $J_k/J_{k-1} = I_{k-1}/J_{k-1}$, and so $\alpha | J_k$ is universally weakly inner. If k is a limit ordinal, J_k is the closure of the union of J_i , i < k. By considering the universal representation of J_i as a subrepresentation of the one of J_k we can easily conclude that $\alpha | J_k$ is universally weakly inner.

Now we can prove that α is universally weakly inner under the assumption that α

A. KISHIMOTO

is almost uniformly continuous. Let I be the maximal α -invariant ideal of A such that $\alpha | I$ is universally weakly inner. If $I \neq A$, we find a non-zero α -invariant hereditary C*-subalgebra B of A/I such that $\alpha | B$ is uniformly continuous. By Lemmas 3.1 and 3.2 this contradicts the maximality of I.

4. Single automorphisms

We give a result on single automorphisms similar to the one-parameter case.

We call an automorphism α of a C*-algebra A to be almost derivable if, for any α -invariant ideal I of A, the automorphism $\dot{\alpha}$ of A/I induced by α has a non-zero $\dot{\alpha}$ -invariant hereditary C*-subalgebra B of A/I on which $\dot{\alpha}$ is derivable, i.e., $\dot{\alpha}|B = \exp \delta$ with some *-derivation δ on B.

Theorem 4.1. Let α be an automorphism of a separable C*-algebra A. Then the following conditions are equivalent:

- (1) α is extendible in every irreducible representation,
- (2) α is almost derivable,
- (3) α is universally weakly inner.

Proof. Suppose that α satisfies (1). Then α does not have an ideal on which α is freely acting, i.e., $T_B(\alpha) = \{1\}$ ([6], [7]). Then there exists a non-zero α -invariant hereditary C*-subalgebra B of A such that $\alpha | B = \exp \delta$ with some *-derivation δ of B. Since the above procedure applies to quotients of A, we have the implication (1) \Rightarrow (2). Since automorphisms of the type $\exp \delta$ are universally weakly inner, we obtain the implication (2) \Rightarrow (3) by the same reasoning as given in Sect. 3. (3) \Rightarrow (1) is obvious.

The Connes spectrum $T(\alpha)$ of an automorphism α of a separable C*-algebra A depends only on the behaviour of α on the spectrum \hat{A} of A. Namely,

Proposition 4.2. Let α , β be automorphisms of a separable C*-algebra A. Suppose that $\pi \circ \alpha = \pi \circ \beta$, $\pi \in \hat{A}$. Then the set of α -invariant ideals of A equals the set of β -invariant ideals, and $\mathbf{T}(\alpha | J/I) = \mathbf{T}(\beta | J/I)$. for any pair I, J of invariant ideals with $I \subset J$.

Proof. The statement on invariant ideals is obvious.

Suppose that there is a pair *I*, *J* such that $T(\alpha | J/I) \neq T(\beta | J/I)$. Since $\pi \circ \alpha = \pi \circ \beta$ for $\pi \in (J/I)^{\widehat{}}$, we may assume that $T(\alpha) \neq T(\beta)$. Further by ([6], 3.1) we may as well assume that $T_B(\alpha) = T(\alpha)$ and $T_B(\beta) = T(\beta)$. Suppose that the order of $T(\alpha)$ is finite, say *n*. Then there is a non-zero α -invariant hereditary C*-subalgebra *B* of *A* such that

$$Sp(\alpha^n | B) \subset \{e^{is}; |s| < 2\pi/3\}$$
.

Let *I* be the ideal generated by *B*. Then there is a unitary *u* of I^{**} such that $\alpha^n(x) = uxu^*$, $x \in I$, and $\bar{\alpha}(u) = u$, where $\bar{\alpha}$ denotes the unique extension of $\alpha \mid I$ to I^{**} . Since $\beta \circ \alpha^{-1}$ is extendible in every irreducible representation, there is a unitary *w* of I^{**} such that $\beta(x) = w\alpha(x)w^*$, $x \in I$. Then $\beta^n \mid I$ is implemented by $v = w\bar{\alpha}(w) \cdots \bar{\alpha}^{n-1}(w)u$. Since $\bar{\beta}(v) = v$ by calculation and $T_B(\beta^n \mid I) = \{1\}$, there exists, for any $\varepsilon > 0$, a non-zero β -invariant hereditary C*-subalgebra B_1 of I such that

$$\operatorname{Sp}(\beta^n | B_1) \subset \{e^{is}; |s| < \varepsilon\}$$

(cf. [6], 3.3). This implies that $T(\beta)$ is contained in the subgroup of order *n* of **T**, i.e., $T(\beta) \subset T(\alpha)$.

By changing the roles of α , β , we would eventually have $T(\alpha) = T(\beta)$, which is a contradiction.

References

- [1] O. Bratteli and D. W. Robinson: Operator algebras and quantum statistical mechanics, I, Springer-Verlag, New York-Heidelberg-Berlin, 1979.
- [2] L. G. Brown and G. A. Elliott: Universally weakly inner one-parameter automorphism groups of separable C*-algebras, II, preprint.
- [3] G. A. Elliott: Universally weakly inner one-parameter automorphism groups of separable C*-algebras, Math. Scand. 45, (1979), 139–146.
- [4] A. Kishimoto: Universally weakly inner one-parameter automorphism groups of simple C*-algebras, Yokohama Math. J., 29 (1981), 89-100.
- [5] A. Kishimoto: Outer automorphisms and reduced crossed products of simple C*-algebras, Commun. Math. Phys., 81 (1981), 429–435.
- [6] A. Kishimoto: Freely acting automorphisms of C*-algebras, Yokohama Math. J., 30 (1982), 39-47.
- [7] D. Olesen and G. K. Pedersen: Applications of the Connes spectrum to C*-dynamical systems, III, J. Functional Analysis, 45 (1982), 357-390.
- [8] G. K. Pedersen: C*-algebras and their automorphism groups, Academic Press, London-New York-Berlin, 1979.
- [9] S. Sakai: C*-algebras and W*-algebras, Springer-Verlag, New York-Heidelberg-Berlin, 1971.

Department of Mathematics Yokohama City University Yokohama 236, Japan