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1. Introduction.

Recently, in a series of papers, Ibragimov and Khas’minskii studied the
asymptotic behavior of a normalized likelihood function of the form

[TAX, 80+ 6/0(m)
Z,6)=-

l:[ f(X J 00)

treating it as a random function of 8 where (X, - - -, X,) is a repeated sample of size n
from a population P, depending on an unknown parameter 8 € @. Specially, in
they proved that under some conditions Z, converges weakly to some Gaussian
process Z. Their results give many powerful tools in the investigation of asymptotic
problems for statistics.

In 1977, Bakirov [1] reported that he proved the analogous weak converg@nce
theorem when {X,} is a strictly stationary sequence of random variables satisfying
some absolute regularity condition. But, the conditions he considered are difficult to
check in a certain sense.

The object of this paper is to prove the weak convergence theorem for
observations satisfying some absolute regularity conditions under different re-
strictions from Bakirov’s (Theorem 4.4).

2. Assumptions and notations.

Let © be an open set in the real line R!. Suppose that a family of probability
space (2, F, Py, 0€®) is given. Let {£,, —oo<n<oo} be a strictly stationary
sequence of random variables with values in the measurable space (€, &). Let £,"=
(&m -, &,) denote a random element in the direct product

qrmtl_ 9 Z; (%‘i=‘%’"i=m, -ee,n),

I=m
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let #," denote the smallest g-algebra generated by &,", and let P," be the projection
of the measure P, on & ,".
We assume that the sequence {£,} satisfies an absolute regularity (a.r.) condition

(2.1) B.,=ﬂ(n)=glelg B(n,6)10

as n— oo where for each 0e®

2.2) Bn, )= Eo{;l;rpwl Py(A4]|F2 )~ PyA) I} '

and Ey(-) denotes the expectation with respect to Py(-).
Let (', o, v) be a measurable space with o-finite measure v. Put

A= X o, (A=oA,i=1, -, n) (z1).
i=1
For each 0e® let P, and P, (n=m=1) be the probability measures defined
respectively by

PyA)=Py((Z e AN Ae A <)

and i
Py"(B)=Py(¢,"€ BY(Be A™) .

We assume that the measure P," is absolutely continuous with respect to the
product measure v*=v x - - - x v and defines the probability density

23) JOxq", 9)=d£‘,’,—"(x1")

which is o/ " x #-measurable. Here, x,Fe Z?79"! and £ is the smallest o-algebra of
all Borel subsets of R!. For n=p>1and §e® let f (x,"1x,7~1, 6) be the conditional
probability density function or the probability density function, i.e.,

Py¢,""1eB, ¢, "€ A) =f SO P71, O)vP ™ Y(dx, P~ l)f SO %4771, 6" ~PH H(dx,")
B A

(Besf?"1 and Ae " Pt

where f(x,"| x,°, 0)=f(x,", 8) (m=1) denotes the probability density function.
Let us now formulate the restrictions to be imposed on the family £,, 6 ®
which will be used below (cf. [1] and [3).

Conditions of group 1. 1,. The parameter set @ is an open interval (bounded
or unbounded ) of R

I,. For any n the functions f(x, | x," "', 6) are defined for all x,"e Z" and 0 ®
and /" x #-measurable.

I,. If 0+#6’, then B,=P,. More precisely, if 0+ 6’, then for all n and p (n2p)
and for v*~!-almost all x,7~?
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2.5) J " (" 14772, 0)—f(x," | X, 72, @) | v"~P* H(dx,") >0
xXn—p )

Whenever the integrations with respect to x," are over all of X" ~?*! we shall agree to
omit the region of integration and to write v(dx,") instead of v"~?*(dx,").

Conditions of group II. 1II,. For any n (Z1) and for any fixed x,", the
function f(x,|x," "1, 6) is defined and continuously twice differentiable in the closure
©° of O.

We put
_ 0 -
(2.6) "1 x,P71, 9)=5~Hf(x,,"|x1" 1L 0).
II,. For all n (=1) and for v*~-almost all x," !
27 ff'(xn |%," 4, e)v(dxn)=%ff(x,, |%," ", )w(dx,)=0.
For any n and k (n=k), let
f(a1&" 1 0) . _
- , f &ML 0)>0
28) Un,k<o)={f(5,. &g 1 SGINTLO
0, otherwise.
II;. There exists a number é (>0) such that
(2.9 supsup E,| U, 1(0)|**°< o0
0e® n21
and
2+é
(2.10) supsup E, M 0 .
6e®n21 69
For each n (21) and for each e ®, put
(2.11) I, 16", 0)=E,| U, ,(0)|?
and for each e @
(2.12) I(6)=lim % Y g40)
nsoo N ;=4
where
213)  gO=IC|' 7 0+2 Y E{U,(0)U;.(6)} (=12 --)
j=i+1

(The existence of limits in the right-hand sides of and (2.13), respectively, are
verified in Propositions and 3.3 (below).)
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II,. I(6) is a positive and continuous function of 6 e ©°.
II;. There exists a number d (=0) such that

(2.14) s’uep(l +16)"1(f)< o .

Conditions of group III. 1II,. The sequence {f(n)} defined by satisfy the
condition

(2.15) > kB,* <0
where B,*=,%2@*9 and § is the same one in II,.
III,. For any ¢>0 and k (1), let
(2.16) wk, 6, C)—- ,Sup_ sup {Eg|U,,1(6) = U, - (0) 4314

9'—0|scn2k

There exists a positive number ¢, such that
(2.17) vk=v(k)=§ug Wk, 8, co)=0(k™?)

as k—oo.

Conditions of group IV. 1V;. There exists a positive number d, such that for
all @ and 6’ in @

(2.18) supess.sup |6 — 6| f 1% 8 0)f(x, 1 %, 71, 0)Wdx,) < 0 .
nz1 x71
IV,. Instead of III; and III,, B(n)=O(e ™ *'") and y(n) = O(e~**") hold as n— oo,
where 4, and A, are some positive constants.

Remark 2.1. If Conditions I-III are satisﬁed then it is obvious that for any
fixed p, gand 0e O{f' (& 181 &n- 0 OV (EnTT1En_p 00}, n=0, £1, £2, - - - is astrictly
stationary sequence satisfying the a.r. condition with the same coefficient f, as that of

{&a}-

Remark 2.2. 1t is obvious that the condition y(n)= O(e™*?") is satisfied if {£,}
possesses the r-th order Markov property, where r=1, i.e., for any e &

PB(€n+IEA|éO’ Tt é,,)=P9(€n+1GA|§,,—,.+1, Tt én) (ngr—l) .

In what follows, K (with or without subscript) will stand for a quantity not
depending on the parameters occurring in the discussion and the same letter K will be
used to denote different constants even within the same formula. For any se R* [s]
denotes the largest integer p such that p<s. Instead of Ey(+), P,(-) and U, ,(6) where
0 is the true value of the parameter, let us agree to write E(-), P(-) and U, ,. For any
integrable random variable |n|" we write

Inll,={EInI"}*"  (r>0).
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3. Preliminary resuits.

In this section, we always assume that Conditions I, III and II,-1II, are satisfied.
The next lemma is a special case of Deo’s result ([2], Lemma 1).

Lemma 3.1. Let r,, r,, ry be positive numbers such that r," ' +r, 1 4r; 1 =1.

Suppose that X and Y are random variables measurable with respect to #° _, #,

respectively and assume further that | X|,, < oo and | Y|,,< . Then for all 6 ®
(3.1 | Ef( XY) — Eo(X)Eo(Y) | <108,'| X}, Il Y1, .

For g<p=n, let
(32) Vn,q,p(o) = Un,q(e) - Un,p(e)

and for brevity, put U, ,(8)=U,6) and V,, ,(0)= V(@) (1 =p<n). Since U, ,e F,"
and by II, EU, ,=0 for all n and p (p<n), so by Lemma 3.1 and II,

(3.3) | EUU; (| S| EU;» EU,; |+ 10| Ul 2+ 51 Uj sl 2 + B2 G+ 2
SKBr: (i<ss)).
Further by Hélder’s inequality and
3.4 |EU; " V5,0l S WUi gll2 48l Vs, pll 2 + 31 +8)
=Ky;-, (s=p<))
and

(3.5) BV, g,

,4,p Vj,q,pllz +4 ” Vj,q,p”(Z +43)/(1+9)

=Ky;-, (@=p<)).
Hence, for any s (i<s <))
(3.6) |EU,U; | S| EUU; |+ | EUV 4|
SK{Bri+7vj-s}-
Further, if g<p<i<s<j, then Ve F. . and so by II, and Lemma 3.1
3.7 | EV; |SVEV,; 0 pUis| 1 EVi g oVips!
SKy - {B-it7-s) -

&P Uj,p

Proposition 3.1. For each 0€ © lim I(&,| £,"7Y, 0) exists and is finite.

Proof. Let 0€ ® be fixed. Since for any n and q (g <n)
| Un|2=| Un,n—q+l |2+2Un,n—q+1 Vn,n—q+1+| Vn,n—q+1 |2 ’
so using Remark 2.1, |(3.4) and [(3.5)
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E|U 12 =Ky, SIC, | &7 O SEU 1>+ Ky +752
As 7,10 (g— ), so for any £>0 we can choose p such that
2K y,+7,° <t.
Let ny=p. Then, for all m, n (>ny)
| K& 171, 0)— I, 18,770, 0) | <é,

which implies that
lim I(,1¢,"7%, 6)

n—o

exists. The finiteness of the limit is now obvious, and so the proof is completed.

Proposition 3.2. The series in (2.12) are absolutely convergent and the limit in
(2.11) exists and is finite.

Proof. Let 8€ @ be fixed. To prove the first-part it is enough to show that for
each i (=1) the series

j=i+1
is absolutely convergent. In putting s=[(i+)/2]+ 1 for each j and using III we
obtain

[« o]

Y |EUUIZUl N Uirall+ 1Uill2 1 U2l

j=i+1
o« 3 ()5 D
j=i+2 2 2
which is the desired result.

To prove the latter-half, it suffices to show that for each 6€ © }gg h/6) exists and
is finite, since by [Proposition 3.1

lim I(£,1£,"71, 0)

n— oo

exists and is finite. Let i be sufficiently large. For any j (>i) and ¢q (1 <g <)
EUU;=EU;; Ui+ EU;; Vgt EVii Ui g+ EV,; Viiq-
So, by (3.4)«3.7)

i—q W—q di—q i—q

Y Al EU; i Vii-| FEVi_ Ui | +1EV i V;i- g1}

j=i+1

SK Y {Vj-ivqtVeBE-itVi-s) ¥ VeV i}

j=i+1

=M(q) (say),
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where s;=[(i+/)/2]+1 for each j (Zi+1). M(g) is obviously independent on i (>gq)
and 0e®, and from III M(q)—0 as g—oo. On the other hand, by stationarity
EU; ;- U;i-q=EU,1U;_; 1 441 So for all ¢ sufficiently large and for all i(>9)

i,i-q“ji—q
hq+1—M(q)§hi§hq+1 +M(q) .

Hence, by the method used in the proof of [Proposition 3.1 we can show that {A,} is a
Cauchy sequence, i.e., lim A; exists. The finiteness of the limit is easily obtained. So,
the proof is completed.

Proposition 3.3. For any 6 ®

.1 11" 0)|?
38 I(0)=1lim —E|—-"~
(3.8) © o ElTEm 0
Proof. Put W,=| f"(&,", 0)/f(&,", 6)|* and let h; be as before. Then
n 2 n
j=1 i=1 15i<jsn

We note that from III, B, =o(k~2) since {B,} is a nonincreasing sequence. Hence,
from and III, we obtain that for an arbitrarily fixed integer ¢ (=1)

=K [q+;1 Jjﬂ {ﬂ;",._i+v,-_s,-}J
sxloen 5 (5] (52D

<K{g+nq~'}
where s;=[(i+/)/2] +1 for each j (Zi+1). Now, putting g=[n' "] (0<a < 1), we have

T (n- 3 Evw))

i=1 j=i+1

lim — =0.

n-o N

So, from [Proposition 3.2 we have the desired conclusion.

Proposition 3.4. Let gq=q(n) be an integer-valued function such that q=o(n) as
n—oo. Then for any e @
2

69) im Lg[LE01800 02

o 1| f(E4"1E244, 0)

Proof. Let W, be as before. Since {£,} is strictly stationary to prove it is
enough to show
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2
=16).

1 | f(&T1¢,%0)
lim —E 4
n—-o R f( :I%Iélqa G)

As

f(&311650)|?
1145 6)

and by Proposition 3.3 and Schwarz’s inequality

E

=EW?, .+ EW}?—2EW,, W,

lim —I—EW,%+,,= lim — EW?2,,=I(),

n—oo N n»oNTqg
EW2=0(g)=o0(n)

lEWn+qu | é " Wn+q“2" Wq"2=0(n) ’

so we have and the proof is completed.

4. Limiting behavior of the stochastic process Z,(6).

The following lemma plays a fundamental role in proving main results.

Lemma 4.1. (See [4], Theorem 1.) Let {t¥; j=1,2, --; i=1,2} be any set of
integers such that t, MV <1,® <1,V <1, <t;M< ;P < - -+, For each j, let n; be Fii)-
measurable. If

. 1 2
min (t§+)1—tj( N=gq,
15jsk—-1

then
k x X
Pl Y nj*<x>—2kﬁq§P Y nj<x>§P Y n,*<x)+2kﬂq
j=1 =1 j=1

where n,*, - - -, n,* are independent random variables and for each j, n;* has the same
distribution function (df) as that of n;.

Now, for each 6 ® put
f(&," 0p+6n"1%)

Zn(0)= f(éln 00) _exp Yn(e)9
0 S, B+ 0™
—log? 1270 .
N (AN

First, corresponding to Theorem 2.1 in [3], we prove the following theorem.

Theorem 4.1. If Conditions 1-1I1 are satisfied, then as n—oo the finite-
dimensional distributions of the stochastic process Z,0) converge to the finite-
dimensional distributions of the process
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4.2) Z(0)=exp {of C——IO}

where ( is the standardized normal random variables, and I,=1(6,).

To prove the theorem we need a number of lemmas corresponding to lemmas in
[3]. In the followings we always assume that Conditions I-III hold. We introduce
some notations. Let p=p(n) =[n"] for some a(1/2<a<1) and g=g(n)=[n'"]. Let I=
pP+q and k=[n/l]. Further, let e=¢,=bn"1"2 where b is some positive constant. Put

S&ii%, 6o+ 6n" 12

=y{0)=lo R
N TN
L fERERIEM G, +6n12) .

=lo J a _ -y; (0Ljgk-1),
N e ey v O=isk

| SEGEDL L 00 +0n~172)

(4.3) zj=zj(0)=10g P s

f(é.(i{-t;)il, 90)
g+ jl+p -1/2

ST 118,72, )
k—1

k-1
zZ,=Y,0)— 3 i+7)— Y (z;+2).
j=0 j=0

We note that for fixed 0O {y,, - - -, y,} are identically distributed and satisfy
the a.r. condition with coefficient f(n).
For any 7>0, let
>t}

f(x1p9 0+8n)

o™= =7, 6)

@4 A,,,={x1”:

(here we agree to set 0/0=1). Further, let

4.5 (s)= :

“ R/ e
Lemma 4.2.

(4.6) 3111;10 p_a J; J a,*(s)W(dx,P)ds =0
Proof. Let

Bu= {xlp: I\/f(xlpa 0+8) _\/f(xlpa 9) |>a\/f(x1vp9 0)}

From Jensen’s inequality, Proposition 3.3 and II, it follows that
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f S(x4%, 9)V(dx1")§i2f (VTG 0+8) —/f(xP, ) Wdx,?)
Bea

S Jj a,%(s)dsw(dx,”)

_S_ng{—;L fapz(s)v(dxlp)ds}
£2

<5 pIOXL+o(D)

=0(k™Y).
Hence, by the method used in the proof of Lemma 2.1 in [3] we have that

@.7) max (4%, Op)(dx,P)=0(k™1).

16—060l <& J 4,

Now, follows from and A.1 (below), (see the proof of Theorem 2.6 in
and the proof is completed.

Lemma 4.3. For any 1t (>0)

(4.8) sup j S(x1?, OpW(dx P)=o0(k™!) (n—>0)
Apt

160 —00] <e

The proof of this lemma is eas1ly proved by Lemma 4.3 and the method used in
the proof of Lemma 2.1 in [3] and so is omitted.

Remark 4.1. As in ([3], Remark 1), we can prove that for each j

P(| .Vj|>"«')=L fxyP, O)v(dx,P)=0(k™1).

Lemma 4.4. For any 0@

n—+ o

.1 1
(4.9) lim -I;Ez—L(B, D, 8) =_4—-I(9)

where

L(O, p, &)= J(\/f (x17, 0+8) —/f(x47, 0))*v(dx,?) .
Proof. We note that

6al’(s) / S %70 8) fioglx 7l s) 20 filxlx T 8)
e Zhp> {f(x,lx{ TS folx %) | p G5 f(lexlf",s)}'

i=1j=1

By Jensen’s inequality and A2 (below)
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= ﬁ a,(s)—a,(6)| *v(dx,?)
das)|?

<t21 0+t
Tt Os

sz B[ £ $ v ZOM sk

— 4 05350+t e

wdx,P)ds

and so by Proposition 3.3

lim —
n—+w D€

f f a,(0)a,(t) — a (O)v(dx,P)dt

1 0+e¢ 1/2
< lim — Haﬁ(e)v(dxl")} J, M2t

n—o D€ g

<K lim gp'?=0.

n— oo

Hence, we obtain that

1 1 0+e 2
s — Tl - p
nlglg) p82L(6’ D, 8) '}Ln; 4p82 J{J; ap(t)dt} (dxl )

> 1 lim p%{sz japz(e)v(dx,”)

4w

+2¢ f a,(6) f M(a,,(t)—a,,(e))dtv(dxl”)}

> — llm — j L2 (0)v(dx,P)= —-I ©).

=7 0
On the other hand, by Jensen’s inequality
1 o+e
(4.10) L(0, p, s)géez{—s— f fapz(t)v(dxlp)dt}
(]

<—1~s max J a, (t)W(dx,?) .

4 gse<o+e
Hence, by II, and Proposition 3.3.
hmsu 1 5L(6, 8)<—1—hmsu max 1 a2 (H)v(dx,?) = 11(0)
pP b 4 n—’ooPGStSO+ D P v 4 )

Thus, we have the lemma.

Corollary. For any 0 ®

(4°11) '}iwps 2 2q+1,0+8n)—\/f(x1p|xgq+1’ 0))2

X f(x2 4, O)W(dx". )= 711—1(0) .
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Proof. The proof is easily obtained from the above method and
3.4.

The following two lemmas are proved by completely analogous methods to the
proofs of Lemmas 2.3 and 2.4 in [3] and so are omitted.

Lemma 4.5. As n—

4.12) j SFGiP, 0+ e)f(x7, B)wdx,P) =1 —%I(B)k‘ 't ofk™Y)

and

4.13) J\ff(xl” 1x%, 0+e)f(x,P1x2 4, 0)f(x2,, OW(dx2 ) =1 ——;—I(B)k'1 +ok™1).

Lemma 4.6. For any positive ©

@14) [ togZeo i o, ogptax) =~k o+ ok
and
(4.15) L 1og2£(-f’f&i’1;9—°§:)i‘)f(xlv, o)v(dx,P) =k~ 'Io+o(k ™).

Here, A denotes the complementary set of A.

Lemma 4.7. For any 1>0

k-1

(4.16) P( 7 >1:)—->0 (n— )
j=0

and
k—1

4.17) P( Y % >1:)—>0 (n—>00).
j=0

Proof. Let V,, (1) be the one defined in Section 3. Let p, = On~—12 Form>r>1,
let

f(émlélm-1900+pn) f(fmlém:3’00+Pn)
= -1
Ume =108 T w1 0y OB f(E, 1 EnoE, 6o)

00+ pn
= J VaAt)dt .

8o

Then, by Jensen’s inequality and III,

1 00+ pn
E|vn,12SpE [,TJ | Vim0 | ’dt]épnzv?,,-,

n J0o

and so by Schwarz’s inequality
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l Evm,rvm’,r' I é pnz'ym—r')’m'—r' .

Hence, it follows from III that for each j (0<j<k—1)

p 2
Efj2=E Z Vjt+iji <Kp,?
i=1
So, using the fact that k=O0(n' ~*)=o(n'?)
k-1 2
E Z j;j éKkzpn2=o(1)a
j=0

which implies [(4.16). Similarly, we have and the proof is completed.
Lemma 4.8. For any 1>0

k

>z

j=0

4.18) P(

> 1.')—+0 (n— ).

Proof. Since for each j z; is F{t1% -measurable, so by Lemma 4.1 we have
k-1

k
P( Yz >21)§P< Yoz
j=0 j=0

where zy*, z,*, - - -, z¥_, are independent and for each j z;* has the same df as that
of z,.

J

We note that from Remark 4.1 and the method used in the proof of
we obtain

>t)+2kﬂq+P(|z,,|>1:)

P(z,|>7)»0  (n—>o0),
and that kB,—0 as n— 0. So, to prove it suffices to show

k-1

_Z z;*

Jj=0

(4.19) P( >t)—»0 (n—0).

Let o be a positive number such that ¢ <z. For each JOZj<k—1), let
. {z,-* (Iz*|=0),
0 (z*|>0).
Then, by Remark 4.1 and

P(z;*|Z0)=o0(gn" ) =o0(n"2?)
. 36’ -2/3 fc
Ez; ——Elo+o(n ) 0=j=sk-1)

02
Varz* =qTIo +o(n~2/3)

and so for all » sufficiently large
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k—1
P( jgozj* >'c) ( >+P<0§1}1:f_1|zj*|>a>
( Z (z;*—Ez*)

which implies [(4.19), and the proof is completed.

Proof of Theorem 4.1. By Lemmas 4.7 and [4.8 it suffices to prove the following
two statements:

IlA

ZZ*

IIA

0sjsk-1

>—z—>+k max P(z*|>0)=0(l),

k-1
A. The distributions of the random variables 3 y/(f) converge to the dis-
_ i=o
tribution of the random variable 6,/I, { —(1/2)6*,.

B. As n— o0, the difference

5, 2 5. T2

(j;oyj(ez) 100> <Z J’j(el) I, 1)

converges in probability to zero for all 6, and 6,.
Since for each € @ yy(0), y,1(0), - * -, y,.-1(0) satisfy to a.r. condition with g, and
y{0) is Fj%?r-measurable (j=0, 1, - - -, k—1), so by Lemma 4.1

(kZI y;*(0)< u) 2kB, <P <ki: yA0)< u) <P (ki: y*0) < u) +2kB,,
j= j=

J

where the y;*(6) are i.i.d. random variables with the same df as that of y,(6). Hence,
to prove Theorem 4.1 it is enough to show that statements 4 and B are fulfilled by
{»;*(0)} instead of {y,(6)} since by III, kB, —0 as n—co. But, using Lemmas 4.3-4.6
we can verify the statements by the identical method to the one in the proof of
Theorem 2.1 in [3] and so the proof is omitted.

Theorem 4.2. If Conditions I-111 hold, then there exist two positive numbers b,
and K, such that for any pair (0,, 6,)(|0,—0, | =b,)

(4.20) E|Z,%(0)—Z,' (0= Ko 16,6, ]%.
~ Proof. Putting m=nin and using Proposition 3.3 we have the relation

I(\ﬁ(xl", 0+bn~"%) — /f(x,", 9))’V(¢13€1")§K£’4i

for all »n sufficiently large. From this is easily obtained.

Theorem 4.3. Suppose that Conditions 1, I1 and IV hold. Then, for any positive
N, there exist an ny and a constant cy depending only on N such that, for n>n,

1 CN
4.21) P (T;IIEA Z(0)> F) < VL
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4.22) P( sup  Z,(0)2 > :—ﬁ rz1)

s|o|sr+1
To prove [Theorem 4.3 we need some lemmas.

Lemma 4.9. If Conditions 1, 11 and IV hold, then for any K, and N there is a
positive cy such that, in the region | 0| < K;n'’?

BN

holds for all n sufficiently large.

Proof. Let p=[n*, q=[n'"" (1/2<a<1) and k=[n/2p]. For each j
(0sj<k—1) put

S 1 83 0o+ 0n™ 1)

w,= log - ’
j TR 18— 00)
and
2i , _
W=10 f(é(Zj.;)tll)pl 612.]?’ 00+0n 1/2)_“)
! SEGLENP I E,22,6,) !

To prove it suffices to show that
k-1

4.24) P(Z (w,-+wj)>—Nlog|0|><K|0|‘
j=1

since the rest is analogously estimated.
As for each j (15j<k—1) w; is F$,*)P-measurable, so from Lemma 4.1 we

2jp~q
obtain
k—1 k-1
P( Y ow> —2Nlog|0|>§P( Y owir> —2Nlog|6|>+2kﬂp
j=1 j=1
where w,*, - -+, w¥_, are i.i.d. random variables each having the same df as that of

wy. Since |8|<Kn™'? and kB,=o(n'*e”*"), so 2kB,<|6| ¥ for any N if n is
sufficiently large. On the other hand, using Lemma 4.5, the method of the proof of
Lemma 2.6 in [3] and the fact that {w;*} are i.i.d. we have the relation

k-1
P(exp( y wj"')>e"cl"2)<e‘c“’2
j=1 _

for some C; >0. Hence, for any N (>0)

k—1
(4.25) P(z w,.>—2Nlog|e|><K|e|-

Jj=1

Now, we prove that
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k—1

(4.26) P( _le,- >Nlog|0|)<K|o|-N
i=

holds for any N (>0). As in the proof of we have that for all n sufficiently
large and for each j (15jsk—1).

p 2

EWj2=E

V2jp+i,2jp—4q
i=1

2
.S_Pz max ||02jp+i,2jp-q"2
1sisp

<Kp*y*=o(p’e™**).

Hence, we have

k—1 1 k—1 2
P v.i>Nloglfl||l<——=F Y
(,-;W’ Bl ')-<Nlog|o|)2 s
1

< k2 Ew 2

=(Nlog|0)" 1sjh-1
— 1 —A2q
=Wiograpr 2™ Y

and so is obtained if | 8| < K,n*/2. Combining [(4.25) and (4.26) we have (4.24),
Thus, the proof is completed.

Lemma 4.10. Suppose that Conditions 1, 11 and IV are satisfied. Then, to any
positive N, there are numbers ny and K, such that

1 CN
4.27) P <Z A(0)> W) < TIL
for all n>nqy and all |6|> K,n'2,
Proof. BylV

P(Z,(0)>101"™)<|0|"*EZ,'*(6)

=| 9|N/2fﬁ \/f(xj|x1j_1, Go)f(xj|xlj'1, 90"'9"—1/2)"(‘13‘1")
i=1

§| 0 l N/Z(l 9|—1n1/2)nd, .

Hence, if K, and n, are sufficiently large, then
(I 9|—1n1/2)m!1 <‘9|—3/2N
and so the proof is completed.

Proof of Theorem 4.3. The proof is identical to the proof of Theorem 2.3 in
(using Lemmas 4.9 and instead of Lemmas 2.7 and 2.8 in [3]) and so is omitted.
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Let Cy(— o0, 0)=C, be the space of functions which are continuous on

(— 00, ) and for which Ilfm fix)=0 endowed with the usual uniform metric. If

©=R!, put Z,(0)=Z,0) and if @ =(a, b)# R!, define a process Z,(0) as follows;
Z0) if Jn(a—8)<0<n(-0,),
Z0=10 if 0<yn(@—0)—1 or 02 n(b—0)+1,
linear and continuous in all other intervals.

Then it is clear that Z,(6) belongs to C, with probability one.
As in [3], we have the following result.

Theorem 4.4. Suppose that Conditions 1, 11 and IV are satisfied. Then the
distributions in C, generated by the process Z, converge as n— o to the distribution
generated by Z. In particular, if h is a continuous functional on C,, then for all x

lim P(W(Z,)<x)=P(h(Z)<Xx).

n—w

As in [3], from we have the following result: Suppose that
Conditions I, II and IV hold. Define the maximum likelihood estimator §, to be one
of the solutions of the equation

f¢," 8)=maxf(,", 6).
0e 6¢
Then the distribution of the difference \/7(§,,—00) is asymptotically normal
with parameters (0, 7, 1).
Appendix
First, we prove the following statement.

A.l. Suppose that Conditions I-III are satisfied. Then,

[ 0]*
A.l supE|—-"—=| <Kn?.
(4D ven | fENHO) | =
Proof. Let U, be the one defined in Section 3. First, we note that for any fixed n
/ n 9) 4 n 4
(A2) P EACTEL)) R R
fE"6) U

n—3
=K .Zl {ZP+ Y+ Yo

where C, ;,,=EU,U;U,U, and 3V, 3@ and 3 denote, respectively, the com-
ponents of Y for which j—iZmax{k—j, |-k}, k—j=max{j—i, /—k} and
Jrk,1
I—kzmax {j—i, k—1}.
(a) Consider the case in which j—i=max {k—j, /—k}. Let s;=[(i+)/2] and put
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w@=U,,,, wh=U—-U,, (t>s).
Then, it is obvious that if #>s;
(A.3) ||W:(1)”(4+a)/(1 +a)§}’f—s,-
Hence, by II,, (5.2) and

CiiuaSIEUWOwOw@ |+ Y |EUw,@w,Ow®|
a+b+c>0

3
= K{ 1U; "k+6”Wj(o)Wk(o)Wz(o)||4+aﬂf—sj

1
+ ”Wj( )||(4+o)/(1 +o T ||Wk(1)||(4+a)/(1 +o T ||Wtu)||(4+a)/(1 +8)
SK{Bt- ;7o vi-st s} -

Since max { Z": k2B.*, Zn: kzyk*}gKn, SO
n—3 -3 ]—l i—i
R e e c el
i=1 i=1i+1<j<n
<Kn?.

(b) Let k—j=max {j—i, /—k} and put s,=[(k +/)/2]. Then, as in Remark 3.1,
from [Lemma 3.1 we obtain

CiixiSIEUUU LU, o 1+ Ky,
S|EUUG | |EU U, |+ Ky¥_,

=[5 (3D (5)
()

n—3
(A.5) Y Zgz’c,.,,.,k,,éan .
i=1

So

() Ifl—kzmax{j—i, k—j}, we put s;=[(/+k)/2]. Then
ukl—lEUUjUkUls;|+K})l - = K{ﬁsx k+yl sl}

and so

(A6) Z YOC, S Kn?.

Hence, from (A.2)(A.6), (A.1) follows and the proof is completed.
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Finally, we have the following statement by the above method and so the proof
is omitted.

A2. Under the conditions of Al,

(A7) E [ f: i { U(6)U (6) +% %}T <Km?.
i=1

i=1
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