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1. Introduction and results

Let {X,,ieZ} be a sequence of strictly stationary random variables. Let &,
denote o-field generated by random variables {X,, i=m, m+1, - - -, n}. Suppose that
the sequence {X;} satisfies the strong mixing condition, that is,

on)= sup | P(AB)— P(A)P(B)| | 0

4e#0 BeF®

as n—o.
Suppose EX; =0 and E|X;|"< oo for some r>2. Under these assumptions, if

Y (@) <o,
i=1
then

(1.1) 0’=EX;>+2 Y E(X,X;,,)<o.
i=1

i

(See e.g. [5]) Here suppose that ¢>0.
Define a continuous polygonal line {X,(¢), 0<t<1} by

(n)X /(on'?),  for tel0,1/n],
X (t)=4q X
Y. Xif(an'?)+(nt—k)X, . ,/(on'?),
i=1
for te(k/n), (k+1)n], k=1, -, n—1.

Let C=C[0, 1] be the space of all continuous functions on [0, 1] with the uniform
metric defined by

d(x, y)= sup |x(t)—pt)|, for x,yeC,
0sts1

and let € be the smallest o-field containing all open sets in C. Let P, be distribution of
{X,(1)} and W the Wiener measure on (C, €). The Prokhorov-Lévy metric p(-, *) on
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the space of probability measures on (C, €) is defined by
p(R, Q)=inf {¢>0; R(B)<e+Q{y; d(x, y)<e, xe B},
O(B)<¢+ R{y; d(x, y)<e, xe B} for all Be¥},

where R and Q are probability measures on (C, €).
In this paper we shall show the following results concerning the rate of

convergence of p(P,, W) to zero.

Theorem 1. Let {X,, i€ Z} be a sequence of strictly stationary random variables
with EX, =0 and E| X, |" < oo for some r>2. Suppose that the sequence {X} satisfies
the strong mixing condition with coefficient a(n) and that there exists s with 2<s<r
such that

1.2) i (@) <0 .
i=1

Then (1.1) holds. Suppose that o >0, (and furthermore suppose c=1 without loss of

~ generarity).

If s£4, then we have for any 6 <s(s—2)/4(s—1)(s+ 1),
p(P,, W)=o0(n"?)

as n—oo.
If r>4 and (1.2) holds for some s with 4<s<r, then we have for any

k<(s—4)/30(s+1),
p(P,, W)=o(n=211°7")
as n—oo.
Corollary. In Theorem 1, suppose that
a(n)=0(e™ ")
for some y>0 in place of (1.2). If r =4, then we have for any o<r(r—2)/4r—1)r+1)
p(P,, W)=o0(n"?)

as n— .
If r>4, then we have for any k <(r—4)/30(r+1)

p(P,, W)=o(n"2137")
as n— .

It should be mentioned that Yoshihara gave the rate of convergence for the
stationary sequence satisfying the absolutely regular condition which is,

B(n)EE{ sup IP(AI-?"‘lw)—P(A)l}lO
AeF 2
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as n— 0.

Theorem A (Yoshihara [10]). Let {X;} be a strictly stationary and absolutely
regular sequence of random variables with EX, =0. If, for some ¢>0, E| X, |*** <00
and

a

(1.3) Y. i(BE) 4 *9 <,

i=1
then
p(P,, W)=0(n""®(logn)'?)
as n— oo.

The absolutely regular condition is stronger than the strong mixing condition.
Actually, for each n, a(n) < f(n). However [(1.3) does not imply in general, thus
our theorem is not a complete generalization of Although it is true for
some small ¢ >0. But we emphasize that in our case we assume only the strong mixing
condition. As far as the author knows, there are few results on the rate of
convergence of the invariance principle under the strong mixing condition. Our
technique of the proof is different from that of Theorem A.

2. Preliminaries
In this section, we state three lemmas. The first lemma is due to Davydov [4].

Lemma 1. Let p, q and u be positive numbers withp~'+q~'+u~'=1. Suppose

that X is % °-measurable and Y is F 2. ,measurable. Moreover suppose that
E|X|?<o0 and E|Y|?< 0. Then

| E(XY)—~ E(X)E(Y)| < 10(a(n))™(E| X | P)/P(E| Y| 9)'/9.

Recently Yokoyama [9] gave an estimate of the p-th absolute moment of sums of
strong mixing random variables as follows.

Lemma 2. Let {X;} be a strictly stationary strong mixing sequence with EX, =0
and E| X, |"< 0 for some r>2. If there exists p with 2<p <r such that

[+ o}
(2.1) Y P2 (i) P < 0,
i=1
then there exists a positive constant K such that

E

n p
Y X,-’ <Kn"?, n21.
i=1

In what follows, as an absolute positive constant, we shall use a K which may be
different in the different equations.

For some 0<v<1, let M=[n/[n"]]+ 1, where [-] denotes the integer part of -.
For j=1, -+, M—1, define I;={(j—D[n"]+1, G—D[r]1+2, ---, j[n']} and I, =
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{(M— 1)[nv]+l’ (M— l)[nv]+2, Ty n}' Let
yj=Y n'2X; for j=1,--,M.

ielj

Using Lemmas 1 and 2 we can easily prove the following lemma.

Lemma 3. Under the conditions of Theorem 1, for j=1, ---, M—1,

2.2) |Eyf?—n""'|<Kn"12,

and for any p with 2<p <2rs/(r+5s),

2.3) E|y,|P < Kn®~Do2.

Also we have

2.4) | Eyp® —(n—(M—=D[n"Dn ! | S Kn™?
and

(2.5) EIyM|”§Kn("‘””/2 .

Proof. From the stationarity, it suffices to show (2.2) only for j=1. By the
ordinary argument (see e.g. Philipp-Stout [6], p. 28),

nv] nvV]—1
Ey*=n" 1{;1 EX?*+ 2[ '121 ([n"]—-)EX,X,;, 1)}

i=1

=n_1{[nv]<EX12 +2 i E(X1Xi+1)>

oo (nv1-1
—2[n"] Z E(X;X;41)—2 ‘21 iE(XIXi+1)}'

i=[nv]
Applying Lemma 1 we have
| (X, X, 4+1) | S 10((@)" 2" (E| Xy |Y(E| Xy |

Thus from condition (1.2) and the monotonicity of {a(i)}, it follows that

"] Y EX,X.)<SK[] Y ()2 <K,

i=[nv] i=[nv]
and
nV]—-1 [nV}—-1
Y E(X X;,,)SK ) i) PrsK.
i=1 i=1
Hence we have (2.2) for j=1.
Furthermore, if 2 <p <2rs/(r+s), then condition (1.2) implies

[+ o}
i~ 1 +p/2(a(i))(r—S)/r <o,
=1
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from which follows because of [Lemma 2. (2.4)| and [2.5) are similarly shown.

3. Martingale representations

For i=1, ---, M, let &, be the o-field generated by the random variables
{1, -, y:i} and £, ={Q, ¢}. For simplicity let # =%/ for j=1,2, -+ and F,=
{Q, ¢}.

The idea of the proofs of the following lemmas in this section is the same as in
the proof of Lemma 7.4.1 in Philipp-Stout [6].

Lemma 4. Under the assumptions of Theorem 1, we can represent X, in the form,

3.1 X;=n,—d,;,+d;, i=1,---,n,
where {n;} is a martingale difference sequence with respect to {#,} and where
(3.2) ldi,<K and  |nl,SK, i=1,--,n,

where |- ||;=(E|-|*)'".
Proof. Define
d;= Z E(X; x| Fi-1)
k=0

and
n=X,—d+d; .,
for 1 <i<n. Then the representation follows.
On the other hand, by the Minkovsky inequality, we have
IS 3 1B s #1o )
Using with p=r, g=s/(s—1) and u=sr/(r—s), and noting EX,,,=0, we
have
E|EXi k| Fi-)|" = EEX; 41| F 1o ) EX 14| F - ) | EX k| Fi-) 77)
= E(X; 1k BX 4 | F 1) EX i F i) 1770
<10tk + 1)1 X; ol M EXie ] F i D1 lgis -1y -
Thus we have by assumption [(1.2),

ld:ll, <1001 X, [, 3 (dk+1)*" <K,
k=0

and also by the Minkovsky inequality,
Imills = 1 X;lls+ Ndills + Nl di 1 s S K

The lemma is concluded.
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Lemma 5. We can represent y; in the form

(3‘3) yi=éi+via i=1’ .'.sMs
where {{;} is a martingale difference sequence with respect to {&;} and where
(3'4) “vi"séKn_l/z and "éi"séKn(v_l)/z, l=ls .'.9M°

Proof. Let &=y,—E(y;| %;-,), and v;=E(y;| £;_,), then we have the repre-
sentation [(3.3), For the proof of we note that

[n¥]
E|E(y,-|.‘?,-_1)|s= Z E{”—I/ZX(;'—U[;.\']HE(}’;"gi—1)|E(.Vi|55’i-1)'s—z}

[n¥]

Z 10"—1/2(“0‘))(' s)/"”X(: 1)[nV]+k" IE(y;| Li- )5 !
k=1

SKn'”’HE(yA-9f’i-1)l|‘—1

by Lemma 1 and assumption [(1.2)} Then the proof of the lemma is concluded by the
same reasoning as in the proof of Lemma 4l

Lemma 6. We can represent v; in the form
(3.5) v=0,—gi+1+9;, i=1,--. M,
where {0,} is a martingale difference sequence with respect to {&;_,} and where
(3.6) lgils=Kn~'"2 and |6|,sKn"*?, i=1,---, M.

Proof. Define

M-i

= Z E(y;+x| Li-2) and 6;=v;—g;+1+¢; for 1sisM,
k=0

where £ _; =%,={¢, Q2}. Then the representation is obtained.
Using [Lemma 1 we have

ElE(y1+k|$; )= 2 E{"_l X+k- 1)[n"]+mE(yl+k|$l NEQierl Li-2) |~ 2}

é [ﬁl 10n~ 1/2(a((k + 1)[nv:| + m))(r—s)/rs

m=1

X ”X(i+k—1)[nV]+m||r"E(yi+k| Zi—z)“:-l .

Thus from the Minkovsky inequality and assumption we have
M-i

lgills= Zo IEWi+i] ZLi- s
k=

<Kn 2SS (ak+ DIn]+m)

k=0m=1
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(M—-i+2)[nv]
=Kn~ 1/2 Z (a(k))(r—s)/rs

k=[nv]1+1

<Kn Y2, j=1,---,M.
The rest of the proof is similar to that of
Lemma 7. We can represent y; in the form
(3.7 Yivi=pi+u;, i=1,---, M,
where {u;} is a martingale difference sequence with respect to {¥,} and where
(3.8) ||ui||s/2§Kn_1/2 and ”Hi"s/z éKn(v—z)/z , i=1l,--- M.

Proof. Let u;=E(yw;|%;_,) and y;=yw,—u; for 1 Si< M. Then the repre-
sentation follows. Since

u=Ey;E(y;| L- )| Li-)=(E(y:| Li- 1)) =v?,
it follows from [(3.4) in Lemma 3 that
“ui“s/Zéllvi"?éKn—l ’ l=19 ’M

On the other hand by the Schwartz inequality and Lemmas 3 and 5, we have
lyvillsz S yillsllvills = Kn®~272

Thus by the Minkovsky inequality we have
||#i||s/2§ ”yivi”s/2+ ”ui”s/2§Kn(v_2)/2 , =1, M,
and the statement of the lemma is concluded.

Lemma 8. Let h;=y?— Ey?>. We can represent h, in the form

(3°9) hi:Ci—wi+l+wia i=l’ ”"M’
where {{;} is a martingale difference sequence with respect to { %} and where
(3.10) Wil <Kn ™" and LSt i=1,0 M.
Proof. Define
M—i
wl'= Z E(hi'i'klgi—l) alld Ci=hi+wi+1_wi fOl‘ léiéM,
k=0

where w), ., =0. Then the representation (3.9) follows.
Let &, be o-field generated by {h,, h,,,, - - -, h,}. Since {h;} satisfies the strong
mixing condition such that for any 1<a<M—1 and k=1,

sup | P(AB)—P(A)P(B)| sof(k—1)[n"]+1),

M
AEY‘{,BG.‘?‘H_"

we have from Lemma 1,
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E|E(h;+| gi—1)|s/2 =E(hi+kE(hi+k 7R E(h; 4l Zi-1) |_2+s/2)
S 10D T+ 1) ol ECrii] 212017221y
< K(ak[n*1+ 1) ™"y, il vy + ol BGrisic ) Lo DI 272

Thus from the Minkovsky inequality, and assumption [(1.2) it follows that

M-i

”Wi“s/z < kZO IE(h;+x| & - 1)||s/2

M-i
<Kn'~' Y (k[n]+ D)
k=0

gKn"_l
and
“Ci“s/zé "J’i"§+ny'2+ “wi+1“s/2+ ||Wi||s§Knv_l , i=1,-- M.

Hence the lemma is proved.

4. Proof of Theorem 1

We first prove the theorem in case 2<s<4. Let v=(s—2)/2(s—1), g,=n"%and

A,=n"%*logn)~2. If we could construct a Brownian motion {B(¢), 0St<1} on a
probability space (2, &, P) such that

4.1) P{d(X (1), B(t))Z &,} = O(e,)=0(n"?)
as n— oo, then we have by the same reasoning as in the proof of in [2] that
4.2) o(P, W)=0(n"%  forany &<s(s—2)/4(s—1)s+1),

which concludes the theorem. Hence we first have to define a Brownian motion with
the property To do that, we use the following lemma due to Strassen [8]

Lemma 9. Let {z;} be random variables such that for all ix1,
E(z?|zi_y, - -+, 2y) exists and E(z;|z;_y, - * *, z,)=0 a.s. Then on a probability space
(Q, #, P), there is a standard Brownian motion {B(t)} together with a sequence of non-
negative random variables {T;} such that the joint distributions of {z;} are the same

as those of
ez ) m)

Moreover, let B; be the c-field generated by

{{zl,-'-,zi}; B), 0ty Tk}
k=1

Then we see that for all iz 1, T; is #,-measurable, E(T;|#;_,) exists and
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(4.3) E(T;| #;-,)=E(z} | B ) =E(z? |2y, -+, z;) as.
Furthermore, for all i2 1, if E(|z;|"| Zi_1, ***, 2y) exists for some r>2, then
4.4) ET?*<KE|z|".

From Wwe can construct a Brownian motion {B*(¢)} and a sequence of
positive random variables {7;*} on a probability space (Q*, # *, P*) such that the
Jjoint distributions of {&1, &, -+, &y} are the same as those of

M M-1
{B*(Tl*), BY(T;*+T;*)— B(T,"), ---,B*(_z T,-*)—B*( ) T)}

Moreover using Lemma Al in [T] we can redefine ({5,}, {£}, {7}, {B(9)}) on a
common probability space (2, #, P) such that the distributions of (¥}, {€}) and
({&}, {3, {B()}) are the same as those of ({y;}, {¢;}) and

(g (). . ),
respectively.

In what follows, for simplicity, we shall write {n:}, {&}, {T}, and {B(9)} for {p;},

{&} {11} and {B()}.
Define M points on [0, 1] such that a=k[n"l/n, k=0,1, ---, M—1 and a,,=1.
Let X,(#) and B,(#) be continuous polygonal lines defined by

X(0)=X(@) +(X(@+ 1) — X (@)t~ )@ s 1 — ) ,
for tela, a,,,], k=0,1,---,M—1,
and
B()=B(a)+(B@y+1)— B@))t—a)/(@ys1 —ay) ,
for telay, ap4q], k=0,1,---, M—1 ,
respectively.
Lemma 10. Asn—oo
PlX,(1), X (1) 28,}=0(c,) .
Proof. From the definition of {X, (D} and {X (1)} we have

@4.5) P{X,(0), X ()ze,) §MP{ max

1sk=(nY]

k k
Y nT2 X —(k/[n*]) Y. n~12Xx,
i=1 i=1

; n-12x,

i=1

2}

gMP{ max

15ks5in%]

= s,,/2}

=A4,, say.
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Recall that M =[n/[n*]]+1=0(n"""). Using we have
k
(4.6) AlgMP{ max | Y n~'y; gs,,/4}
15ks[nV] =1
k
+MP{ max | Y n~V3d;—d) gs,,/4}.
15ksS0) |i=1

Applying the Kolmogorov maximal inequality, the Burkholder inequality for
martingale difference sequences (see e.g. and to the first term on the
right hand side of [(4.6), and noting that E|#,;|*<oo, we have

k [nv]
Z n_”z'h Z "_1/2'1;
i=1 i=1

4.7) M P{ max

15ks([nV]

ge,,/4}§KMe,,“E

n¥]
<KMs,~n*¢~22 Y E|n~y,|°

i=1
SKan—sn—s(s—l)M(s—l)

=o(e,) -
Moreover we have from the Chebyshev inequality and

k
Z "_l/z(diu —d)

i=1

4.8) MP{ max

15ks(nY]

gs,,/4}=MP{ max |dk+1—d1|_2_n1/zsn/4}

1sks(nV]

[nV]
=M Z P{ldk+1_d1|§"”23n/4}
k=1

[nV]
=M z ("llzen/4)—sE|dk+1_d1|’
k=1

éKnl—s/ZS"—s

=0(e,) -

Thus we have 4, =o(e,) from [(4.6), (4.7) and (4.8) and conclude this lemma.
The following lemma is due to Borovkov in [2].

Lemma 11. As n—oo,
P{d(B(#), B(t) Z &,} =o(exp (—n’))=0(e,) ,
for some 6>0.
Finally we shall prove the following
Lemma 12. As n—oo0,
P{d(X,(1), B,() Z¢,} =0(e,) -
Proof. By the definition of {X,(r)} and {B,(¢)} and by we have
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4.9
P{d(Xn(t): Bn(t)) g 8"} = P{lmkax i yi —B(ak) g sn}
SksM | =)
gP{ max ; —B(a)|= a,,/2}+P{ max zk: 28,,/2}
1sksM |i=1 1SksSM | =

=D, +D,, say .
We first estimate D,. Denote

Z,= ¥ (T—ET).

i=1

By we have

1sksM

(4.10) D, §P{ max &,, max |Z,‘|<3/1,,}
1SksM

B(z,,+ zkj ET,-)—B(a,) >

i=1

+P{ max IZk|%3,l,,}

1sksM
=E,+E,, say.

According to the proof of Philipp-Stout [6], we use in to estimate E,.
Then we have

k
@4.11) E2§P{ max | Y (T;—E(T;| #-,)) 21}
1SksSM |i=1
k
+P{ max, Z (B &im1s -5 81— ED |24 }
k
2
+P{1r2‘asx ; —E&?) gi,,}

=L, +L,+L,, say .

Since {T;,— E(T;|%;_,)} and {{>—E(E2|E,_y, -+, &)} are martingale difference
sequences, respectively, we have, using the Kolmogorov maximal inequality and the
Burkholder inequality for martingale difference sequences,

M
L,<K,~** Y E|T,—E(T;| #;_,)|*?
i=1
and
M
L,<Ki, ™2 ¥ E|E2—E(ER &y, -+ &2,
i=1

Using the Holder inequality for the conditional expectation and Lemmas 9 and 5, we
have
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E|E(T,|B:-)|** SET{? < KE| & | S Kn® =12

and
E|E(2&i—y, - EDIPSE| | S Knt ™12

Hence
(4.12) L SKn®~D6=202) =512 — p(g,)
and
(4.13) L,=o(s,) .

We next estimate L. By the definition of £; we have
4.14) L,<P {ltsnkanM i"l (yv2—Ey?d|2 ,1,,/3} +P { max i (yv;— = l,,/6}

k
+P{ max | Y (v2—Ev?)
1sksM|i=1

EL31+L32+L33, say.

gz,,/3}

As to L,,, using Lemma 8, the Kolmogorov maximal inequality and the Burkholder
inequality for martingale difference sequences, we have

Z (Wis1—wWy)

SksM SksM

(4.15) L31§P{ max

= A,,/6} + P{ max

>A,,/6}

s/2 M

+ Z P{|w; s —w;|Z4,/6}

<Ki, _‘/ZE

M

<KX~ Z E|(i|1*2+ KA, ™2 3 E|lwisy—wy |
i=1 i=1

< Kn®-De=202) =52

=o0(g,) -

We next handle L;,. Note that from Lemmas 5 and 3,
M M M
Y IEGw) = Y |EGLY| Zi-1))|= X Ey>=0@n"")=0(4,).
i=1 i=1 i=1
Thus from Lemma 7 we have

(4.16) L32§P{ max

l.SkSM

2 Yiv;

2 An/6— Z | E(yiv)) I}

Zy,

<P<{ max
1SksM

>l,,/8}
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k

f U gz,,/m};

;l,,/l6}+P{ max

<P< max
1<ksM

i=1#i 1sksM|i=
From the Chebyshev inequality, the Minkovsky inequality and it follows
that
k M s/2
4.17) P{ max | Y u ;l,,/16}§K1,,"/2E< |u,-|>
15ksSM| =) i=1

s/2

M

=KA, —s/z( Z llu; ”s/z)
i=1

< Kln—s/Zn(l —2v)s/4

=0(e,) .

Since {x;} is a martingale difference sequence, we have

M |52
P< max i|Z4/16 < KA,”*%E
{1§k§M ,-glu =4/ }— i=zlui
M
<K2,7%% Y E|p|*?
i=1
M
=K, Y (Elyw; |+ E|u;|%?).
i=1
From [Lemma 7 we have

E|yw;|¥? < Kn®—2s/4 and E|u;|?<Kn~%?

thus it follows that

) |
(4.18) P{ max Zui'gl,,/16}§K).,,"/2n1"/2+"‘4)”’4+K/l,,“’2n1‘““’2

1sksM| =)
=0(g,) .
Combining [(4.16), and (4.18) we have
(4.19) \ Ly=o(,) .
As to L,;, we have from
(4.20) L,, gP{lg‘aéxM l_g v,-zg,l,,/3—i=§1 Ev,.z}

gP{fuﬁ;aﬁ-daﬁ

Y
éP{vazam}
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M s/2
gm;wE( 5 vﬁ)

i=1

M s/2
éKln_sn(Z “vi2”3/2)
i=1
éKn—vslzln—sﬂ
=0(e,),
From (4.14), (4.15), [(4.19) and [(4.20), it follows that as n— o0,
(4.21) Ly=o0(e,) .
From [(4.11), (4.12), (4.13) and [(4.2]) we obtain
4.22) E,=o0(s,) .

We next estimate E; in following Rosenkrantz [7]. Since E(y;v;)= Ev;? for
all 1 <i< M, we have from Lemmas 3, 5 and 9

k k M
(4.23) max | ), ET,—a;|< max Ey2—a,|+ ) Ev?
1sksM|i=1 15ksM|i=1 i=1
Recalling

we have from (4.23)

(4.24) E,=P { max

1sksM

k .
B(Zk+ Y ETi)—B(ak) 2¢,/2, max IZ;I<3&-}
i=1

1s5jsM

SUDj|< max | zl; ET,—a,,|+u,,|B(t+ak)—B(ak)|.2_8n/2}
1sjSM ;5

A
Mk
~
P e 'S

sup |B(t+a)—B(ay) | Z &/ 2}
It S 4n

<2MP {0 sup |B(t)|_>__s,,/2}

sts4

<8MP{| B(t)| 2 &,/(41,"/%)}
=0(e,) .
The relations (4.9), (4.22) and (4.24) implies
(4.25) D, =o0(¢,) .
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We shall finally estimate D, in (4.9). By we have

)

i=1

k

= e,,/4}

We first estimate the second term on the right hand side of (4.26) by as
follows. "

(4.26) D,=P { max

15k=M

gs,,/4} +P{ max

15ksM

Gi—Gi+1)
1

i=

k
Z @i—gi+1)

i=1

;sn}éP{ max Igl—gmlée..}

15ksM

4.27) P{ max

15ksM

M
s Z P{|91—9k+1|§3n}
k=1

& °Elg1—Gx+1l®

A
Mk

k
=0(&,) -

On the other hand, since {6,} is a martingale difference sequence, using the
Kolmogorov maximal inequality, the Burkholder inequality for martingale difference

sequence and we have
2]

k
s

1

M
2. 6
i=1

(4.28) P { max = s.,} <KP {

1sksM

6;
1

M
gK:-:,,"E( N
i=1

M
<Ks,*M¢"22 ¥ E|6,|*
i=1

SKn—*2g s
=0(¢,) .

From (4.26), [(4.27) and [(4.28) we have

(4.29) Dy=0s,) .

The proof of is completed from (4.9), [(4.25) and [(4.29).

follows from Lemmas [0, [1 and 12 and the first part of is
concluded.

We next prove the second part of Theorem 1, where >4 and holds for
some s with 4 <s<r. Let v=1/3, g,=n"'37* for any x <(s—4)/30(1 +s) and 4,=
n~%13"2%(logn)~2. Then, by the Burkholder inequality, we have

M
Ly <Ki, "M% § E|T—E(T,| #,_,)|*2
i=1

é Kn(v— 1)3/41"—3/2

=ole,)
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and

M
LzéK}vn—sle(s_“M Z E| fiz_E(fizlfi—p R f1)|s/2
i=1
=o0(g,) -

On the other hand, from the Burkholder inequality, it also follows that

s/2
P{ max >A,,/6}<K,l ~SI2E Z ¢
1Sks<M
‘ éK}.,,_s/zM(s_‘”M Z E|Ci|s/2
| i=1
éKn(v—l)len—s/z
1 =0(e,)
and
} M s/2
| { max Z Wil A }<K/l,,“’2E Y u
1sksM i=1

M
éK'{”-—s/zM(s—4)/4 Z E|#i|s/2
i=1

gKn“/4l,,_s/2+Kn"“ +v)s/4l”—s/2

=o0(g,) .

Thus we have L,=o0(g,) so that E,=o(g,) by (4.11),
The rest of the proof is the same as that of the first part of Theorem 1, and we
have

p(P,, W)=0(g)=0(n"21°7").

The theorem is thus completely proved.

5. Proof of Corollary
If
wn)=0(e""),

for some y>0, then holds for any s<r. Hence the conclusion of
holds for any

S<r(r—2)/4(r—1)(r+1),
in case r <4. The case r>4 is also handled in the same way.
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