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\S 1. Introduction

Here we consider the solution of the d-dimensional stochastic differential
equation which is generally defined up to the explosion time. With respect to the
explosion problem, it follows from the recent papers [4] and [5] that the radial
unboundedness condition and the restriction on the growth of a Liapunov function are
sufficient conditions for the non occurrence of the explosion. But the investigation of
the reason why such a Liapunov function should play an effective role on the non
occurrence of the explosion is left undone. The first purpose of this paper is to study
the relation between the a priori bound for the solution and the property of a
Liapunov function. More precisely, in \S 2 we estimate the order of the probability of
the leaving from a bounded domain for the solution of the stochastic differential
equation. From the order of its decay, it will be clarified that the radial unbounded-
ness condition and the restriction on the growth of a Liapunov function work for the
non occurrence of the explosion. The second purpose is to give the upper bound of
the growth of $U(X(t))/2t$ log log $t$ for $ t\rightarrow\infty$ when $X(t)$ is a solution of (1.1) and $U$ is a
certain function, so that the estimate contains the special result of McKean [3, p. 107
(Problem 5)]. In applications, the second order Ito process and the stochastic van der
Pol equation will be taken in \S 3.

The precise formulation is as follows. Let $R^{d}$ denote Euclidean d-space, let $\langle x, y\rangle$

be the inner product of $x\in R^{d}$ and $y\in R^{d}$ and let $|x|$ be the Euclidean norm of $x\in R^{d}$ .
For a $d\times d$-matrix $M=(m_{ij})$ , define

$|M|=(\sum_{i.j=1}^{d}m_{ij}^{2})^{1/2}$

Let $W(t)=(w_{i}(t)),$ $i=1,$ $\cdots,$
$d$, be a d-dimensional Brownian motion process adapted

to $F_{t}$ on the underlying probability space $(\Omega, F, P)$ with an increasing family { $F_{t}$ ;
$t\geq 0\}$ of $sub-\sigma$-algebras of $F$. Then we consider the stochastic differential equation

(1.1) $dX(t)=b(t, X(t))dt+\sigma(t, X(t))dW(t)$ ,

where $b(t, x)=(b_{i}(t, x)),$ $i=1,$ $\cdots,$
$d$, is a d-vector function and $\sigma(t, x)=(\sigma_{i_{J}}\langle t, x))$ ,

$i,j=1,$ $\cdots,$
$d$, is a $d\times d$-matrix function, which are defined on $[0, \infty$) $\times R^{d}$ and Borel
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measurable with respect to the complete set of the variables. Throughout this paper,
we assume the following condition:

$b(t, x)$ and $\sigma(t, x)$ are continuous in $(t, x)$ , and for any $T>0b(t, x)$ and $\sigma(t, x)$

satisfy the local Lipschitz condition with respect to $x\in R^{i}$ if $t\leqq T$.
For any natural number $n$ , let $b^{\langle n)}(t, x)=(b_{i}^{\langle n)}(t, x))$ and $\sigma^{\langle n)}(t, x)=(\sigma_{ij}^{\langle n)}(t, x))$ ,

$i,j=1,$ $\cdots,$
$d$, be functions which satisfy the following conditions;

(i) $b^{\langle n)}(t, x)=b(t, x)$ and $\sigma^{\langle n)}(t, x)=\sigma(t, x)$ for $t\leqq n$ and $|x|\leqq n$ ,
(ii) $b^{(n)}(t, x)$ and $\sigma^{(n)}(t, x)$ satisfy the global Lipschitz condition with respect to

$x\in R^{d}$ if $t\leqq n$ ,
(iii) $|b^{\langle n)}(t, x)|^{2}+|\sigma^{\langle n)}(t, x)|^{2}\leqq K_{n}(1+|x|^{2})$ for $t\leqq n,$ $x\in R^{d}$ and a constant

$K_{n}>0$ depending only on $n$ . Then, by $X^{(n)}(t)$ we mean the pathwise unique solution of
the stochastic differential equation

(1.2) $dX^{(n)}(t)=b^{(n)}(t, X^{(n)}(t))dt+o^{(n)}(t, X^{\langle n)}(t))dW(t)$

which is defined up to $t\leqq n$ . For the solution of (1.2) with the initial condition
$X^{(n)}(t_{0})=x_{0}\in R^{d}(t_{0}\geqq 0)$ , we set

$\tau_{n}(t_{0}, x_{0})=\inf\{t;|X^{(n)}(t)|\geqq n\}$

$(\tau_{n}(t_{0}, x_{0})=\infty$ if $\{$ $\}=\emptyset$)

and
$e_{n}(t_{0}, x_{0})=\min\{n, \tau_{n}(t_{0}, x_{0})\}$ .

Then the random process $X(t)$ which is defined by $X(t)=X^{(n)}(t)$ for $t<e_{n}(t_{0}, x_{0})(n=$

$1,2,$ $\cdots$ ) is called the solution of (1.1) with the initial condition $X(t_{0})=x_{0}$ . A random
time $e(t_{0}, x_{0})$ which is defined by $e(t_{0}, x_{0})=\lim_{n\rightarrow\infty}e_{n}(t_{0}, x_{0})$ is called the explosion time of

$X(t)$ with the initial condition $X(t_{0})=x_{0}$ . We introduce the differential generator

(1.3) $L=\frac{\partial}{\partial t}+\sum_{i=1}^{d}b_{i}(t, x)\frac{\partial}{\partial x_{i}}+\frac{1}{2}\sum_{i,j=1}^{d}a_{ij}(t, x)\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}$

associated with the stochastic differential equation (1.1), where $a(t, x)=(a_{i}J_{\backslash }t, x))$ is
defined by $a(t, x)=\sigma(t, x)\sigma(t, x)^{*}$ ($*means$ the transpose). By $C^{1,2}([0, \infty)\times R^{d})$ we
denote the family of scalar functions defined on $[0, \infty$ ) $\times R^{d}$ which are twice con-
tinuously differentiable with respect to $x\in R^{d}$ and once with respect to $t\geqq 0$ .

\S 2. A priori estimate

To begin with, we estimate the probability of the leaving from a bounded
domain for the solution of (1.2).

Theorem 2.1. Suppose that there exists a nonnegative function $ V(t, x)\in$

$C^{1,2}([0, \infty)\times R^{d})$ which satisfies
(2.1) $LV(t, x)\leqq\alpha(t)\beta(V(t, x))$



STOCHASTIC DIFFERENTIAL EQUATIONS 93

for $t\geqq 0$ and $x\in R^{d}$, where $\alpha:[0, \infty$ ) $\rightarrow[0, \infty$ ) is continuous and $\beta:[0, \infty$ ) $\rightarrow[0, \infty$ ) is
monotone increasing and differentiable. Further, consider the solution $X^{\langle n)}(t)$ of (1.2)
with the initial condition $X^{\langle n)}(t_{0})=x_{0}\in R^{d}(t_{0}\geqq 0)$ and let $T>t_{0}$ be arbitrary and be
fixed. Then, for any $n>\max\{T, |x_{0}|\}$

(2.2)
$P(\sup_{t_{O}\leqq t\leqq T}|X^{\langle n)}(t)|>n)\leqq\{1+fx=n\left(\begin{array}{lll}\inf & & \mu_{t,x)}\\o\leqq\iota\leqq|| & T & \end{array}\right)\}^{-1}\{1+f(\mu t_{0}, x_{0}))+\int_{0}^{T}\alpha(s\mu_{S\}}$ ,

where

$f(v)=\int_{0}^{v}du/(1+\beta(u))$ .

Proof. We assume that there exist such functions $V,$ $\alpha$ and $\beta$ in the hypothesis
and set

$U(t, x)=1+f(V(t, x))$ ,

where

$f(v)=\int_{0}^{v}du/(1+\beta(u))$ .

By $L^{(n)}$ we denote the differential generator associated with the stochastic differential
equation (1.2), namely, the definition of $L^{\langle n)}$ is the same with that of $L$ in (1.3) where
$b(t, x)$ and $\sigma(t, x)$ are replaced by $b^{\langle n)}(t, x)$ and $\sigma^{\langle n)}(t, x)$ respectively. Since $b^{\langle n)}(t, x)=$

$b(t, x)$ and $\sigma^{(n)}(t, x)=\sigma(t, x)$ for $t\leqq n$ and $|x|\leqq n$ , we notice that $L^{\langle n)}V(t, x)=LV(t, x)$

for $t\leqq n$ and $|x|\leqq n$ . Now a simple calculation shows that

$LU(t, x)=L\{f(V[t, x))\}$

$=\{LV(t, x)\}f^{\prime}(V(t, x))+\frac{1}{2}|o(t, x)^{*}gradV(t, x)|^{2}f^{\prime\prime}(V(t, x))$

$=\frac{LV(t,x)1}{1+\beta(V[t,x))2}|\sigma(t, x)^{*}gradV(t, x)|^{2}\frac{\beta^{\prime}(V(t,x))}{(1+\beta(V[t,x)))^{2}}$

$\leqq\alpha(t)$

for $t\geqq 0$ and $x\in R^{d}$ because (2.1) holds by the assumption. Consider the solution
$X^{\langle n)}(t)$ of (1.2) with the initial condition $X^{(n)}(t_{0})=x_{0}\in R^{d}(t_{0}\geqq 0)$ . For notational
simplicity we write as $\tau_{n}=\tau_{n}(t_{0}, x_{0})$ and $e_{n}=e_{n}(t_{0}, x_{0})$ , omitting $(t_{0}, x_{0})$ . Let $T>t_{0}$ be
arbitrary and be fixed, and then choose $n$ so large that $n>\max\{T, |x_{0}|\}$ . Then Ito’s
formula concerning stochastic differentials implies that

$E[U(T\wedge e_{n}, X^{\langle n)}(T\wedge e_{n}))]=U(t_{0}, x_{0})+E[\int_{t_{O}}^{T_{A}e_{n_{L^{\langle n)}U(s,X^{(n)}(s))d_{S}}}}]$

$=U(t_{0}, x_{0})+E[\int_{0}^{T_{A}e_{n_{LU(s,X^{\langle n)}(s))ds}}}]$
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$\leqq 1+f(\mathcal{V}[t_{0}, x_{0}))+\int_{0}^{T}\alpha(s)ds$ ,

where $u\wedge v$ stands for the smaller of $u$ and $v$ . On the other hand, we see that
$E[U(T\wedge e_{n}, X^{\langle n)}(T\wedge e_{n})]\geqq E[U(e_{n}, X^{\langle n)}(e_{n}));e_{n}\leqq T]$

$=E[U(\tau_{n}, X^{\langle n)}(\tau_{n}));\tau_{n}\leqq T]$

$=E[1+f(V[\tau_{n}, X^{\langle n)}(\tau_{n})));\tau_{n}\leqq T]$

$\geqq\{1+fx=n\left(\begin{array}{lll}\inf & & V(t,x)\\0\leqq t\leqq|| & T & \end{array}\right)\}P(\tau_{n}\leqq T)$

since $\{e_{n}\leqq T\}=\{\tau_{n}\leqq T\}$ and $e_{n}=\tau_{n}$ on $\{\tau_{n}\leqq T\}$ for $n>T$ and since $f$ is strictly
monotone increasing. Thus the above inequalities yield that

$\{1+fx=n\left(\begin{array}{lll}\inf & & V(t,x)\\0\leqq t\leqq|| & T & \end{array}\right)\}P(\tau_{n}\leqq T)\leqq 1+f(\mathcal{V}[t_{0}, x_{0}))+\int_{0}^{T}\alpha(s)ds$ ,

from which follows (2.2) if we note that

$\{\tau_{n}\leqq T\}=\{\sup_{t_{0}\leqq t\leqq T}|X^{(n)}(t)|\geqq n\}$ .
Henoe the proof is complete.

From the order for which the probability (2.2) decreases, we can obtain a
sufficient condition for the non occurrence of the explosion in the following corollary,
which is just the same with the result in [4] and [5].

Corolary 2.1. Under the same assumption as in Theorem 2.1, suppose that

(2.3)
$\lim_{|x|\rightarrow\infty 0}\inf_{\leqq t\leqq T}V(t, x)=0$ for each $T>0$

and

(2.4) $\int_{0}^{\infty}du/(1+\beta(u))=\infty$ .

Further, let $X(t)$ be the solution of (1.1) with the initial condition $X(t_{0})=x_{0}\in R^{d}$ . Then,
$P(e(t_{0}, x_{0})=\infty)=1$ for all $t_{0}\geqq 0$ and $x_{0}\in R^{d}$ .

Proof. Let $T>t_{0}$ be arbitrary and be fixed. Then we notice that
$\{e_{n}(t_{0}, x_{0})\leqq T\}=\{\tau_{n}(t_{0}, x_{0})\leqq T\}$

$=\{\sup_{t_{0}\leqq t\leqq T}|X^{\langle n)}(t)|\geqq n\}$ for $n>T$

and that $e_{n}(t_{0}, x_{0})\uparrow e(t_{0}, x_{0})$ for $ n\uparrow\infty$ . Therefore, by letting $n$ tend to infinity in the
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both sides of (2.2), we can obtain that $P(e(t_{0}, x_{0})\leqq T)=0$ for any $T>t_{0}$ , since (2.3)
and (2.4) hold by the assumption. Hence the proof is complete.

The condition (2.3) is the radial unboundedness condition of $V(t, x)$ and the
condition (2.4) is the restriction on the growth of $V(t, x)$ . The conditions (2.3) and (2.4)
work for the non occurrence of the explosion by reason of the decay of the
probability of the leaving from a bounded domain for the solution.

\S 3. Asymptotic behavior

For a no explosive solution $X(t)$ of (1.1), we can get the upper bound of the
growth of $|X(t)|^{2}/2t$ log log $t$ for $ t\rightarrow\infty$ if we take $V(t, x)=|x|^{2}/2$ in the following
theorem.

Theorem 3.1. Let $X(t)$ be the solution of (1.1) with the initial condition $X(t_{0})=$

$x_{0}\in R^{d}$ such that

$P(e(t_{0}, x_{0})=\infty)=1$ .
Further, suppose that there exists a nonnegative function $V(t, x)\in C^{1.2}([0, \infty)\times R^{d})$

which satisfies the following conditions;

(3.1) $LV(t, x)\leqq C(t)$ for $t\geqq 0$ and $x\in R^{d}$ ,

(3.2) $|o(t, x)^{*}gradV(t, x)|^{2}\leqq D(t)V(t, x)$ for $t\geqq 0$ and $x\in R^{d}$ ,

where $ C:[0, \infty$ ) $\rightarrow[0, \infty$ ) is continuous such that

(3.3) $\lim_{t\rightarrow\infty}\frac{1}{t}\int_{0}^{t}C(s)ds=C<\infty$

and $ D:[0, \infty$ ) $\rightarrow[0, \infty$ ) is continuous such that

(3.4) $\lim_{t\rightarrow\infty}\frac{1}{t}\int_{0}^{t}D(s)ds=\tilde{D}<\infty$ .

Then,

$P(\lim_{t\rightarrow}\sup_{\infty}T\langle t,$ $X(t))/t$ log log $t\leqq\exp(\tilde{D}/2))=1$ .

Proof. Let $X(t)$ be the solution of (1.1) with the initial condition $X(t_{0})=x_{0}$ such
that $P(e(t_{0}, x_{0})=\infty)=1$ and let $V(t, x)$ be the function in the hypothesis. Then we
apply Ito’s formula concerning stochastic differentials with the result that

$V(t, X(t))=V(t_{0}, x_{0})+\int_{0}^{t}LV(s, X(s))ds+M(t)$

for all $t\geqq t_{0}$ , almost surely, where

$ M(t)=\int_{t_{0}}^{t}\langle gradV(s, X(s)), \sigma(s, X(s))dW\uparrow s)\rangle$ .
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By the time substitution rule (McKean [3, p. 45 (Problem 1)]), we notice that $M(t)=$

$z(\phi(t))$ for a new Brownian motion process run with the clock

$\phi(t)=\int_{0}^{t}|\sigma(s, X(s))^{*}gradV(s, X(s))|^{2}ds$ .

Now set $H(t)=V(t, X(t))$ and $e_{n}=n\wedge\inf\{t;|X(t)|\geqq n\}(n=1,2, \cdots)$ . Then the
condition (3.1) yields,

(3.5) $H(t)\leqq H(t_{0})+\int_{t_{O}}^{t}C(s\mu s+z(\phi(t))$

for all $t\geqq t_{0}$ , almost surely. Also, the assumption of the non occurrence of the
explosion implies,

$ e_{n}\rightarrow\infty$ as $ n\rightarrow\infty$ , almost surely.

Next we set

$y(t)=\exp\{\alpha z(\phi(t))-\frac{1}{2}\alpha^{2}\phi(t)\}$

with a constant $\alpha$ , so that for fixed $n\{y(t\wedge e_{n});t\geqq t_{0}\}$ is a martingale. Then, using the
familiar martingale bound, we get that for any number $\alpha,$

$\beta$ and $T\geqq t_{0}$

$P(\sup_{to\leqq t\leqq T_{A}e_{n}}z(\phi(t))-\frac{\alpha}{2}\phi(t)>\beta)=P(\sup_{to\leqq t\leqq T_{A}e_{n}}y(t)>\exp(\alpha\beta))$

$\leqq\exp(-\alpha\beta)$

(see McKean [3; p. 22, p. 47]). Letting $n$ tend to infinity in the above equation, we
have,

$P(\sup_{t_{O}\leqq t\leqq T}z(\phi(t))-\frac{\alpha}{2}\phi(t)>\beta)\leqq\exp(-\alpha\beta)$ ,

since $ e_{n}\rightarrow\infty$ as $ n\rightarrow\infty$ , almost surely. In the following, let $\delta>1$ be arbitrary and be
fixed. Then for any natural number $n$ we put

$T=t_{0}+\delta^{n}$ , $\alpha=\delta^{-n}$ , $\beta=\delta^{n+1}\log n$ ,

from which follows

$P(\sup_{\iota_{O}\leqq\iota\leqq t_{O}+\delta^{n}}z(\phi(t))-\frac{1}{2}\delta^{-n}\phi(t)>\delta^{n+1}\log n)\leqq n^{-\delta}$ .

Since $n^{-\delta}$ is the general term of a convergent sum, the Borel-Cantelli lemma implies
for the sufficiently large $n$ and for $t_{0}\leqq t\leqq t_{0}+\delta^{n}$

$z(\phi(t))\leqq\frac{1}{2}\delta^{-n}\phi(t)+\delta^{n+1}$ log $n$
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almost surely. In the following, let $n$ be sufficiently large and be fixed. On the other
hand, consider (3.2) with the result that

$\phi(t)\leqq\int_{0}^{t}D(s)H(s)ds$

and so

$z(\phi(t))\leqq\frac{1}{2}\delta^{-n}\int_{0}^{t}D(s)H(s)ds+\delta^{n+1}$ log $n$

for all $t_{0}\leqq t\leqq t_{0}+\delta^{n}$ , almost surely. Combining this with (3.5), we get that

$H(t)\leqq H(t_{0})+\int_{t_{O}}^{t}C(s\mu_{S+\frac{1}{2}\delta^{-n}}\int_{t_{O}}^{t}D(s)H(s)ds+\delta^{n+1}\log n$

and hence

$H(t)\leqq H(t_{0})+(p_{n}+1)\delta^{n+.1}\log n+\frac{1}{2}\delta^{-n}\int_{0}^{t}D(s)H(s)ds$

for $al1.t_{0}\leqq t\leqq t_{0}+\delta^{n}$ , almost surely, where

$p_{n}=\frac{1}{\delta^{n+1}\log n}\int_{0}^{t_{O}+\delta^{n}}C(s)ds$ .

Accordingly, Gronwall-Bellman inequality yields that

(3.6) $H(t)\leqq[H(t_{0})+(p_{n}+1)\delta^{n+1}\log n]$ exp $[\frac{1}{2}\delta^{-n}\int_{0}^{t}D(s)ds]$

for all $t_{0}\leqq t\leqq t_{0}+\delta^{n}$ , almost surely. Now choose $t$ so that
$t_{0}+\delta^{n-1}<t\leqq t_{0}+\delta^{n}$

and then note that
$\delta^{n-1}$ log log $\delta^{n-1}<t$ log log $t$

and

$\int_{0}^{t}D(s)ds\leqq\int_{0}^{t_{O}+\delta^{n}}D(s)ds$

for all $t_{0}+\delta^{n-1}<t\leqq t_{0}+\delta^{n}$ . Then, dividing the both sides of (3.6) by $t$ loglog $t$ , we
obtain that

(3.7) $\frac{H(t_{0})}{t\log\log t}\leqq[\frac{H(t_{0})}{\delta^{n-1}\log\log\delta^{n-1}}+(p_{n}+1)\delta^{2}\frac{\log n}{\log\log\delta^{n-1}}]$

$\times$ exp $[\frac{1}{2}\delta^{-n}\int_{0}^{t_{O}+\delta^{n}}D(s)ds]$
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for all $t_{0}+\delta^{n-1}<t\leqq t_{0}+\delta^{n}$ , almost surely. It follows from (3.3) and (3.4) that

$p_{n}=\frac{l}{\delta\log n}\frac{1}{\delta^{n}}\int_{0}^{t_{0}+\delta^{n}}C(s)ds\rightarrow 0$ as $ n\rightarrow\infty$

and

$\delta^{-n}\int_{0}^{t_{O}+\delta^{n}}D(s)ds\rightarrow\tilde{D}$ as $ n\rightarrow\infty$ .

Also, it is evident that log $n/\log\log\delta^{n-1}\rightarrow 1$ as $ n\rightarrow\infty$ . Therefore, letting $n$ tend to
infinity in the both sides of (3.7), we obtain,

$\lim_{t\rightarrow}\sup_{\infty}\frac{H(t)}{t\log\log t}\leqq\delta^{2}$ exp $(\tilde{D}/2)$ ,

almost surely. Now make $\delta\downarrow 1$ . Then the assertion of the theorem holds, and hence
the proof is complete.

Example 3.1. Consider the system of the stochastic differential equations

$dX_{1}(t)=X_{2}(t)dt$ ,
(3.8)

$dX_{2}(t)=[-g(X_{1}(t))X_{2}(t)-f(X_{1}(t))]dt+dw(t)$ ,

where $w(t)$ is a one dimensional Brownian motion process, and $ f:(-\infty, \infty)\rightarrow$

(-co, $\infty$ ) is continuously differentiable and $g:(-\infty, \infty)\rightarrow(-\infty, \infty)$ is con-
tinuously differentiable.

The system (3.8) is one of the formulations such that $X_{1}(t)$ may correspond to
the response of the oscillator

$\ddot{y}+g(y)\dot{y}+f(y)=\dot{w}$

with the restoring force $f$and the damping $g$ to the formal white noise $\dot{w}$ , where by
we mean the symbolic derivative $d/dt$ . The solution $X_{1}(t)$ is called the second order Ito
process by Goldstein [1]. The system (3.8) can be written as a vector stochastic
differential equation of the form (1.1), where

$b=(x_{2}, -g(x_{1})x_{2}-f(x_{1}))$ , $\sigma=\left(\begin{array}{ll}0 & 0\\0 & 1\end{array}\right)$

for $x=(x_{1}, x_{2})\in R^{2}$ , and $W(t)=(w_{0}(t), w(t))$ with a (dummy) Brownian motion
process $w_{0}(t)$ which is independent of $w(t)$ .

In the following, we assume that

$x_{1}f(x_{1})>0$ for $x_{1}\neq 0$

and
$g(x_{1})\geqq 0$ for $x_{1}\in(-\infty, \infty)$ .

Then, under the above assumption, every solution of (3.8) cannot explode (see [6]).
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Now set

$V(x)=\int_{0}^{x_{1}}f(s)ds+\frac{1}{2}x_{2}^{2}$

Then it is easy to see that

for $x=(x_{1}, x_{2})\in R^{2}$

$LV(x)=-g(x_{1})x_{2^{2}}+\frac{1}{2}\leqq\frac{1}{2}$

and

$|\sigma^{*}gradV(x)|^{2}=x_{2^{2}}\leqq 2V(x)$

for all $x=(x_{1}, x_{2})\in R^{2}$ , where $L$ is the differential generator associated with (3.8).
Therefore, if we take $C(t)\equiv\tilde{C}=1/2$ and $D(t)\equiv\tilde{D}=2$ , then Theorem 3.1 will apply
with the result that

$P(\lim_{t\rightarrow}\sup_{\infty}NX(t))/t$ log log $t\leqq\exp(1))=1$ .

This is a generalization of McKean’s result [3, p. 107 (Problem 5)], where the
oscillator $\ddot{y}+f(y)=\dot{w}$ is considered.

Example 3.2. Consider the system of the stochastic differential equations

$dX_{1}(t)=(X_{2}(t)-\epsilon F(X_{1}(t)))dt$ ,
(3.9)

$dX_{2}(t)=-X_{1}(t)dt+h(t, X_{1}(t),$ $X_{2}(t))dw(t)$ ,

where $w(t)$ is a one dimensional Brownian motion process, and $\epsilon$ is a positive constant
( $\epsilon$ may be sufficiently small), $F(s)=d/3-s$ and $ h:[0, \infty$ ) $\times(-\infty, \infty)\times(-\infty, \infty)\rightarrow$

$(-\infty, \infty)$ has continuous first partials.
The system (3.9) is one of the formulations such that $X_{1}(t)$ may $rrespond$ to

the oscillator
$\ddot{y}+\epsilon(\gamma^{2}-1)\dot{y}+y=h(t, y,\dot{y})\dot{w}$

to the formal white noise $\dot{w}$ . In the deterministic case when $h(t, x_{1}, x_{2})\equiv 0,$ $(3.9)$ is
equivalent to the van der Pol equation $\ddot{y}+\epsilon C^{2}-1$ )$\dot{y}+y=0$ which has a limit cycle (see
LaSalle and Lefschetz [2]).

The equation (3.9) can be written as a vector stochastic differential equation of
the form (1.1), where

$b(t, x)=(x_{2}-\epsilon F(x_{1}), -x_{1})$ , $o(t, x)=\left(\begin{array}{ll}0 & 0\\0 & h(t,x_{1},x_{2})\end{array}\right)$

for $t\geqq 0$ and $x=(x_{1}, x_{2})\in R^{2}$ , and $W(t)=(w_{0}(t), w(t))$ with a (dummy) Brownian
motion process $w_{0}(t)$ which is independent of $w(t)$ .

In the following, we assume that
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$h^{2}(t, x_{1}, x_{2})\leqq k(t)$ for $t\geqq 0$ and $x=(x_{1}, x_{2})\in R^{2}$

with a continuous function $k(t)$ such that

$\vec{\lim_{t\infty}}\frac{1}{t}\int_{0}^{t}k(s)ds=k<\infty$ .

Now let $L$ be the differential generator associated with (3.9), and set $V(x)=|x|^{2}/2=$

$(x_{1}^{2}+x_{2}^{2})/2$ and $U(x)=V(x)+1$ for $x=(x_{1}, x_{2})\in R^{2}$ . Then the above assumption
yields that

$LU(x)=LV(x)$

$=-\epsilon x_{1}F(x_{1})+\frac{1}{2}h^{2}(t, x_{1}, x_{2})$

$=-\epsilon x_{1^{2}}(x_{1^{2}}/3-1)+\frac{1}{2}h^{2}(t, x_{1}, x_{2})$

$\leqq\frac{3}{4}\epsilon+\frac{1}{2}k(t)$

for all $t\geqq 0$ and $x=(x_{1}, x_{2})\in R^{2}$ . Thus, $U(x)$ satisfies that

$LU(x)\leqq C(t)U(x)$ and $ U(x)\rightarrow\infty$ as $|x|\rightarrow\infty$ ,

where

$C(t)=\frac{3}{4}\epsilon+\frac{1}{2}k(t)$

is continuous. Therefore, Corollary 2.1 implies that every solution of (3.9) cannot
explode. Further, we see that $LV(x)\leqq C(t)$ and also

$|\sigma(t, x)^{*}gradV(x)|^{2}=x_{2^{2}}h^{2}(t, x_{1}, x_{2})$

$\leqq D(t)V(x)$

for all $t\geqq 0$ and $x=(x_{1}, x_{2})\in R^{2}$ , where $D(t)=2k(t)$ . Therefore, since

$\frac{1}{t}\int_{0}^{t}C(s)ds\rightarrow\frac{3}{4}\epsilon+\frac{1}{2}k$ $(t\rightarrow\infty)$

and

$\frac{1}{t}\int_{0}^{t}D(s)ds\rightarrow 2k$ $(t\rightarrow\infty)$

by the assumption, Theorem 3.1 will apply with the result that

$P$ ($\lim_{t\rightarrow}\sup_{\infty}|X(t)|^{2}/2t$ log log $t\leqq\exp(k))=1$ .
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When $h(t, x_{1}, x_{2})=\epsilon^{1/2}g(t, x_{1}, x_{2})$ in (3.9) for some function $g(t, x_{1}, x_{2})$ , it will be
important for us to investigate the problem whether the limit process exists or does
not.
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