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§1. Introduction

Here we consider the solution of the d-dimensional stochastic differential
equation which is generally defined up to the explosion time. With respect to the
explosion problem, it follows from the recent papers [4] and that the radial
unboundedness condition and the restriction on the growth of a Liapunov function are
sufficient conditions for the non occurrence of the explosion. But the investigation of
the reason why such a Liapunov function should play an effective role on the non
occurrence of the explosion is left undone. The first purpose of this paper is to study
the relation between the a priori bound for the solution and the property of a
Liapunov function. More precisely, in §2 we estimate the order of the probability of
the leaving from a bounded domain for the solution of the stochastic differential
equation. From the order of its decay, it will be clarified that the radial unbounded-
ness condition and the restriction on the growth of a Liapunov function work for the
non occurrence of the explosion. The second purpose is to give the upper bound of
the growth of U(X(#))/2tloglog ¢ for t— oo when X(2) is a solution of and Uisa
certain function, so that the estimate contains the special result of McKean [3, p. 107
(Problem 5)]. In applications, the second order Ito process and the stochastic van der
Pol equation will be taken in §3.

The precise formulation is as follows. Let R? denote Euclidean d-space, let {x, y)
be the inner product of xe R% and ye R? and let | x| be the Euclidean norm of x e R’.
For a d x d-matrix M =(m;;), define

d 1/2
mi=( 3 m)
i,j=1
Let W(t)=(w(?)), i=1, - - -, d, be a d-dimensional Brownian motion process adapted

to F, on the underlying probability space (@, F, P) with an increasing family {F,;
t>0} of sub-g-algebras of F. Then we consider the stochastic differential equation

(1.1) dX () =b(t, X(2))dt +a(t, X(©))dW (1) ,

where b(t, x)=(b/(t, x)), i=1, -, d, is a d-vector function and a(t, x)=(0,(2, x)),
i,j=1, - -, d,is a d x d-matrix function, which are defined on [0, o) x R? and Borel
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measurable with respect to the complete set of the variables. Throughout this paper,
we assume the following condition:

b(t, x) and o(¢, x) are continuous in (¢, x), and for any T>0 b(¢, x) and a(¢, x)
satisfy the local Lipschitz condition with respect to xe R if t<T.

For any natural number n, let b™(z, x) =(b{"(t, x)) and ¢™(t, x)=(o{}(t, x)),
i,j=1, - - -, d, be functions which satisfy the following conditions;

(1) b™(¢, x)=b(t, x) and 6™(¢t, x)=0a(t, x) for t<n and | x|<n,

(i) b™(t, x) and ¢™(¢, x) satisfy the global Lipschitz condition with respect to
xeRif t<n,

(i) |6"™(, x)|2+ | 6", x)|2SK,(1+ |x|?) for t<n, xe R* and a constant
K, >0 depending only on n. Then, by X™(f) we mean the pathwise unique solution of
the stochastic differential equation

(1.2) dX™(£) =b"(t, X™(£))dt + a™(t, X" (£))dW(2)

which is defined up to t<n. For the solution of with the initial condition
X™(t,)=x,€ R? (2, 20), we set

T(to, Xo)=inf {#; | X"(1) | 2 n}
(tato, X9)=00 if { }=)

and
en(to, Xo)=min {n, 7,(to, Xo)} -

Then the random process X(¢) which is defined by X(¢) = X™(¢) for t<e,(t,, x,) (n=
1,2, - -+) is called the solution of with the initial condition X(t,)=Xx,. A random
time e(#,, Xx,) which is defined by e(z,, x,) ='l|1_r’rg0 e (2o, Xo) is called the explosion time of

X(¢) with the initial condition X(#,)=x,. We introduce the differential generator
d 2

(1.3) L"‘£+ i bt x)-i+—l— Y ay(t x)a—
) —at i=1 s axi 2,"]'-_:1 i axiaxl'

associated with the stochastic differential equation (1.1), where a(t, x) =(a;(t, x)) is
defined by a(t, x) =0o(t, x)a(t, x)* (* means the transpose). By C!?([0, c0) x R%) we
denote the family of scalar functions defined on [0, 0c0) x R? which are twice con-
tinuously differentiable with respect to x e R* and once with respect to #=0.

§2. A priori estimate

To begin with, we estimate the probability of the leaving from a bounded
domain for the solution of [(1.2),

Theorem 2.1. Suppose that there exists a nonnegative function V(t, x)e
C*3([0, o) x R%) which satisfies

Q.D LV(t, x) Sa(t)B(V(2, x))
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for t20 and xe R?, where a: [0, 0)—[0, ) is continuous and B: [0, c0)—[0, o) is
monotone increasing and differentiable. Further, consider the solution X" (t) of (1.2)
with the initial condition X" (t,)=x,€ R? (t,20) and let T>t, be arbitrary and be
fixed. Then, for any n>max {T, |x,|}

2.2 P( supT|X(")(t)|>n>§{l +f ( inf 1, x))}—l{l +f (Mo, xo)) + J Ta(s)ds},
toSts 0<tsT to
Ix|=n

where
)= L du/(1+ B(u)) .

Proof. We assume that there exist such functions V, a and B in the hypothesis
and set _
u(t, x)=1+f(V(1, x)),

where

fio)= L” du(L + B

By L™ we denote the differential generator associated with the stochastic differential
equation [(1.2), namely, the definition of L™ is the same with that of L in where
b(¢, x) and a(t, x) are replaced by b*™(¢, x) and (¢, x) respectively. Since b™(¢, x) =
b(t, x) and ¢™(t, x)=0a(t, x) for t<n and | x| < n, we notice that L™ V(¢t, x)=LV(t, x)
for t<n and | x|<n. Now a simple calculation shows that

LU, ) =L{f (M6, )}
— (LW, M} (M6, 1)+ - Lo, %)* grad Ve, 9| "V, )

_LVe® 1, . B, %)
T+ G, ) 2 |t " grad Ve ) e

Salt)

for >0 and xe R* because holds by the assumption. Consider the solution
X™() of with the initial condition X™(¢y)=x,€R? (t,=0). For notational
simplicity we write as 7, =1,(fy, Xo) and e,=e,(f,, X,), omitting (¢,, x,). Let 7> ¢, be
arbitrary and be fixed, and then choose n so large that n>max {T, | x,|}. Then Ito’s
formula concerning stochastic differentials implies that

TAren

E[U(T A e,, X™(T A e,))]=U(t,, x0)+E[j

to

L™UGs, X ("’(s))ds:l

= Ulto, xo)+E [ f T LU, X""(s))ds]

1]
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T

=1+f(Nto, X0)) +_[ s)ds ,

to

where u A v stands for the smaller of u and v. On the other hand, we see that
E[U(T A e,, X*(T A €,)]2 E[U(e,, X"e,)); e,<T]
=E[U(z,, X™(,)); 1, T]

=E[1+f(Nr,, X™(1,))); 1, = T1]

_2_{1 +f ( inf W, x))}P(t,,é T)
0stsT
Ix|=n

since {¢,<T}={7,<T} and e,=7, on {1,<T} for n>T and since f is strictly
monotone increasing. Thus the above inequalities yield that

T

{1 +f( inf W x))}mé T)<1+Mt, xo»+f s)ds

0StsT o
lx|=n
from which follows (2.2) if we note that

{tn= T}={ sup | X‘”’(t)lén} :
toStsT
Hence the proof is complete.

From the order for which the probability (2.2) decreases, we can obtain a
sufficient condition for the non occurrence of the explosion in the following corollary,
which is just the same with the result in [4] and [5].

Corollary 2.1. Under the same assumption as in Theorem 2.1, suppose that

(2.3) lim inf Wt,x)=0  for each T>0

[x|]>0 0StST

and

2.4 f du/(1+ Bu)=o0.
(1)
Further, let X(t) be the solution of (1.1) with the initial condition X(t,)=x,€ R®. Then,
P(e(ty, xo)=0)=1 for all t,=0 and x,€ R°.
Proof. Let T>t, be arbitrary and be fixed. Then we notice that

{elto, Xo) = T} ={t,(to, X)) < T}

={ sup IX‘”)(t)I;n} for n>T

toStST

and that e,(t,, x,) T e(t, X,) for n1 co. Therefore, by letting » tend to infinity in the
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both sides of (2.2), we can obtain that P(e(f,, x,) < T)=0 for any T> to, since
and hold by the assumption. Hence the proof is complete.

The condition is the radial unboundedness condition of V(t,x) and the
condition [2.4)|is the restriction on the growth of V(t, x). The conditions[2.3) and [2.4)
work for the non occurrence of the explosion by reason of the decay of the
probability of the leaving from a bounded domain for the solution.

§3. Asymptotic behavior

For a no explosive solution X(7) of [(I.1), we can get the upper bound of the
growth of | X(¢)|2/2tloglogt for t— oo if we take V(t, x)=|x|?/2 in the following
theorem.

Theorem 3.1. Let X(¢t) be the solution of (1.1) with the initial condition X(t,)=
Xo € R? such that

P(e(ty, xg)=0)=1.

Further, suppose that there exists a nonnegative function V(t, x)e C**([0, o0) x R9)
which satisfies the following conditions;

3.1 LV(t,x)SC(t) for t=0 and xeR®,
3.2) |o(z, x)* grad V(z, x) |2 < D(®)V(t,x) for t=0 and xeR°,
where C: [0, c0)—[0, ) is continuous such that
1 t

(3.3) lim - j Cs)ds=C< o

t— 0
and D: [0, c0)—[0, o©) is continuous such that

N -
34) lim ——j D(s)ds=D< o0 .

t— o0 t )
Then,

P(lim sup Mt, X(2) / tloglogt <exp (ﬁ/2)> =1.
t— oo

Proof. Let X(¢) be the solution of with the initial condition X(#,) = x, such
that P(e(ty, xo,)=00)=1 and let ¥{(t, x) be the function in the hypothesis. Then we
apply Ito’s formula concerning stochastic differentials with the result that

V(t, X(6) = V(to, Xo) + J t LV(s, X(s))ds + M(t)

to

for all =1, almost surely, where

M (t)=j <grad Us, X(s)), o(s, X(s))dWs)) .
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By the time substitution rule (McKean [3, p. 45 (Problem 1)]), we notice that M(¢)=
z(¢(r)) for a new Brownian motion process run with the clock

¢(t)='f | o(s, X(s))* grad Vs, X(s))| %ds .

Now set H()=V(t, X(1)) and e,=nAinf{z;|X(1)|Zn} (n=1,2, ---). Then the
condition yields,

t
(3.5) H(t)< H(to)+ J Cls)ds +z(p(1))
to
for all t=t¢,, almost surely. Also, the assumption of the non occurrence of the
explosion implies,
e,—o0 as n—oo, almost surely.

Next we set

0 =exp Jozt9(0) —o*40)}

with a constant a, so that for fixed n {y(¢ Ae,); t=1,} is a martingale. Then, using the
familiar martingale bound, we get that for any number «, f and T=¢,

P ( sup  z(¢(t) —%d)(t) > B) =P ( sup y(t)>exp (aﬂ))

toStST e, toStSTAren
<exp(—ap)

(see McKean [3; p. 22, p. 47]). Letting n tend to infinity in the above equation, we
have,

P ( sup z(¢(t))— —02‘-¢(t) > ﬂ) <exp(—ap),
tosStsT

since e,— oo as n— o0, almost surely. In the following, let 6>1 be arbitrary and be
fixed. Then for any natural number » we put

T=ty+0", a=0"", p=35"*tlogn,

from which follows

P( sup z(d)(t))—%6""<;S(t)>¢5"+1 log n)gn"’ .

toStSto+on

Since n~¢ is the general term of a convergent sum, the Borel-Cantelli lemma implies
for the sufficiently large n and for 1, <t<1,+ "

AHO) S 75730+ 5" logn
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almost surely. In the following, let n be sufficiently large and be fixed. On the other
hand, consider with the result that

H0)< J " D(e)H (s

to

and so

z(¢(2) é—;—é | D(s)H(s)ds+6"*logn

to

for all 1, <t=<1t,+ 0", almost surely. Combining this with we get that

H()S H(to) + ft C(s)ds + —;—5 -n f D(s)H(s)ds+ " *'logn

to (1]

and hence

H(t) < H(to) +(p, + 1)6"+1 1ogn+—;-5-" f D(s)H(s)ds

to

for all t,<t=<1,+ 6", almost surely, where

1 to +on
D= j C(s)ds .

=5"“logn o

Accordingly, Gronwall-Bellman inequality yields that

(3.6) , H(@)S[H(to)+(p,+1)6"* ' logn]exp [—;—5 " J:) D(s)ds]
for all ¢, <t=<1,+ 0", almost surely. Now choose ¢ so that
to+0" 1<ttty + 6"
.and then note that
6" 'loglogdé" ' <tloglogt
and '

Jt D(s)ds < Jto i D(s)ds

] to

for all 15+ 6"~ ' <t<1t,+ 6" Then, dividing the both sides of by tloglogt, we
obtain that

H(t,) H(t,) , logn
(3.7) tloglogt = [6"' lloglog 6" ! +(pat 1) loglogé"~!

1 to+on
X exXp [—2-5 " f D(s)ds:I
to
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for all 1,+6""' <t<t,+ 6", almost surely. It follows from [(3.3) and [(3.4) that

1 1 to +on

Pr=Slogn o ).,

C(s)ds—0 as n—- oo
and

to+ 6" -
5‘”! D(s)ds—D as n—oo.

to
Also, it is evident that logn/loglogé" !—1 as n—oo. Therefore, letting n tend to
infinity in the both sides of we obtain,

lim sup ﬂ

5 ..
m sl tloglogtéé exp(D/2),

almost surely. Now make 6 | 1. Then the assertion of the theorem holds, and hence
the proof is complete.

Example 3.1. Consider the system of the stochastic differential equations
dX,(0) =[—g(X, (D) X5(1) — f(X,(1)dt +aw(r)

where w(?) is a one dimensional Brownian motion process, and f: (— o0, ®©) —
(— o0, o0) is continuously differentiable and g: (— o0, 0) — (—o00, 00) is con-
tinuously differentiable.

The system (3.8) is one of the formulations such that X,(#) may correspond to
the response of the oscillator

3.8)

J+90p+10) =W

with the restoring force fand the damping g to the formal white noise w, where by
we mean the symbolic derivative d/dt. The solution X, (¢) is called the second order Ito
process by Goldstein [1]. The system (3.8) can be written as a vector stochastic
differential equation of the form [(1.1), where

: 00
b=(x, —g(x1)x;—f(x,)), a=(0 1>

for x=(x,, x;)€R?, and W(t)=(wy(?), w(¢)) with a (dummy) Brownian motion
process wy(¢) which is independent of w(z).
In the following, we assume that
x, f(x,)>0 for x,#0

and
g(x,)=0 for x,e(—o0, ).

Then, under the above assumption, every solution of (3.8) cannot explode (see [6]).
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Now set

X1 1
V(x)=f f(s)ds+7x22 for x=(x;,x;)eR?.
0

Then it is easy to see that

1 1

LVx)= —g(x,)x,? +7§-2—

and
|o* grad Nx) | 2=x,2 <2Wx)

for all x=(x,, x,) € R?, where L is the differential generator associated with (3.8).
Therefore, if we take C(1)=C=1/2 and D(t)=D=2, then will apply
with the result that

P (lim sup X (¢))/tloglogt <exp (1))= 1.

This is a generalization of McKean’s result [3, p. 107 (Problem S5)], where the
oscillator j+f(y)=w is considered.

Example 3.2. Consider the system of the stochastic differential equations

dX,()=(X,(t)—eF(X,(?))dt ,

(3.9)
dX,()= — X ()t +h(t, X,(2), X,(£))dw(?) ,

where w(?) is a one dimensional Brownian motion process, and ¢ is a positive constant
(¢ may be sufficiently small), F(s)=s3/3—s and A: [0, c0) x (— 00, 00) X (— 00, 0©) —
(— o0, o0) has continuous first partials.

The system (3.9) is one of the formulations such that X,(z) may correspond to
the oscillator

J+e(? —Dy+y=h(t,y, p)w

to the formal white noise w. In the deterministic case when A(z, x,, x,)=0, (3.9) is
equivalent to the van der Pol equation j + &(y* — 1)y + y =0 which has a limit cycle (see
LaSalle and Lefschetz [2]).

The equation (3.9) can be written as a vector stochastic differential equation of
the form [(1.1), where '

0 0
t; = —¢eF hy — s ’ =
bt x)=(x, = eF(x)), —x1), (6, ) (O e . x2)>
for t20 and x=(x;, x,)€ R?, and W(f)=(wy(), w(t)) with a (dummy) Brownian
motion process wy(#) which is independent of w(z).
In the following, we assume that
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R(t, x;, x,) k() for t=20 and x=(x,x,)eR>

with a continuous function k() such that

lim—l— f k(s)ds=k < o .

t— 0

Now let L be the differential generator associated with (3.9), and set V(x)=|x|%/2=
(x:2+x,%)/2 and U(x)=V(x)+1 for x=(x,, x,)€ R%. Then the above assumption
yields that

LU(x)=LV(x)

= —leF(x1)+"'12—h2(t$ xl’ x2)
2y 2 1.,
= —ex, 4(x, /3—1)+7h (¢, x4, X5)

3 1
< J——
=< 4s+ 2k(t)
for all 120 and x=(x,, x,) € R%. Thus, U(x) satisfies that
LUX)SC(HU(x) and U(x)—»oo as |x|—-o0,

where
3 1
t)=— J—
Cley=—e+—5 k(1)

is continuous. Therefore, implies that every solution of (3.9) cannot
explode. Further, we see that LV(x) < C(#) and also

| a(t, x)* grad V(x) |2 =x,2h*(t, x,, X;)
= D()V(x)

for all 1=0 and x=(x,, x,) € R?, where D(t)=2k(t). Therefore, since
1 (* 3 1
—t-' J;) C(S)ds —*Tﬁ + —Z-E (t g oo)

and

1 t

—t-J D(s)ds—2k (t— o)

0

by the assumption, will apply with the result that

P (lim sup| X(¢)|%/2tloglogt <exp (E)) =1.
t— oo



STOCHASTIC DIFFERENTIAL EQUATIONS 101

When A(t, x,, x,)=¢'"2g(1, x,, x,) in (3.9) for some function g(s, x,, x,), it will be
important for us to investigate the problem whether the limit process exists or does
not.

References

[1] J. A. Goldstein: Second order Ito processes, Nagoya Math. J., 36 (1969), 27-63.

[2] J. P. LaSalle and S. Lefschetz: Stability by Liapunov’s direct method with applications, Academic
Press, New York, 1961.

[3] H.P.Jr., McKean: Stochastic integrals, Academic Press, New York, 1969.

[4] K. Narita: No explosion criteria for stochastic differential equations, J. Math. Soc. Japan, 34, No. 2
(1982), 191-203.

[5] K. Narita: Remarks on no explosion theorem for stochastic differential equations, to appear in Kodai
Mathematical Journal (1982), Tokyo Institute of Technology.

[6] K. Narita: Stochastic differential equations which cannot explode (In Japanese), Sugaku, 33, No. 4
(1981), 367-369.

Department of Mathematics
Faculty of Technology

Kanagawa University

3-37, Rokkakubashi, Kanagawa-ku
Yokohama 221, Japan



	\S 1. Introduction
	\S 2. A priori estimate
	Theorem 2.1. ...

	\S 3. Asymptotic behavior
	Theorem 3.1. ...

	References

