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Let f: M—>M?3(a) be a C®-immersion of an oriented 2-manifold M into a
complete, simply-connected Riemannian 3-manifold M3(a) of constant curvature a.
We assume that the mean curvature of the immersion f'is constant, say H. In a recent
paper [4], Ruchert studied the sufficient condition of positiveness of the second
variation of the parameter invariant functional. '

A()= L (|f,, A fal S HU S A f,,))dxldxz

which was introduced by Heinz for proving the existence of surfaces in R* of constant
mean curvature H (see [3)).

In this note we study the case the ambient space is a Euclidean 3-sphere S3(a) of
constant positive curvature a or a hyperbolic 3-space H3(a) of constant negative
curvature a. Let F: (—¢, &) x M— M3(a) (¢ >0) be a normal variation of f which keeps
the boundary 0D of a domain D fixed. Following Gulliver [2], we consider surfaces of
constant curvature H as critical points for the operator

t
AAF):I | Fey A F,| dxldx2+2Hj (Fy, A F,, A F, dM)dtdx,dx,
D DJO

for all variations F of M as above. Here dM is the volume element of M3(a) and A is
the exterior product for vectors in R* or in the Lorentz space L* (depending on a
being positive or negative). '

We obtain the second variation formula for the above functional. This is a
quadratic form I, that acts on normal vector fields to M that vanish on dD. By
choosing a unit normal vector field N, I, can be thought of as an operator acting on
the space of C* real functions on D that vanish on 0D, given by

1,(tp)=j (IV¥|%—2Qa+2H? - K)P*)dM
: D

when V¥ stands for the gradient of ¥ and K by the Gaussian curvature of M in
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the induced metric. By a domain D on M we mean an open simply connected subset
of M whose closure D is compact with C® boundary. Then we prove:

Theorem 1. Letf: M—M?3(a), a=0, be a C®-immersion. Assume that the mean
curvature of the immersion f is the constant H. Let D be a domain on M. Then, if

j (Qa+2H?—K)dM <2m,
D
the second variation of the integral A, is positive for all normal variations with fixed

boundary.

Theorem 2. Let f: M—H?(a) be an immersion of M into the hyperbolic 3-space
of constant negative curvature a. Assume that the mean curvature of the immersion f is
the constant H. Let D be a domain on M. Then the second variation of the integral A [ is
positive for all normal variations with fixed boundary if:

i) j(a+2H2—K)dM<2n when a> —4H?
D

4H?
at when a< —4H?.

ii) J(a+2H2+5—KMM<2n,6=—
D

Remark. The above results may be regarded as generalization of our previous
results in the following sense. When the immersion f'is minimal (i.e., H=0),

1 (resp. reduces one of results in [T] (resp. in [6)).
1. Preliminaries

Let M be an oriented 2-manifold and f: M—S3(a) a C®-immersion into an
Euclidean 3-sphere S3(a) of constant positive curvature a. Let {x,, x,} be local
coordinates on M such that {9/0x,, 0/0x,} is a positively ordered basis of the tangent
plane of M where they can be defined and N the field of unit normal vectors along the
immersion f such that {9/0x,, 6/0x,, N} is a positively oriented basis of the tangent
space of S3(a) along f where they can be defined. ,

Note that S(a) is realized as a hypersurface of the Euclidean 4-space R*: $3(a) =
{(uy, up, u3, u)eR*; X (u)?=1/a}. _

Let D be a domain on M and ¥ any element of C*(D) with ¢ |dD=0. A normal
variation with variation vector YN is given by the equation

sin (cy(x)t)
c

F(t, x)=cos (cy(x)t)f(x) + N(x), where c¢= ﬁ .

Putting F;=(0/0x)F, N;=(0/0x)N, f;=(9/0x,)f and Y;=(0/0x)y, j=1, 2, we get the
following exterior product of F; and F,.
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@) FiAFy= (cos2 (cyt)—2H sin (c://t)ccos G in® (cy1)

+(K— )——)f Ay

+tcos? (Y)Y, fi A N+yY,N A f,)
—ctsin(cyt)cos (cyt)y, f A L2+ fi A S)
—tsin® Yty f A Ny+yY,Ny A f)

+ t sin (cyt) cos (cyrt)
c

(1N A N,+y,N,; A N),

where we use the identities
Ni=-X 19", i=1,2,
K—a=det(/;)(det(g;))"",
2H=3 14",

l;; and g;; are coefficients of the second and first fundamental forms of £, and (g") =
(9; ,-)‘1. Since f'is orthogonal to f;, f, and N, and N is orthogonal to f; and f,, from the
above equation we have the following

sin (cyt) cos (cyt) sin” (cyrt)
. +(K—- )—————)

|F, A F2|2={(cosz(a//t)—2H

+ Qg Y )t? cos* (cyt) + a0, x)}g

=(1—4Hyt+2(K +2H? - 2aW*t* + (3 gy )12+ t30,(t, x))g

where g=det(g;) and in what follows we denote by g/t x), j=1,2, -+, C®
functions in ¢ and x. Taking the square root of this equation we get the following

1 .
|Fy A Fy|= <1 —2Hyt+(K —2a)?t? +—:—2—(2 gy Y2+ ta(t, x))g”2
Integrating this equation over the domain D we have that

2 J |Fi A ledxldx2=Area(D)—2Htf YdM
D D

+1t2 f (%l W |2+(K —-2a)|/12)dM+ t3b(t) ,
D

where dM = g'/2dx, A dx, is the area element of M, | V{ | is the norm of the gradient of
¥ in the metric on M and b(¢) is a C*® function in ¢.
Putting F,=0F/0t we get F, A F=yN A f, and hence
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+(K—ap——

F,AFyAF,AcF= |ﬁ<cos2 (cn//t)—2HSin (c‘//t):os (cyr) sin (Clﬁt))

xfinfaANACSf

by virtue of (1).

Since the volume element dM of S3(a) is g ~'2f; A f, AN, and cF and cf are unit
vectors orthogonal to F,, F,, F,, and f|, f,, N, respectively, we get the following
integral estimate

t t.
J:)(F1 AFy A F,,d]VI)dt=J;(F1 AFy ANF ACF, g7 % A f; AN A cf)dt
=(ty —?HY? +a4(t, x))g*/*
and hence the following
t
(3) J f (Fy A Fy A F,,dM)dtdx dx,=t f YdM —HtZJ‘ Y2dM +t3d(t)
pJo v D D

where d(t) is a C* function in ¢. From (2) and (3) we have

Aft, YN)= A/{F)=Area (D) + 12 f (% |V |2 +(K —2a —2H2).p2>dM
D

+t3(b(t) +4d(2)) .
Therefore, the first variation of 4.(z, yN) is zero and the second variation of
A (t,YyN) is

d2
@ art

=J (IVy|2—2Qa+2H?> - K)y*)dM .
D

Now, we want to estimate the Gaussian curvature of the metric which is
conformally related to the induced one.

Proposition 1. Let ds® be the induced metric on M. Then the Gaussian curvature
R of the metric d$* =((1/2)|B|>+a)ds® satisfies R<1, where ||B|| is the norm of the
second fundamental form.

Proof. For a positive number é which will be determined later we put u=
(1/2)||B||* + 6. Let’s observe that by Gauss equation we obtain

|B||>=4H?*—-2K+2a
and
H*~K+a>0.
Therefore
u=H*+(H>*—K+a)+6=>H*+6.
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The Gaussian curvature K of the metric uds® (see [I] is given by:
(5) K—£+—1{—uAu+|Vu|2)
T u 2 ‘

We now adopt the notations in Chern’s notes [5] Let {6, 8,} and {e,, e,} be
orthonormal 1-forms and its dual basis and denote by 4;;, h;;, the coefficients of the
second fundamental form relative to {e,, ¢,} and ones of their derivatives. Then from
the definition of u

du=3 h;jh;ji0,=3 1,0,
and
Duy=3_ h;jhyp6,+ h; iy = Zz uwb, ,
where h;;, are the second derivatives of h;;. The Laplacian of u is by definition
Au=3 ug =3 ;khin+ Zijx hishij
Putting this equation into (5) we get
K 1 2 2
(6) K=_-—‘3‘ u Z hiihj+u Z hin— > (Z hihip)® ¢ -
2u i,j.k i k i)

u i,Jj,k

Now we want to propose some lemmas.

Lemma 1.
—u Zk hf,k+ Z (Z hijhijk)2 SO .
i,j, k
Proof. From the definition of it is sufficient to prove the following inequality.
1
W= ——IB|? > h,?,.k+}kj (g hihi) 2 <0.
L Js i

For an arbitrary fixed point xe M we may choose an orthonormal basis {e,, e,} of
T.(M), the tangent plane of M at x, relative to which h;; =4, hy, =2H— 2, h,,=0.
And from the constancy of the mean curvature of the immersion we have

hy1x+hy3,=0, k=1, 2, and, since the ambient space is of constant sectional curva-
tures, A, are symmetric in i, j and k. Then W can be transformed into the following

1 _
W= "‘5‘0"%1 +h3)Ah%,, +h2 )+ (hy by + hyzhazy)? +(hyshyys+hashy)0)?

1
= —T(hh +h3)4h3 1 +hiio)+(hyy —hyy) (hiy +h3,))

= —((A—H)>+ H*4(h?,, + h3, )+ 4A— H)*(h?,, +hiy,)
=—4H*h},, +h3,,) -

<0.
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This completes the proof of [Lemma 1.
Lemma 2.

> hijhija= — || BlI* +2a| B||* + 6H?| B|* — 4aH*> — 8H*
Proof. Since dim M =2 and codim M =1 the formula (12) in [5, p. 38] becomes,

it — ity = — 3 PihPtij+ Y Boihn iy
= hihabij+ Y Bimhihig

—ah,d;;+ ahydy — ah,dy;+ah;0,

from this and the fact that A;; are symmetric in i, j and k we have
Z hijkk = 2 hikjk
k k

= Z his T Zk hrznkhi i+ z;‘ himhmjhkk —a ; hkkéij +ah; {] Z Ok
m, m, k

From this equation together with the constancy of H we get

™ 2. hihiju=—|B|*—4aH*+2a||B|* +2H Y. hinhnjhi; -

i,j,k ijsm

On the other hand,

) 0 \? A3 0
, )= f(h;)?= =
Y. (Mimhmjhi)=trace of (h;))” =trace of (0 2H — ,l) trace of ( 0 (H- A)3>

i,j,m
—2H(3A%* —6AH +4H?)
=2H {-;W +(2H - 2)?) —2H2} .

Thus we get that
Z hlmhmjhl]=3H“B”2 _4H3 .

i,j,m
Putting this equation into (7) we see that the assertion of is true.
We continue proving [Proposition 1. From Lemmas 1, 2 and (6) together with the
definition of u and the equation of Gauss we have that

R<S 4 (1BI* ~ 20| BI? — 6H?| BI? +4aH +8H*)

_2H2+a+5—u

1
+;§{2(u —0)? —2a(u—38)—6H?*(u—38)+2aH?*+4H*)
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1
=1 +F<_(a+4H2 +36)u+26%+2aé +2aH? +6H25+4H4>

Set g(u)=—(a+4H?*+30)u+25*+2adé+2aH?*+6H*5+4H*. Since u=>H?*+4, to
prove that K< 1 it is sufficient to show that g(x) <0 when u > H?+ 4. To have this we
just choose 6 >0 such that a+4H?+36>0 and g(H?+0)<0. If a>0 then the first
inequality holds for all values of >0 and the second for the values of §>a.
Therefore, by choosing d=a, as in the statement of we obtain K< 1.

2. Proof of Theorem 1.

We denote by V, dM the covariant differentiation and the area element of M in
the metric

ds? = (%IlBll 24 a)ds2 =(2a+2H?*—-K)ds? .
Then the second variation of the functional 4.(¢, Y N) satisfies

d2
WAf(t’ YN)

- f (199122070
t=0 D

From this equality and Propositions (3.3) and (3.10) in [1] we see that the assertion of
is true. The proof of follows the same steps of the proof of
Theorem 1.
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