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For integers p, g, and r, we defined a class of 3-bridge knots K(p, g; r) in [6]. We
shall show that each K(p, 1;r) (g=1) is a 3-braid knot. And we shall determine the
Murasugi signature of K(p, 1; r) by its braid representation (section 1).

Theorem 2.

2r—2p+2 r>0,p=1(mod4), or r>-2,p=3(mod 4),
o(K(p, 1; r))=
2r—2p+4  otherwise.

Let D(p, q;r) be the double branched covering space of S? branched over
K(p, q; r). Then we shall show that for any pair of odd integers (p, q) with (p, ¢9)=1,
there exists an integer r such that D(p, g; r) and D(p, g; r+ 1) are homology 3-spheres
(Theorem 3). In Theorem 4, we shall show that for any positive integer # and any
integer r, D(4n+1, 2n+1; r) and D(4n+3, 2n+1; r) are Seifert manifolds.

In we announced that for p <17, every knot K(p, g; r) is not a torus knot
except the knots shown in and 3 in [6], and the bridge index of each

knot is three except the knots shown in and 4 in [6] (Proposition 5). We
shall prove these by the help of Theorems 2, 3, and 4.

In this paper we shall use the same notations as [6].

§1. Signature of K(p, 1;7r)

In this section we shall show that for a triplet (p, g, r) of integers, K(p, ¢;r)
possesses the Alexander polynomial equal to that of a torus knot, but that K(p, ¢; r)
is not a torus knot. This will be shown by the help of the Murasugi signature.

For a positive integer « and an integer f, we define a 3-braid knot B(a, ) as
follows: If >0, let B(a, B) be the knot as shown in Figure 1. The portion of Figure 1
which is included in the upper bracket consists of B-*“full-twists”. If <0 the knot
diagram will be identical except that these particular crossings should be reversed.

We can get B(m, r—m) by an isotopic transformation of K2m+1, 1; r) as
follows:

Rotate the overpass EF through 180° radian with respect to the line which is
perpendicular to the plane R? through the point F (Figure 2-1 — Figure 2-2). In
Figure 2-2, the underpasses F4 and DC satisfy the followings:
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1) each of them lies in R?,

2) each of them goes around the both points 4 and C r-times,

3) they are parallel in R2.
Put the portion into r-““full-twists”” as shown in Figure 2-3. Similarly put the portion
which is a neighborhood of the points F, B and D into m-“twists” as shown in Figure
2-3. The arcs FA and DC are right-hand-screw twisted (2m—1)-times and left-hand-
screw twisted 2r-times. This may be reduced to (2r —2m+ 1) left- hand-screw twists as
shown in Figure 2-4 if r>m, or 2m—2r— 1) right-hand-screw twists if r <m (Figure
2-3 — Figure 2-4). Since the (2r—2m+ 1)-twists is decomposed into a twist and
(r—m)-“full-twists”, Figure 2-4 shows B(m, r—m).

The Murasugi matrix M, of a 3-braid knot B(a, B) has the form

X1y X2 X34 Xu Y,
—1 0
) B 1 - | o
-1 1 0 )
1 -1 -1 1
. 1 [
1 —1 -1
0 0
Ma_ -1 l. . [ o
-1 1 0 )
1 -1
. o
1 -1
1 -1
. | 12
-1 1 [

If B<0, replace the lower right 2|f|x2]|8| submatrix of M, 5, by the following
matrix. '

2|81
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Lemma 1. For any positive integers o and B, the signature of M3+ M .4 is equal

to 2 —2a.
Proof. Let
a a1y
A = . . . ) Whel'e a,-j=aj,-
an Qpp
and
l .
a a; a
PAI'= b 2 Tt ¥ SN 1 . lin
a; a4y ai;
1

Let Pivot (i, A) denote the transformation 4 into P!;AP ;. In other words, as the
result of applying the operation Pivot (i, 4), the matrix 4 is transformed into the
matrix such that all the elements in row i or column i are zero except the (i, i) element.
Let

) @)

(i) ......... k- k
Q= T and R, = .

1 . 1
We denote the transformation A4 into Q;A4Q;; by Add (i, , k, 4), and the transfor-
mation 4 into R, AR, by Mult (i, k, A). We may write Pivot (i), Add (i, , k), and
Mult (i, k) when A is understood.

Note that these transformations Pivot (i), Add (i, j, k) and Mult (i, k), where
k #0, unchange the signature of matrices.

We prove the lemma in three steps (see Table 2).
Let Ay=M,;+ M4 (see Table 1).

Step 1. We repeat the following transformations (1) and (2) for i=1,2, -+ -, o
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Table 1.
-2 1 3
1 -
. "
-2 1 1 J
11 -2 -1 1 ]
X
1 1
1 -2 -1 )
-1 0 1 -1 1N
1 - -2 1 -
. . . b o
1 -1 -2 1 1 J
1 1 -2 A
X
1
1 -2 J
2 -1
-1
L 28
-1
-1 -1 2|
-2
-2
-4 2 -4 4
2 .
-4 2 4
2 -6 —4
-4 2 2 -2
-4 - 2 -4
. . 2
4 —4 2 -4
-2
-2
2 -1
-1
-1
-2 -1 2
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Table 1. (continued)

0 -1
_.1 0 .
o 2-
-1
0
- 7 2
2 -6
-2
2
=2
—4 —4
2
2 —1
-1 -3
-1
2| —1 2
-1 7 2 -4 2
2 -6 -4 0
—4 -4 2 -2
2 -1
S 28
2 0 -2 -1 2
2 -1 )
-1
o
-1 2
5 2 ||
2 —1 A
-1
28
-1
2 2 ||l
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Table 1. (continued)

2 -1 l -2 1
-1 1
X= : r2ﬂ Y= . 2|B|
-1 -2 1
-1 2 10
2
6+—— 2 —4 2 2
a—1 44— 2
e 2 -6 -4 0 e o
-4 -4 2 2 5= L
26—1 2 ! 28
2 0 -2 ——
28

(1) Mult (x+1, 2),

(2) Pivot (i).
And we repeat the transformations (3) and (4) for i=a, a—1, ---, 1:

(3) Mult Qa+1,2)

(4) Pivot Ba+1).
Performing the above transformations on the matrix A4, yields the matrix 4, as
shown in Table 1.

Step 2. For each i, the operations (5), (6), (7), and (8) do not change elements
of the matrix A4, except the elements of row and column a+2i—2, a+2i—1, a+2i,
20+2i—1, 2a+2i, 20+ 2i+1, and 4o+ 2. And we have the followings:

1) Qa+2i+1, 20+ 2i+1) element of the new matrix=
(Qu+2i—1, 2a+2i—1) element of the old matrix, and
2) (2a+2i+2, 2a+2i+2) element of the new matrix=
Qo+ 2i, 20+ 2i) element of the old matrix.

We repeat these four operations for i=1, 2, - - -, [«/2], where [x] means the greatest
integer which is not greater than x.

(5) Pivot (a+2i—1),

(6) Add Qa+2i, 2a+2i—1, 1),

(7) Pivot Qua+2i),

(8) Pivot a+2i—1).
Performing the above transformations on the matrix 4, yields the matrix 4," (if « is
odd) or A4, (if a is even).

Step 3. There are two cases.

Case 1: The number « is odd.

Let A4, be the matrix as shown in Table 1. Then 6(A4y) = —2a— (a—1)/2+ a(4,).
We repeat the transformation (9) for i=1,2, - - -, (a—3)/2: )

(9) Pivot (V).
And then we repeat the transformation (10) for i=1,2, ---, 28—1:
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Table 2.

procedure shrink (var sign: integer);
(» obtain submatrix and calculate signature *)
begin

end;
begin
sign:=0;
(* AO—ALl *)
fori:=1 to « do begin
Mult (o +1i, 2);
Pivot (i);
end;

for i:=wa down to 1 do begin
Mult (2#a +1i, 2);
Pivot (3*a+1):
end;
(* A1-A2" or A4’ »)
for i:=1 to (x div 2) do begin
Pivot (a4 2+i);
Add (2*a+ 2+, 2%a+2%i—1, 1);
Pivot (2#a+ 2#i);
Pivot (2% +2*i—1);
end;
(» A2’—>A2 or A4'—A4 »)
shrink (sign);
if odd () then begin
(* A25A3 %)
fori:=1to (x—3) div2do
Pivot (i);
fori:=1to 2«f—1do
Pivot (((x+3) div 2) +i);

shrink (sign); (* A3’>A3 »)
fori:=1to 3do (= calculate g(A3) *)
Pivot (i);
shrink (sign);
end
else begin

(* Ad> A5’ %)

fori:=1to (xdiv2)+1 do
Pivot (i);

fori:=1to 2#8—1 do
Pivot ((« div 2) +i);

shrink (sign); (* A5'>A5 »)
Pivot (1); (= calculate g(AS5) *)
shrink (sign);

end;

end
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(10) Pivot (i+(a+3)/2).

Performing the above transformations on 4, yields 4;’". Let A; be the matrix as
shown in Table 1. Then o(4,)=(x—3)/2+2f—1+0(A4;). It is easy to see that
0(A3)=2. Therefore a(A4,)=2p— 2.

Case 2: The number « is even.

Let A, be the matrix as shown in Table 1. Then 6(A4,) = —2a—a/2 +0(A4,). We
repeat the transformation (11) for i=1,2, ---, «/2—1 and we repeat the transfor-
mation (12) for i=1,2, ---, 2—1:

(11) Pivot (i),

(12) Pivot (i+a/2).

Performing the above transformations on A4, yields As’. If we define 45 as in Table 1,
0(Ag)=—2a+2f—2+0d(As). It is easy to see that g(4s)=2. Therefore o(A4y)=
2B —2a. The proof is completed.

Lemma 2. For integers a>0>f,

2p—2a o: odd, a+p+2>0, or o even, a+f2=0,
2—2a+2 otherwise.

Proof. Let X and Y be the matrices as shown in Table 1. Then the matrix X is
the lower right 2| 8| x 2| f| submatrix of 4,. Thus M,;+ M, is the matrix obtained
from A, by replacing the submatrix X of 4, by Y. Set Ag=M,z+ M ;. If we define
the matrices 4, and 44 as shown in Table 1, it is easy to see that:

28—2a+0(A4,) if ais odd,
6(4¢)= . .
2f—2a+a(Ag) if ais even,
. 0 o + 2 =— ﬂ,
6(A;)=1+sign(1/Q2a+5)+1/28)= {
2 otherwise,
0 a=>-—p,
a(A8)=1+sign(1/(2a+1)+1/2/3)={ ]
2 otherwise.
Therefore
| 28— 2u « odd, a+B+2>0, or o« even, a+f>0,
o(Ae)= .
28—20+2 otherwise.
The proof is completed.
Theorem 1.
2p—2a a: odd, a+p+2>0, or « even, a+p=>0,

o(B(c, ﬂ))={ ,
2B—20+2 otherwise.
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Proof. The matrix M, is the Murasugi matrix of the 3-braid knot B(a, f) (see
Figure 1 and [7]). The Murasugi signature of B(a, f) is the signature of the matrix
M,;+ M ;5. By Lemmas 1and 2, the signature of the above matrix is equal to 28— 2«
or 2—2a+2. Therefore we have the result.

Theorem 2.

2r—2p+2 r>0,p=1(mod 4), or r>-2, p=3 (mod 4),
o(K(p, 1;r))=
2r—2p+4 otherwise.
Proof. We have shown that K(p, 1;r) and B((p—1)/2, r—(p—1)/2) have the
same knot type. By Theorem 1, we have the result.

Proposition 1. Given a positive integer n, the knot K(4n+1, 1; 3n) possesses the
Alexander polynomial equal to the 2-bridge torus knot K(6n+1, 1), and has bridge
index 3. (Hence it is not a torus knot). Similarly K(4n+ 3, 1; 3n) does not have the same
knot type as the 2-bridge torus knot K(6n+5, 1).

Proof. By the under presentation, the knot group =mk of the knot
K(4n+1, 1; 3n) can be represented by the generators a, b, and ¢ corresponding to the
underpasses BE, FA, and DC respectively (Figure 3), and the relators corresponding
to the overpasses EF and CB. Let W be the word obtained by reading off the
generators by going along the overpasses EF in the positive direction, and V the word
along the overpass BC in the positive direction in the knot K(4n+1, 1; 0),
respectively, as shown in Figure 3. (We use the same notations as [6]). Then
W=(bca)*® and V=(cab)! ?"b~'a"!. Thus nk=<{a,b,claWb W1,
aV(bc)*c™1(bc) 3"V ~'). The Alexander polynomial of K(4n+1, 1; 3n) is equal to

x6n+1+1

A= x+1

It is well known that the polynomial is equal to the Alexander polynomial of the 2-
bridge knot K(6n+1, 1).

We shall use contradiction to prove our proposition. Suppose that
K(4n+1, 1; 3n) is a 2-bridge knot. Since A(x)=(x"*!+1)/(x+1), K(4n+1, 1; 3n)
must have the same knot type as K(6n+1, +1) [2], [8]. Since K(6n+1, +1) is the
torus knot of type (6n+1, +2), the signature o(K(6n+1, +1))= +6n [7]. On the
other hand, by the signature o(K(4n+1, 1; 3n))= —2n. This is con-
tradiction. Then K(4n+ 1, 1; 3n) has bridge index 3.

Similarly suppose that K(4n+ 1, 1; 3n) is a torus knot. Then K(4n+ 1, 1; 3n) must
have the same knot type as the torus knot 7(6n+1, +2), since the Alexander
polynomial A(x)=(x®"*!+1)/(x+1). Thus K(4n+ 1, 1; 3n) must have bridge index 2,
since T(6n+1, +2) and K(6n+ 1, + 1) have the same knot type. This is contradiction.
Therefore K(4n+1, 1; 3n) is not a torus knot.

We can show that the Alexander polynomial of K(4n+3,1;3n) is 4(x)=
(x®"*3+1)/(x+1), and its signature is equal to —2n—4. Suppose that K(4n+3, 1; 3n)
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1] .:‘Tl
Byt —
b

K@n+1,1;3n) (n=2)

b

is a 2-bridge knot or a torus knot. Then K(4n+ 3, 1; 3n) must have the same knot type
as the 2-bridge torus knot K(6n+5, +1). Thus the signature of K(4n+3, 1; 3n) must
be equal to + (6n+4). This is contradiction. Therefore K(4n+3, 1; 3n) has bridge in-
dex 3 and is not a torus knot. The proof is completed.

W =bcabcabcabca ‘
V=b-la~lc 1p"1g 1" 1p-1g e~ 1p=14"1

Figure 3.

Proposition 2. Each of the following pairs of knots has the same Alexander
polynomial. But we can distinguish them by the Murasugi signatures.

(1) K(4n+1,1;3n+3k)£ K(4k+1, 1; 3n+3k) n>k>1, where K, =~ K, means
that K, and K, have the same knot type.
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(2) K@n—1,1;3n+3k—3)£K@4k—1,1;3n+3k—3) n>k>1,
(3) K@n+1,1;3n—3k)%K@k—1,1; —3n+3k—3) n>k>1, or k>n>1.

Proof. (1) By the under presentation, the knot group nk of the knot
K(2m+1, 1; r) has the following representation:

nk={a,b,c|laWb W1, aV(bc)c Y (bc) "V ~!>, where W=(bca)" and V=
(cab) "™b~'a™!, as the proof of [Proposition 1. Then we can show that K(4n+1, 1;
3n+ 3k) has the same Alexander polynomial as K(4k+1, 1; 3n+ 3k). By [Theorem 1,

o(K(4n+1, 1;3n+3k))=6k—2n+2#6n—2k+2
=o(K(4k+1, 1; 3n+3k)) .

Therefore K(4n+1, 1; 3n+3k)# K(4k+1, 1; 3n+ 3k).
We can show (2) and (3) by the similar way. The proof is completed.

Remark. When n=k in (3) of |Proposition 2, we know that K(4n+1, 1; 0) and
K(4n—1, 1; —3) have the same knot type.

§2. Double branched covering of S3

There is a knot K(p, ¢; r) with bridge index 3 whose Alexander polynomial that
is equal to that of a 2-bridge knot. But we can distinguish it from the 2-bridge knot by
examining that the 2-fold branched covering spaces of S* are different from each
other.

Let p: S?—{0}=R3*>R?>x0=R? be a regular projection p(x, y, z)=(x, y, 0).
We may assume that the knot K(p, g; r) is the union of six arcs FA, AD, DC, CB,
BE and EF such that

1) the arcs FA, DC and BE, which are called underpasses, are contained in RZ,

2) the arcs AD, CB and EF, which are called overpasses, are contained in
R >={(x,y,2)|220}.

Let D(p, g; r) be the double branched covering space of S branched over a knot
K(p, q;r) and P: D(p, q; r)—S? the covering map.

Proposition 3. Every manifold D(p, q; r) is a homology lens space.

Proof. By Birman-Hilden [1] and Takahashi [12], the 3-manifold D(p, g; r) has
a Heegaard diagram of genus 2. Let /,, /,, m;, m, and m; be simple closed curves
P~Y(BE), P~\(FA), P"*(p(EF)), P~'(p(AD)) and P~!(p(CB)) respectively. Then the
union m, Um, Um, is a complete meridian system of the Heegaard diagram of
D(p, g; ).

Let B,=P~'(B), B,, B,, - - *, B, be all the points of the intersection of I, with
m, Um, U m, in this order on /,. Then P(B,)=FE and P(B))=P(B,,-;) for i=1, 2,
-+, n. If P(B)) lies in p(EF) and i> 3, then P(B;_,) lies in p(EF), by the definition
of K(p, q; r). Since P(B,) lies in p(EF), the arc P(Bj;,,) lies in p(EF) for i=0, 1,
-+, (2n—2)/3. Thus By, ., lies in m; = P~(p(EF)).

Orient /,, l,, m;, m, and m, as shown in Figure 4. For each j, at the point B, , the
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| N \
PYF) P™Y(D) P~1(4) PY(C)
Figure 4.

intersection number of /, and the complete meridian system {my U m, Um,} is equal
to —1, and at B,;, y, it is equal to + 1. Then /, crosses m, at Bg;,, with intersection
number +1, for i=0, 1, ---, (n—1)/3. And /, crosses m, at Bj,,, with intersection
number —1 for i=0, 1, ---, (n—4)/3. Therefore the intersection number m-l, is
equal to +1. Similarly m, -/, is equal to +1 or —1 if the intersection number at
PTY(E) is equal to +1 or —1 respectively. Let o and B be the intersection numbers
my -1, and m, -1, of D(p, g; 0) respectively. Note that « is even but 8 is odd because
m, -1, has no branch points but m,-J, has a branch point P~!(4). Clearly, the
intersection number m, -1, of D(p, g; r) is equal to «, and m, - |, of D(p, g; r) is equal to
B+2r. Then the homology group of D(p, g; r) is

<la, Ib|la+lb=03 Otla+(ﬂ+2r)lb=0> if m1'1a=m1'lb,

oy b1, —1,=0, al,+(B+2r),=0) if m-l,=—m -1,
Therefore the homology group is Zyvgran Emy-ly=my-lyor Z,_ 5,5, if my-I,=
—my, *l,. This completes the proof of [Proposition 3.

Theorem 3. For any pair of integers (p, q) which yields the 2-bridge knot
K(p, ), there exists an integer r such that D(p, q; r) and D(p, q; r+ 1) are homology 3-
spheres.

Proof. We have shown in the proof of that a is even and B is odd.
Therefore we choose r=—(a+f+1)/2 if my-I,=m, I, or r=(a—B+1)/2 if m,-I,=
—m, - l,. The proof is completed.

H(D(p, q; )= {

A portion of a knot which is a set of just two arcs embedded in 3-ball is called a
tangle.

Theorem 4. For any positive integer n and any integer r, D(4n+1, 2n+1; r) and
D(4n+3, 2n+1; r) are Seifert manifolds.

Proof. We shall show that K(4n+1, 2n+1; r) and K(4n+ 3, 2n+1; r) belong to
a class of knots studied by Montesinos in [5]. Note that the pair of integers (s, 7) of
each of these knots, which is defined in in [6], is (2, 1).

For K(4n+3, 2n+1;r): By isotopic transformation of K(4n+3, 2n+1; r) we
successively have Figures 5-2, 5-3, 5-4, and 5-5:
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Figure 5-1.

T @n+3, —@n+1))

0. MORIKAWA

(4n+3, —(2n+1))

T dntl, S@aeD)
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The underpasses FA and DC satisfy the followings:

1) each of them lies in R?,

2) each of them goes around the both points 4 and C r-times,

3) they are parallel in neighbourhood of the both points 4 and C in R?.

Put the neighbourhood of 4 U C in 3) into r-“full twists” as shown in Figure 5-2.
Push the underpass BE in R_3*={(x, y, z)|2<0}, and redraw it by a straight line
(Figure 5-1 — Figure 5-2).

Let G be a point in the arc FA as shown in Figure 5-2. The arc FG over-crosses
the straight line BE at (n+ 1)/2 double points, and the other double points of FG are
under-crossing points. Then redraw the arc FG and get the Figure 5-3.

Make the arc AD stride over across the arc CB. And redraw the diagram as
shown in Figure 5-5. The portions of Figure 5-5 which are bounded by the dotted
circles are tangles labelled (2r—1, 1), (2, 1) and (4n+3, —(2n+ 1)) (see[5)). Since each
D(4n+3, 2n+1; r) belongs to a class of manifolds studied by Montesinos [3], it is the -
Seifert fiber space (0 20| 0; (2r—1, 1), (2, 1), (4n+3, —(2n+1))) in the notation of
[10].

For K(4n+1, 2n+1; r): By the same manner of the previous case, we prove this
case. By isotopic transformation we get Figure 5-6 from K(4n+1, 2n+1; r).
Therefore D(4n+1, 2n+1; r) is described by the symbol (O -0 | 0; (2r+1, 1), (2, 1),
(4n+1, —(2n+1)). The proof is completed.

Corollary 1. For any positive integer n and any integers r,
(1) K(@n—1,2n—1;r) has bridge index 3 iff r#0 or +1,
(2) K(4n+1,2n+1;r) has bridge index 3 iff r#£0 or —1.

Proof. In [Proposition 4 of [6], we have shown that K(4n+1, 2n+1; 0),
K(4n+1,2n+1; —1), K(4n—1,2n—1, 0) and K(4n—1, 2n—1; 1) have bridge index 2.
The Seifert manifold (0 -0|0; 2r+1,1), (2,1), (4n+1, —(2n+1))) has three
exceptional fibers if and only if 2r+13# + 1. Then for r with 2r+1%# +1, D(4n+1,
2n+1; r) is not a lens space. On the other hand, the 2-fold branched covering space of
S? branched over a 2-bridge knot is a lens space. Therefore K(4n+1, 2n+1; r) has
bridge index 3 if and only if r#0 or —1.

Similarly, since the Seifert manifold (0 -0]0; (2r—1,1), (2,1), (4n—1,
—(2n—1))) is a lens space if and only if 2r—1%# +1, K(4n—1, 2n—1; r) has bridge
index 3 if and only if r#0 or 1. The proof is completed.

Proposition 4. For any positive integer n, K(4n+3, 4n+1; 1) has unknotting
number 1.

Proof. Push the underpass BE slightly into R_3 and redraw it by a straight line
(Figure 6-1 — Figure 6-2). We apply the unknotting operation (see [4], at the
crossing point in the portion of Figure 6-2 which is bounded by the dotted circle
(Figure 6-2 — Figure 6-3).

Now we shall show that the resulting knot is unknotted. The arc FA4 into Figure
6-3 is an underpass. Then push FA into R_? and redraw it by an arc without double
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points (Figure 6-4). Since the arc EFAD can be considered as an overpass, push it
into R, > and redraw it by a straight line (Figure 6-5). Since the arc BEDC can be con-
sidered as an underpass, we get a 1-bridge knot, that is a trivial knot. Therefore
K(4n+3, 4n+1; 1) has unknotting number 1 or 0. On the other hand, we can show
that the Alexander polynomial of K(4n+3, 4n+1; 1) is equal to x"*!—x"+x—
1+x '—x""4+x"""!, Thus K(4n+3, 4n+1; 1) is not a trivial knot. Therefore the
unknotting number of K(4n+3, 4n+1; 1) is equal to 1. The proof is completed.

The following was proved in [6].

Theorem 5. For any pair of odd integers (p, q) with 0<|q|<p and (p, @)=1,
there exist integers I'(p, q)=(ry, 11, 1; oy, 0, * * *, Q) Such that

1) ro<ry,

2) for any r=r,, the sequence of coefficients of the Alexander polynomial of
K(p, q; 1) is

Olgs Oy °* "y Olpy 19 '—19 "'513 —1’ l’“m Tty Olgy Oy,

where the pair “1, —1” appears on the underlined part (r—r,) times repeatedly,
3) for any r<r,, the sequence of coefficients of the one of K(p, q;r) is

=) )

<

@

Figure 6-1. K(11,9;1)
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trivial knot

Figure 6-5.

Figure 6-3.
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(xn+1,d"+1—1, "',a2+1,a1—1, 1, —1, "',1, —bl, l,al—l,
w+1, -, a,_,—1,a,+1, ifniseven, or
o+ 1, 0,1, =10, +1, —1,1, -+, —1,1, — 1,0, +1,

0,—1, -, a,_,—1,0,+1, ifnisodd

where the pair “1, —1” appears on the underlined part (ro—r) times repeatedly.

We shall prove the following result announced in [6] by the help of Theorem §,
Proposition 1 and [Corollary 1.

Proposition 5.

D K3, 1;00~K(5, )T, 2)

2) K@2n+1,1; —=1)=T(3n+1,3) (n=1,2,--+)

3) K(2n+1,1; =2)~T(3n+2,3) (n=1,2,--*)

4) K@n+1,2n+1;00~K@n+1,6n+1) (n=1,2, --*)

5) K(4n+1,2n+1; —1)~K@8n+3,2n+1) (n=1,2,---)

6) K(4n+3,2n+1;0)=K@®8n+5,2n+1) (n=0,1,---)

7) K@n+3,2n+1; 1)~K@n+7,6n+5) (n=0,1, ---)

8) for p<17, K(p, q; r) is not a torus knot except the knots in 1), 2), and 3),
9) for p<17, K(p, q; r) has bridge index 3 except the knots in 1), 4), 5), 6) and 7).

Proof.

For 1): See in [6].

For 2), 3): See in [5]

For 4), 5), 6) and 7): See in [6].

For 8): It is well known that the Alexander polynomial of a torus knot T(p, g) is
A(x)=(xP1—1)(x—1)/(x?P—1)(x?—1), and T(p, q) has bridge index min (p, q). We
shall use the same notation as the proof of [Proposition 1|, that is, a, b and c are
generators of the knot group and W and V are words. In the case of K(3, 1, r), the
words W and V are written by bca and b~ 'a~! respectively. Then we have I'(3, 1)=
(-1, 4,4; 1, —2, 2, —1). Thus we have all the Alexander polynomials of K(3, 1; r)
(r<—1, 4<r), by Theorem 3. For —1<r<4, the Alexander polynomial 4, of
K(@3, 1;r) is:

Ado(x)=x*—x+1—x"1+x72,
A,(x)=2x—3-2x"1,
A,(x)=x*—2x+3-2x"1+x72,

A(x)=x> =22 +2x—1+2x71=2x"2+x73.

Thus for each r (r#0, —1, —2), the polynomial 4,(x) is not an Alexander
polynomial of a torus knot. Therefore K(3, 1; r) is not a torus knot except the knots in
1), 2) and 3).

For the other (p, g), we can also calculate I'(p, ) =(ro, 1y, 1; 0y, %, ** *, &,) and
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the Alexander polynomials of K(p, ¢;r) (r=ro+1, ro+2, - -+, r;—1). Thus we can
obtain the following complete list of (p, g, r) such that

(1) p<17, and

(2) there exists a torus knot T for which Ay, ,..,(x)=A4(x):

(3,1,0), (3,1,—1), (3,1,-2), 5,1,3), 5,1,—1), (5,1, =2), (1,1,3), (7,1, —1),
(7,1,-2), 9, 1, 6), 9,1, 1), 9,1, —2), (11, 1,6), (11,1, —1), (11,1, —2), (11,9, 1),
(13,1,9), (13,1,—1), (13,1,-2), (15,1,9), (15,1,—1), (15,1, —=2), (15,13,1),
(17,1,12), (17,1, —1) and (17,1, —2).

By [Proposition 1, the knots K(5, 1; 3), K(7, 1; 3), K(9, 1;6), K(11, 1;6), K(13,1;9),
K(15,1;9) and K(17, 1 12) are not torus knots.

The knots K(11,9;1) and K(15,13;1) have the Alexander polynomlals of the
torus knots 7(7, 2) and T(8, 3) respectively. By Proposition 4} the unknotting number
of K(11,9;1) and K(15,11;1) are equal to 1. On the other hand, the unknotting
number of 7(7,2) is equal to 3 ([7]). Thus K(11,9;1) is not a torus knot. The
unknotting number of 718, 3) is greater than 4 ([7]). Thus K(15,13;1) is not a torus
knot.

Therefore for p<17, K(p, g; r) is not a torus knot except the knots in 1), 2) and
3).

For 9): Hartley proved in [2] the followings:

The Alexander polynomial 4(x) of a 2-bridge knot satisfies:

1) A(—x)= Xk: Bx', and

i=—k

2) for some integer s,

B-k<B-r+1<' <B_s=B_si1=""=B>Pes1> " >P;.

Thus for each r (r#0, 1, 2), K(3, 1; r) has bridge index 3. By [Corollary 1, the knot
K(3, 1; 2) has bridge index 3. Therefore K(3, 1; r) has bridge index 3 except the knots
in 6) and 7).

In this manner we have all the Alexander polynomials of K(p, ¢; r) (p<17) by
finitely many calculations. So, we can obtain the following complete list of (p, g, r)
such that

(1) p<17,and

(2) the Alexander polynomial of K(p, g; r) satisfies Hartley’s conditions:

(3,1,0), 3,1,1), 3,1,2), (5,1,3), (5,3, —1), (53,0), (7,1,3), (7,3,0), (7,3, 1),
(7,3,2), (9, 1,6), (9,5, —1), (9,5,0), (11,1,6), (11,5,0), (11,5,1), (11,5,2), (11,9, 1),
(13,1,9), (13,7, —1), (13,7,0), (15,1,9), (15,7,0), (15,7,1), (15,7,2), (17,1,12),
(17,9, —1) and (17,9, 0).

By [Proposition 1, each of the knots K(5, 1;3), K(7, 1;3), K(11, 1;6), K(13,1;6),
K(15,1;9) and K(17, 1; 12) has bridge index 3.
By [Corollary 1, each of the knots K(7, 3; 2), K(11, 5;2) and K(15, 7;2) has brldge
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index 3.
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We have shown that K(11,9;1) has bridge index 3. Therefore for p<17,

K(p, ¢; r) has bridge index 3 except the knots in 1), 4), 5), 6) and 7). The proof is
completed.
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