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0. Introduction

An automorphism $\alpha$ of a von Neumann algebra $M$ is called freely acting if for
any non-zero central projection $e$ of $M$ with $\alpha(e)=e,$ $\alpha$ is outer on Me [4]. We extend
this notion to $C^{*}$-algebras, i.e., we call an automorphism $\alpha$ of a $C^{*}$-algebra $A$ freely
acting if for any closed ideal $I$ of $A$ with $\alpha(I)=I$, the Borchers spectrum $T_{B}(\alpha|I)$ of
$\alpha|I$ is not trivial. Our main result is a $C^{*}$-analogue of [2, 1.2.1] by Connes and im-
provement of [7, 1.1], which says that $\alpha$ is freely acting if and only if for any $\epsilon>0$

and for any non-zero hereditary $C^{*}$-subalgebra $B$ of $A$ , there exists $x\in B$ such that
$x\geq 0,$ $\Vert x\Vert=1$ and $\Vert x\alpha(x)\Vert<\epsilon$ . (This result has applications as in [7].)

If $A$ is separable, we can avoid using the Borchers spectrum in the definition of
free action; in this case $\alpha$ is freely acting if and only if for any closed ideal $I$ of $A$ with
$\alpha(I)=I,$ $\alpha|I$ is not universally weakly inner.

In Section 1 we give a preliminary consideration concerning the Borchers
spectrum and in Section 2 we give the main theorem.

In Section 3, for any pair $(A, \alpha)$ we construct a sequence of mutually orthogonal
closed ideals $(I_{k})$ indexed by $N\cup\{\infty\}$ , some of which may be (0), such that (I)
generates an essential ideal of $A$ and $T(\alpha|I_{k})=T_{B}(\alpha|I_{k})$ is the subgroup of order $k$ of
$T$ ($T$ itself if $ k=\infty$ ) for non-zero $I_{k}$ . We show a property of $\alpha$ on $I_{k}$ in 3.3 (cf. [1]).

In Section 4 we make a simple remark on the strong Connes spectrum [5].

1. Borchers spectrum

Let $A$ be a $C^{*}$-algebra and $G$ a locally compact abelian group with action $\alpha$ on $A$ .
Let $\ovalbox{\tt\small REJECT}^{a}(A)$ denote the set of $\alpha$-invariant, hereditary, non-zero $C^{*}$-subalgebras of $A$ ,
and let $\ovalbox{\tt\small REJECT}_{B}^{\alpha}(A)$ denote the subset consisting of algebras $B$ in $\ovalbox{\tt\small REJECT}^{\alpha}(A)$ such that the
closed ideal of $A$ generated by $B$ is essential in $A$ . The Borchers spectrum of $\alpha$ is de-
fined by

$\Gamma_{B}(\alpha)=\cap Sp(\alpha|B)$ ; $B\in\ovalbox{\tt\small REJECT}_{B}^{\alpha}(A)$

whereas the Connes spectrum $\Gamma(\alpha)$ is defined by the same formula without subscript
$B$ (see [9, 8.8]). We characterize $\Gamma_{B}(\alpha)$ using ideals of the crossed product $A\times_{\alpha}G$ and
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the dual action $\hat{\alpha}$ of $\Gamma=\hat{G}$ on $A\times_{\alpha}G$ ; similar results are known for the Connes
spectrum [9, 8.11.8] and its variant [5, 3.4]. We adopt the notation in Pedersen’s
book [9, 7.8] throughout the following. In particular $\lambda(t),$ $t\in G$ is the canonical
unitary group in the multiplier algebra $M(A\times_{\alpha}G)$ of $A\times_{\alpha}G$ and $\lambda(f)$ , for $f\in L^{1}(G)$ ,

means

$\lambda(f)=\int_{G}f(t)\lambda(t)dt$

which is also a multiplier.

1.1. Proposition. In the above situation, let $n$ be a positive integer. Then $\sigma\in\Gamma$

belongs to $\Gamma_{B}(\alpha)$ ifand only iffor any neighbourhood $\Omega$ of $\sigma$, andfor any closed ideal $J$

of $A\times_{a}G$ such that $J$ generates an essential $\hat{\alpha}$-invariant closed ideal of $A\times_{\alpha}G$ , there
exist $\sigma_{k}\in\Omega+\cdots+\Omega$ ($k$ terms), $k=1,$ $\cdots,$ $n$ , such that

$J\cap\hat{\alpha}_{\sigma_{1}}(J)\cap\cdots\cap\hat{\alpha}_{\sigma_{n}}(J)\neq(0)$ .
For the proof we prepare

1.2. Lemma. Let $x\in A$ and let $f,$ $g\in L^{1}(G)$ be non-zero such that supp $f$

and supp $\hat{g}$ are compact. Suppose that $\lambda(f)\cdot x\lambda(g)\neq 0$ (in $A\times_{\alpha}G$). Then
$Sp_{\alpha}x\cap(suppf-supp\hat{g})\neq\otimes$ .

We omit the proof; this can be shown by standard techniques of spectral theory
(cf. [9, chap. 8]).

Proof of 1.1. Let $\sigma\not\in\Gamma_{B}(\alpha)$ and let $B\in\ovalbox{\tt\small REJECT}_{B}^{\alpha}(A)$ satisfy Sp $(\alpha|B)$ I $\sigma$ . Then there
exist a neighbourhood $\Omega$ of $\sigma$ and a non-zero $f\in L^{1}(G)$ such that $\lambda(f_{\tau})^{*}B\lambda(f)=(O)$ for
$\tau\in\Omega$ , where $f_{\tau}(t)=\langle t, \tau\rangle f(t)$ . Let $J$ be the ideal of $A\times_{\alpha}G$ generated by $ B\lambda\omega$ . Then the
$\hat{\alpha}$-invariant ideal $\hat{J}$ of $ A\times G\alpha$ generated by $J$ is essential in $A\times_{\alpha}G$ because $B$ is
essential in $A$ . Since $\lambda(f_{\tau})^{*}B\lambda(f)=(O)$ for $\tau\in\Omega$ , it follows that

$J\cap\hat{\alpha}_{\tau}(J)=(0)$ .

Let $\sigma\in\Gamma_{B}(\alpha)$ . Let $J$ be a closed ideal of $A\times_{\alpha}G$ such that $\hat{J}$ is essential. It follows
from [6] that there are $B_{i}\in\ovalbox{\tt\small REJECT}^{\alpha}(A)$ and non-zero $f_{i}\in L^{1}(G)$ such that $B_{i}\lambda(f_{i})\subset J$ and the
family $\{B_{i}\lambda(f_{i})\}$ generates $J$. Let $\{B_{i}\lambda(f_{j})\}$ be a maximal family of these with $B_{i}AB_{j}=$

(0) for $i\neq j$. Then $\{B_{i}\}$ generates an essential ideal of $A$ . For, otherwise, there is an
ideal $I$ of $\ovalbox{\tt\small REJECT}^{\alpha}(A)$ such that $IB_{i}=(0)$ for any $i$. The ideal $I_{1}$ of $A\times_{\alpha}G$ generated by $I$ is
$\hat{\alpha}$-invariant and so we obtain $I_{1}\cap\hat{J}\neq(0)$ which implies $I_{1}\cap J\neq(0)$ . Then there is
$B_{0}\in\ovalbox{\tt\small REJECT}^{\alpha}(A)$ and non-zero $f_{0}\in L^{1}(G)$ such that $B_{0}\lambda(f_{0})\subset I_{1}\cap J$. Since $I_{1}B_{i}=(0),$ $B_{0}$

satisfies that $B_{0}AB_{i}=(0)$ which contradicts the maximality of $\{B_{i}\lambda(f_{\dot{t}})\}$ .
Let $B$ be the hereditary $C^{*}$-subalgebra of $A$ generated by $\{B_{i}\}$ . Then $B\in\ovalbox{\tt\small REJECT}_{B}^{a}(A)$ .

Since $\sigma\in\Gamma_{B}(\alpha)$ , it follows from the proof of [9, 8.8.5] that for any compact
neighbourhood $\Omega$ of $\sigma$ there exist $x_{1},$ $\cdots,$ $x_{n+1}$ in $B$ such that $Sp_{\alpha}x_{k}\subset\Omega$ for $k$ and the
product $x_{n+1}\cdots x_{1}$ is non-zero. We may assume that all $x_{k}$ belong to some $B_{i}$ , and we
let $f$ be a non-zero element of $L^{1}(G)$ such that supp $f$ is a small compact subset of
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supp $f_{i}$ , and $f$ is positive. We assert that there exist $\sigma_{1}’\cdots,$ $\sigma_{n+1}$ in $\Gamma$ such that
$\lambda(f_{\sigma_{n+1}})x_{n+1}\lambda(f_{\sigma_{n}})x_{\hslash}\cdots\lambda(f_{\sigma_{1}})x_{1}\neq 0$ .

Otherwise the integrations over $\sigma_{k}$ (in $M(A\times_{\alpha}G)$) would yield

$x_{n+1}\cdots x_{1}f(0)^{n}=0$

which is a contradiction. Hence, since we may suppose $\sigma_{1}=0$ , we obtain $\sigma_{2},$ $\cdots,$ $\sigma_{n+1}$

such that

$\lambda(f_{\sigma_{n+1}})x_{n+1}\cdots\lambda(f_{\sigma_{2}})x_{2}\lambda(f)x_{1}\neq 0$ .
Then by Lemma 1.2,

$\sigma_{k}-\sigma_{k-1}\in\Omega+suppf-suppf\equiv\Omega_{1}$ .
Hence $\sigma_{k}\in\Omega_{1}+\cdots+\Omega_{1}$ ($k-1$ terms). Since $\lambda(f_{\sigma\kappa})x_{k}\in\hat{\alpha}_{\sigma_{k}}(J)$ due to
$\lambda(f)x_{k}\in\lambda(f)B_{i}\subset J$, we obtain

$J\cap\hat{\alpha}_{\sigma_{2}}(J)\cdots\cap\hat{\alpha}_{\sigma_{n+1}}(J)\neq(0)$ .
This completes the proof since $\Omega_{1}$ can be an arbitrarily small neighbourhood of $\sigma$ .

1.3. Corollary. Let $\alpha$ and $\beta$ be actions $ofa$ locally compact abelian group $G$ on a
$C^{*}$-algebra A. If $\alpha$ and $\beta$ are exterior equivalent, then $\Gamma_{B}(\alpha)=\Gamma_{B}(\beta)$ .

Proof. Since $(A\times_{\alpha}G, \Gamma,\hat{\alpha})$ and $(A\times\beta G, \Gamma,\hat{\beta})$ are equivalent (cf. [9, 8.11]), this
follows from 1.1.

2. Free action

Let $A$ be a $C^{*}$-algebra and $\alpha$ an automorphism of $A$ . We say that $\alpha$ is freely
acting on $A$ if for any non-zero $\alpha$-invariant closed ideal $J$ of $A$ , the Borchers spectrum
$T_{B}(\alpha[J)$ does not equal $\{1\}\subset T=Z$ . When $A$ is a $W^{*}$-algebra, this definition
coincides with that given by Kalleman [4, 1.8] (see [9, 8.8.3, 8.9.3]).

The following is an improvement of [7, 1.1]; a similar result was obtained by
Connes [2, 1.2.1] in the $W^{*}$-case (where ’freely acting’ is called ’properly outer’).

2.1. Theorem. Let $A$ be a $C^{*}$-algebra and $\alpha$ an automorphism of A. Then $\alpha$ is
freely acting on $A$ ifand only iffor any non-zero hereditary $C^{*}$-subalgebra $B$ of $A$ and
for any multiplier $a$ of $A$ (or for $a=1$ )

$(*)$ $inf\{\Vert xa\alpha(x)\Vert:0\leq x\in B, \Vert x\Vert=1\}=0$ .
Proof. If $\alpha$ is not freely acting, there is a non-zero $\alpha$-invariant closed ideal $J$ of.

$A$ with $T_{B}(\alpha|J)=\{1\}$ . Then by [9, 8.8.7] for any $\epsilon>0$ there is $B\in\ovalbox{\tt\small REJECT}_{B}^{\alpha}(J)$ such that

Sp $(\alpha|B)\subset\{e^{i\theta}:|\theta|<\epsilon\}$ .
It follows from [9, 8.7.10] that $\Vert\alpha(a)-x\Vert<\epsilon\Vert x\Vert$ for $x\in B$ . Hence, for $x\in B$ with
$0\leq x,$ $\Vert x\Vert=1$ ,
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$ 2\Vert\alpha(x)x\Vert\geq\Vert\alpha(x)x+x\alpha(x)\Vert$

$\geq\Vert\alpha(x^{2})+x^{2}\Vert-\epsilon^{2}$

$\geq 2\Vert d\Vert-\Vert\alpha(l)-x^{2}\Vert-\epsilon^{2}$

$\geq 2-\epsilon-\epsilon^{2}$ .
Thus the infimum in $(*)$ is not zero.

Suppose that the infimum in $(*)$ is positive, say $\delta$ . We use the proof of [7, 1.1]
without any alteration until the very last stage (a is allowed to be a multiplier as
remarked after the proof of [7, 1.1]).

Let $\phi$ be a pure state of $B$, which has a unique extension to a state of $A$ , denoted
by $\phi$ again. In the GNS representation space $\ovalbox{\tt\small REJECT}_{\phi}$ we construct a unitary $V_{\phi}$ such that
$(**)$ $V_{\phi}\pi_{\phi}(x)V_{\phi^{*}}=\pi_{\phi}\circ\alpha(x)$ , $x\in A$ ,

${\rm Re}(\overline{\pi}_{\phi}(ea)V_{\phi}\overline{\pi}_{\phi}(e)\Phi, \Phi)\geq\delta$

for any $\Phi\in\overline{\pi}_{\phi}(e)\ovalbox{\tt\small REJECT}_{\phi}$ with $\Vert\Phi\Vert=1$ , where $e$ denotes the identity of $B^{**}$ in $A^{**}$ and it is
the unique extension of $\pi$ to a representation of $A^{**}$ . Define $\pi$ as the direct sum of $\pi_{\phi}$

with all pure states $\phi$ of $B$. In the representation space of $\pi$ define $V$ as the direct sum
of all $V_{\phi}$ corresponding to $\pi_{\phi}$ . Then $(\pi, V)$ gives a covariant representation of $(A, \alpha)$

and satisfies the properties analogous to $(**)$ .
Let $N$ be the numerical range of $\overline{\pi}(ea)V\overline{\pi}(e)$ on the range of $\overline{\pi}(e)$ , and let $r=$

$sup\{|\sigma|;\sigma\in N\}$ . Then $r\geq\delta(>0)$ . Let $\theta_{0}=arc$ sin $\delta/r$ . Let $(\rho, U)$ be the direct sum of
$(\pi, e^{i\theta}V)$ with $|\theta|<(\pi+\theta_{0})/2$ . Then the numerical range $N_{1}$ of $\overline{\rho}(ea)U\overline{\rho}(e)$ on the
range of $\overline{\rho}(e)$ is the convex hull of $e^{i\theta}N$ with $|\theta|<(\pi+\theta_{0})/2$ . In particular $N_{1}$ is
contained in

{ $\lambda:{\rm Re}\lambda\geq-r$ cos $\theta_{0}/2,$ $|\lambda|\leq r$}.

Further the closure $F_{1}$ of $N_{1}$ contains $r$, since $\overline{N}$ contains $re^{i\theta}$ for some $\theta$ with
$|\theta|\leq\pi/2-\theta_{0}$ . Henoe the norm of $T\equiv 2^{-1}(\overline{\rho}(ea)U\overline{\rho}(e)+\overline{\rho}(e)U^{*}\overline{\rho}(a^{*}e))$ is equal to $r$,
since the closure of the numerical range of $T$ contains $r$ and is included in
[ $-r$ cos $\theta_{0}/2,$ $r$], and $T$ is self-adjoint.

Let $\rho\times U$ be the representation of the crossed product $A\times_{\alpha}Z$ corresponding to
$(\rho, U)$ . From the above fact on $T$ we can conclude that $\rho\times U$ is not faithful, as
follows.

For any $b\in B$ we obtain

$\rho(b^{*}a)U\rho(b)+\rho(b^{*})U^{*}\rho(a^{*}b)\geq-2r$ cos $\theta_{0}/2\rho(b^{*}b)$ .
If $\rho\times U$ were faithful, the dual automorphism $\hat{\alpha}$ would induoe automorphisms of
$(\rho\times U)(A\times_{\alpha}Z)$ . By applying $\hat{\alpha}_{-1}$ , we obtain

$-\rho(b^{*}a)U\rho(b)-\rho(b^{*})U^{*}\rho(a^{*}b)\geq-2r$ cos $\theta_{0}/2\rho(b^{*}b)$ .
Since the above inequalities are valid for any $b\in B$, they are valid for $b=e$ with $\overline{\rho}$ in
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place of $\rho$ . Thus

$-r$ cos $\theta_{0}/2\overline{\rho}(e)\leq T\leq r$ cos $\theta_{0}/2\overline{\rho}(e)$ .
which implies that $\Vert T\Vert\leq r$ cos $\theta_{0}/2$ , a contradiction.

Let $I$ be the $\alpha$-invariant closed ideal of $A$ generated by $B$ . Since ker $\rho\cap B=(0)$ , it
follows that ker $\rho\cap I=(0)$ . Let $J=ker\rho\times U|I\times_{\alpha}Z$ . Then the $\hat{\alpha}$-invariant closed ideal
$\hat{J}$ of $I\times_{\alpha}Z$ generated by $J$ is essential in $I\times_{\alpha}Z$ . Because otherwise there is a non-zero
$\alpha$-invariant closed ideal $K$ of $I$ with $\hat{J}\cap K=(0)$ . Then, since $K\cap B\neq(O)$ , we can
repeat the argument for $K\cap B$ instead of $B$ to yield that $\rho\times U$ is not faithful on
$K\times_{\alpha}Z$ , i.e., $J\cap K\times_{a}Z\neq 0$ , a contradiction. Thus $\hat{J}$ is essential in $I\times_{\alpha}Z$ . Let
$\lambda\in T_{B}(\alpha|I)$ with $\lambda\neq 1$ . There exist $\epsilon>0$ and $n\in N$ such that

$\{\lambda_{k}^{k}e^{i\theta}:|\theta|<(\pi+\theta_{0})/2, k=0,1, \cdots, n\}=T$

for any $\lambda_{k}\in T$ with $|\lambda_{k}-\lambda|<\epsilon$ . Then

$\bigcap_{k=0}^{n}\hat{\alpha}_{\lambda_{k^{k}}}(J)$

is $\hat{\alpha}$-invariant and so is (0) since $J\cap I=(O)$ . By 1.1, this contradicts $\lambda\in T_{B}(\alpha|I)$ .
As a corollary to the above theorem, we obtain [2, 1.2.1] due to Connes:
2.2. CoroUary. Let $M$ be a von Neumann algebra and $\alpha$ an automorphism of$M$.

Then $\alpha$ is freely acting ifand only iffor any projection $e$ of $M$ andfor any $a\in M$ (orfor
$a=1)$

$inf\Vert pa\alpha(p)\Vert:p\in M,p=p^{*}=p^{2}\neq 0,p\leq e$} $=0$ .
We omit the proof (cf. [9, 8.8.3]).

2.3. Remark. Theorem 2.1 can be used to strengthen 3.1 in [7] in an obvious
way.

2.4. Remark. From the proof of [7, 2.1] we obtain: If $\alpha$ is a freely acting
automorphism of a separable $C^{*}$-algebra, then there exist uncountably many
equivalence classes of pure states $\phi$ of $A$ such that $\phi\circ\alpha$ is disjoint from $\phi$ . To prove
this it is enough to make uncountably many pure states $\phi$ of $A$ such that the support
projections of $\phi$ are mutually orthogonal and $\phi\circ\alpha$ is disjoint from $\phi$ , since $A$ is
separable.

For this purpose, on each induction step in the proof of [7, 2.1], we split
$\overline{a_{n-1}Aa_{n-1}}$ into two non-zero orthogonal hereditary $C^{*}$-subalgebras (this is possible
because $A$ does not have a minimal projection) and construct a pair $(e_{n}, a_{n})$ for each.

2.5. Remark. The notation of properly outer was defined by Elliott [3]. It
easily follows that a freely acting automorphism is properly outer (cf. [7]).

2.6. Remark. Let $\alpha$ be an element of the connected component $Aut_{0}(A)$ of the
identity in the automorphism group of the $C^{*}$-algebra $A$ equipped with the uniform



44 A. KISHIMOTO

topology. Then $T(\alpha)=\{1\}$ . To prove this, it suffices to show that if $\alpha\in Aut_{0}(A)$

satisfies that $T(\alpha|J)=\{1\}$ for any closed ideal $J$, then $T(e^{\delta}\circ\alpha|J)=\{1\}$ for any such $J$

for any $*$-derivation $\delta$ of $A$ with $e^{||\delta||}-1<*$ (noting that any closed ideal is left
invariant under $\alpha\in Aut_{0}(A))([9,8.7.7-8])$ . By the assumption on $\alpha$ , we have $T_{B}(\alpha)=$

$\{1\}$ (cf. 3.1 below) and so $B\in\ovalbox{\tt\small REJECT}_{B}^{\alpha}(A)$ such that $\Vert(\alpha-1)|B\Vert<*$ . Then
$\Vert e^{\delta}\circ\alpha(x)-x\Vert\leq e^{||\delta||}-1+\Vert(\alpha-1)|B\Vert<1$

for $x\in B$ with $\Vert x\Vert=1$ . It follows from the first part of the proof of 2.1 that the
infimum in $(*)$ is positive for $a=1$ . Hence $T(e^{\delta}\circ\alpha)=\{1\}$ . Since this reasoning applies
for any closed ideal of $A$ , we get the conclusion.

3. Universally weakly inner automorphisms

Let $A$ be a $C^{*}$-algebra and $\alpha$ an automorphism of $A$ . For $k\in N$ let $T_{k}$ be the
subgroup of $T$ of order $k$ and let $T_{\infty}=T$ . Let $F_{k}$ be the set of all $\alpha$-invariant closed
ideals $I$ of $A$ such that $T(\alpha|I)=T_{B}(\alpha|I)=T_{k}$ . If $I\in F_{k}$ and $J$ is a non-zero $\alpha$-invariant
closed ideal of $I$, then $J\in F_{k}$ . Let $I_{k}$ be the closed ideal generated by all $I\in F_{k}$ . Then we
shall show that $I_{k}\in F_{k}$ . It is obvious that $T(\alpha|I_{k})\supset T_{k}$ . To prove that $T_{B}(\alpha|I_{k})\subset T_{k}$, let
$(I_{i})$ be a maximal family in $F_{k}$ such that $I_{i}\cap I_{j}=(0)$ for $i\neq j$. Then $(I_{j})$ generates an
essential ideal of $I_{k}$ . For any neighbourhood $\Omega$ of 1 in $T$ there exist $B_{i}\in\ovalbox{\tt\small REJECT}_{B}^{a}(I_{i})$ such
that Sp $(\alpha|B_{i})\subset T_{k}\cdot\Omega[9,8.8.7]$ . Let $B$ be the direct sum of $(B_{i})$ . Then $B\in\ovalbox{\tt\small REJECT}_{B}^{\alpha}(I_{k})$

and Sp $(\alpha|B)\subset T_{k}\cdot\Omega$ . This completes the proof.

3.1. Proposition. Let $A$ be a $C^{*}$-algebra and $\alpha$ an automorphism ofA. For each
$k\in N\cup\{\infty\}$ let $I_{k}$ be the maximal $\alpha$-invariant closed ideal of I such that $T(\alpha|I_{k})=$

$T_{B}(\alpha|I_{k})=T_{k}$ (if there are no such ideals, set $I_{k}=(0)$). Then $(I_{k})$ are mutally orthogonal
and generate an essential ideal of $A$ .

Proof. The orthogonality is trivial.
Let $I$ be the closed ideal generated by $\{I_{k}\}$ . Suppose that the ideal $J\equiv\{x\in A:xI=$

(0)} is non-zero. Then $T(\alpha|J)\subsetneqq T_{B}(\alpha|J)$ . Hence in particular $T(\alpha|J)\neq T$ and
$T_{B}(\alpha|J)\neq\{1\}$ . If $T_{B}(\alpha|J)=T$ , choose $B\in\ovalbox{\tt\small REJECT}^{a}(I)$ such that Sp $(\alpha|B)\neq T$ and let $J^{\prime}$ be
the ideal generated by $B$ . Then since $B\in\ovalbox{\tt\small REJECT}_{B}^{a}(J^{\prime}),$ $T_{B}(\alpha|J^{\prime})\neq T$ . Since $T_{B}(\alpha|J^{\prime})$ is a
closed subset of $T$ and satisfies that if $\lambda\in T_{B}(\alpha|J^{\prime})$ and $n\in Z$ , then $\lambda^{n}\in T_{B}(\alpha|J^{\prime})[9$ ,
8.8.5] $T_{B}(\alpha|J^{\prime})$ has the following form:
$(*)$ $T_{B}(\alpha|J^{\prime})=T_{k_{1}}\cup\cdots\cup T_{k_{n}}$ .
where $k_{1}<k_{2}<\cdots<k_{n}$ and no $k_{i}$ divides $k_{j}$ for $t<j$ .

Let $J_{1}=J$ or $J^{\prime}$ and suppose that $T_{B}(\alpha|J_{1})$ is of the form $(*)$ . If $T(\alpha|J_{1})=$

$T_{B}(\alpha|J_{1})$ , then $n=1$ and $J_{1}\in F_{k_{1}}$ , a contradiction. If $T(\alpha|J_{1})\subsetneqq T_{B}(\alpha|J_{1})$ , then there
exist $B\in\ovalbox{\tt\small REJECT}^{\alpha}(J_{1})$ and $i$ such that Sp $(\alpha|B)$ does not contain $T_{k_{\{}}$ . Let $J_{2}$ be the ideal
generated by $B$. Then, since $T_{B}(\alpha|J_{2})$ does not contain $T_{k_{i}}$ , the total number of
subgroups contained in $T_{B}(\alpha|J_{2})$ is smaller than that for $T_{B}(\alpha|J_{1})$ . After a finite
number of steps we find a non-zero $\alpha$-invariant closed ideal $J_{m}$ such that $T(\alpha|J_{m})=$
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$T_{B}(\alpha|J_{m})$ . Hence $J_{m}$ should have been in some $F_{k}$ , a contradiction.

3.2. Remark. An automorphism $\alpha$ on the $C^{*}$-algebra $A$ is freely acting if and
only if $I_{1}=(0)$ , i.e., if and only if the set of $\alpha$-invariant closed ideals $I$ with $T(\alpha|I)\neq\{1\}$

generates an essential ideal.

3.3. Proposition. Let $A$ be a separable $C^{*}$-algebra and $\alpha$ an automorphism of
A. If $T(\alpha)=T_{B}(\alpha)=T_{k}$ , then there exists an $\alpha$-invariant essential closed ideal I of $A$ such
that $\alpha^{n}|I$ is implemented by a unitary in the $\alpha^{**}- fixed$ point algebra of $I^{**}if$ and only
if $n\equiv 0mod k$ (when $ k=\infty$ , if and only if $n=0$).

Proof. Let $\Omega$ be a sufficiently small neighbourhood of $1\in T$ and let $B\in\ovalbox{\tt\small REJECT}_{s^{a}}(A)$

satisfy Sp $(\alpha|B)\subset T_{k}\cdot\Omega$ . Let $I$ be the closed ideal generated by $B$ . Then, when $k$ is
finite, $\alpha^{nk}|I$ satisfies the required property (cf. [9, 8.9]).

Assume that $n\not\equiv O$ mod $k$ and $\alpha^{n}|I$ is universally weakly inner. Then $\alpha^{n}|J$ is
not freely acting (cf. [7, 2.1], 2.4), for any non-zero ( $\alpha^{n}$-invariant) closed ideal $J$

of $A$ . Hence $T_{B}(\alpha^{\hslash}|I)=\{1\}$ and so for any $\epsilon>0$ there is Be $\ovalbox{\tt\small REJECT}_{B}^{a^{n}}(I)$ such that
Sp $(\alpha^{n}|B)\subset\{e^{i\theta}:|\theta|<\epsilon\}$ .

Then there is a unitary $u$ in $I^{**}$ such that $\alpha^{n}=Adu$ on $I,$ $ue=eu$, and

Sp $(ue)\subset\{e^{i\theta}:|\theta|<\epsilon/2\}$

where $e$ is the identity of $B^{**}$ in $I^{**}[9,8.7.9,8.9.1]$ . Let $B_{1}$ be the $\alpha$-invariant
hereditary $C^{*}$-subalgebra of $I$ generated by $B$, which is a closed linear span of

$\alpha^{i}(B)I\alpha^{j}(B)$ , $0\leq i,j\leq n-1$ .
Then

Sp $(\alpha^{n}|B_{1})\supset\{\lambda^{n};\lambda\in T_{k}\}$ ,

which is not a trivial group. Suppose that $\overline{\alpha}(u)=u$, where $\overline{\alpha}=\alpha^{**}$ . Then for
$x\in\alpha^{i}(B)A\alpha^{j}(B)$

$\alpha^{n}(x)=uxu^{*}=\overline{\alpha}^{i}(ue)x\overline{\alpha}^{j}(eu^{*})$ .
Since Sp $\overline{\alpha}^{i}(ue)=Spue$ , we obtain

Sp $\alpha^{n}(x)\subset\{\exp i\theta:|\theta|<\epsilon\}$ .
Hence we are led to a contradiction:

Sp $(\alpha^{n}|B_{1})\subset\{\exp i\theta:|\theta|\leq\epsilon\}$ .
Thus $\overline{\alpha}(u)\neq u$ . For similar results, see [1], [8].

4. A Remark concerning T.
In a previous paper [7], we used the invariant I to obtain a result similar to 2.1.

The condition was in fact quite strong as shown by the following:
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4.1. Proposition. Let $(A, G, \alpha)$ be a $C^{*}$ -dynamical system with a discrete
abelian group G. Then the strong Connes spectrum is given by

$F(\alpha)=\bigcap_{I}\Gamma(\dot{\alpha}|A/I)$

where I runs over the set ofproper $\alpha$-invariant closed ideals of $A$ and $\dot{\alpha}$ is the induced
action on the quotient $A/I$.

Proof. By the characterization of $\tilde{\Gamma}(\alpha)$ in terms of covariant representations of
$(A, G, \alpha)[5]$ it follows that $\tilde{\Gamma}(\alpha)\subset\Gamma(\dot{\alpha}|A/I)$ for such $I$ ((0) included). Hence

$\tilde{\Gamma}(\alpha)\subset\bigcap_{I}\Gamma(\dot{\alpha}|A/I)$ .

To show the converse we use the characterization of $\tilde{\Gamma}(\alpha)$ in terms of the dual
action on the ideal space of $A\times_{\alpha}G[5]$ .

Let $J$ be aprimitive ideal of $A\times_{\alpha}G$ , and let

$J_{0}=\bigcap_{\sigma\in\Gamma}\hat{a}_{\sigma}(J)$ , and $I_{0}=J_{0}\cap A$ .

Then $I_{0}$ generates $J_{0}$ and
$A/I_{0}\times_{\dot{\alpha}}G\simeq(A\times_{a}G)/J_{0}$ .

Let $J$ be the image of $J$ in $A/I_{0}\times_{\dot{a}}G$ . Then $J$ is a primitive ideal of $A/I_{0}\times_{a}G$ and

$\bigcap_{\sigma\in\Gamma}\hat{a}_{\sigma}(j)=(0)$ .

Let
$\Gamma_{J}=\{\sigma\in\Gamma;\hat{\alpha}_{\sigma}(J)=J\}$ .

which is equal to $\{\sigma\in\Gamma:\hat{\alpha}_{\sigma}(j)=J\}$ .
Then the family $\{\hat{\alpha}_{\sigma}(J);\sigma\in\Gamma\}$ is isomorphic to $\Gamma/\Gamma_{J}$ (with the isomorphism

which preserves topologies and actions of $\Gamma$ ) as shown in [5, 3.7]. Hence
$\Gamma(\alpha|A/I_{0})\subset\Gamma_{J}$ .

Since $\tilde{\Gamma}(\alpha)=\bigcap_{j}\Gamma_{J}$ , the result follows.

4.2. Remark. If $A$ is the gauge-invariant CAR algebra and $\alpha$ is an automor-
phism which preserves ideals, then $I(\alpha|I)=\{1\}$ for any ideal $I$ of A. (Because, there is
an ideal $J$ of $I$ such that $I/J\simeq C.$ ) But the Connes spectrum $T(\alpha)$ can be non-trivial
(e.g. if $\alpha$ is a certain quasi-free automorphism).
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