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ABSTRACT. We shall study about two kinds of Fourier series for a general linear process
(GLP) defined by the author motivated by a work of Lugannani on pulse train processes.
First we consider the Fourier series of a GLP truncated at + 7/2 (7> 0). Our main concern
with this is to study the asymptotic behaviors of Fourier coefficients when T goes to infinity.
Corrections and generalizations of some results obtained or announced before will be made
among other results. Secondly the approximate Fourier series representation of a GLP will
be given and as a consequence of it, the existence of a sample continuous version of the
process is shown.

1. Introduction
Let X (¢, w), — o0 <t< o0, be a second order process with
(1.1) jElX(t, w)|?%dt< o,
I

for every finite interval I. X(¢, w) is called a general linear process (GLP) if it is de-
fined by

B 2
1.2) J E f a(t—An(di, w)— X(t, w)| dt—0,
’ I a
as f— o0, a— — o0, for every finite interval 7, in which

where £(S, w) is a random measure not necessarily bounded with E&(S, w)=0, m(S)
is a nonrandom signed measure, S being Borel sets on R! and a(t) is a nonrandom
function such that

(14) J |a(t— )| 2dF(t)<  , j la(t—4)|?|dm(2)| < oo,
1 I

for every ¢t and for every finite interval I, where F(¢) and m(f) are point functions
associated with ¢ and m respectively:
E|&(s, 1), w)|?=F(t)-F(s), s<t.

Such a GLP was defined by the author motivated by a Lugannani’s work on
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pulse train processes. If m(¢) is a constant and F(?) is ct, ¢ being a constant up to
additive constants, then it is seen that a(f) should belong to L%(— oo, o0) and X (¢, w)
is |2, a(t—A)E(dA, w) for almost all (¢, w) in (— o0, c0) x 2 that is, it is a linear
process in the ordinary sense and then a stationary process. If F(¢) is not ct up to
additive constants, X (¢, w) is not even a weakly stationary process (WSP) in general
and in fact, in order for a GLP with m(z) constant, to be a WSP for every
a(t) € L*(— oo, o0) it is necessary and sufficient that F(¢) is ¢t up to additive constants.
There are several examples of GLP which are not WSP and of interest, for
instance, pulse train processes studied by Lugannani mentioned above and GLP with
n([0, #), @) —m(¢) which is nonhomogeneous compound Poisson processes studied by
Endow [3], [4] Some results such as those on weak or strong laws of large numbers
still hold for these processes if
(1.5) D(A)= sup |F(A+1t)—F(t)—vol|

—o <t<ow
with a certain constant v,, is assumed to be small when A is large. For the strong law
of large numbers to hold, beside some additional condition on the covariance
function

(1.6) p(s, )=E[X(s, )~ EX(s, o)I[X(t, ) — EX(1, @]

which is somewhat analogous to the condition required for WSP (see [11], Theorem
7.1) is needed. For further results on GLP, see Honda [5], [6], [7], Butzer-Gather
[2]. (1.5) is thought of as a quantity which measures the closeness of a GLP to a
WSP.

2. The Fourier series of a truncated GLP

Let X (¢, w) be a GLP and let us consider the Fourier series

(21) . Z C,,(T; w)ean't/T
of X(t, w) truncated at + 7/2, where
| 1 (T2 .
(2.2) Cit, w)=— X(t, w)e™ 2" Tqe
T ) 12
It is almost obvious that the Fourier series |(2.1)|is (C, 1) summable to X (¢, w) in
(=172, T/2) almost surely and it is not so difficult to show

Theorem 1. (2.1) is (C, 1) summable to X (t, w) in the metric
1 T/2

- E|-|%dt,
T ) 1

if a(t)e L*(— o0, o©0) and
(2.3) ¥Y(W)= sup |F(A+t)—F(@)|=0(4]).

— o <t< o
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for large | A|.

Actually this is proved.by a known result on (C, 1) summability of a Fourier
series (Katznelson [8], Theorem 2.3) with some manipulations. The details are
omitted here.

It is well recognized that the role of the Fourier series of a truncated ordinary
linear process is of importance particularly for random noise processes and so it is for
a WSP. Actually Root and Pitcher [16], the author [9], [10, I] and Arimoto [I] studied
about the asymptotic behaviors of covariances of Fourier coefficients of a WSP
truncated at + 7/2, when T goes to infinity. It is thus of some interest to work with
the same kind of problems for a GLP as an extension to a non-stationary process.

3. Asymptotic behavior of the mean of a Fourier coefficient

The author has shown (Theorem 3.1 of that ECy(T, w) converges as T— oo,
under some condition on m(t). In there, however, the condition that
M(A)= sup |m(t+A)—m(t)—moA|
)

te(— o0, 00

for some constant m,, is monotone, was used without being explicitly stated, so that
this condition must be placed in the statement of Theorem 3.1 of [10]

Unfortunately this condition seems to be not quite suitable and restricts process-
es too much. Also in [12] the author announced a result which dealt with EC,(T, w)
but the condition placed there seems unreasonable because we stuck to the mere
condition for a(?) that a(f) e L*(— o0, c0). We now assume that a(f) e L'(— o0, o) and
improve the result.

We begin with the following simple

Lemma 1. If X(¢, w) is a GLP, then

(3.1) f dt

as f— oo, a— — oo, for every finite interval I.

For, the integral in is
2
< am
I

jdt
I

which converges to zero as f— 00, a— oo by the definition of a GLP.
We shall prove

2
dt—-0,

Jw a(t—A)dm(1)— EX(t, w)

2

E jﬁ a(t—An(dA, w)—EX(t, )

a

J ’ a(t — An(dA, w)— X(t, w)

a

Theorem 2. Suppose
3.2 a(t)e L}(— o0, 0)
and

(3.3) M()=0(2), |A|>o
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for some constant my. Then

(3.4) EC(T,w)-0, for n#0,
as T— o0, and
3.5) ECy(T, w)-m, _[ a(t)dt .
Proof. From [Lemma 1, we see that
‘ 1 (72 8
3.6) EC(T,w)= Ilim e~ 2mitlTgy f a(t — A)dm(A)
a——m,f>w® T -T/2 a

1 (TR ([
= lim [——— J e~ 2mmitiTgy j a(t — A)dm(4)
T

a=-w,poo| T -T/2

1 T/2 -T 1 T/2 T
+— -dtj -dm(/l)+—j 'dtj‘ -dm(}.)]
T)- T/2 a T -T/2 -T

= lim [K, (T, p)+K.o(T, 0)+K,5(T)]  say.

a— —o0,f—*©

We may suppose a < — 7T, f>T. We first prove

(3.7) lim K, (T, f)=0(1), as T-oo,
p—
(3.8) lim K,(To)=o(l), as T—oo
and hence
3.9) EC(T, w)=K,5(T)+0o(1), as T—-w.
We give the proof of (3.7). The proof of (3.8) is carried out in a similar way.
1 (B T/2-A .
Ku(T p)=—| dm(d) e” 2l DT g(s)ds
T JT -T/2—4
which is by the interchange of the order of integrations
1 f—-p+T/2 . B .
(3.10) =— a(s)e ~ 2mmisiT s J e” 2"miAT gy 4)
T J—B8—-T/2 —-T/2-s
—-3T/2 T/2-s 1 -T/2 f=T/2-s
—f j -dm(A)+—J~ -dsj -dm(4)
B+T/2 -T/2-5s T -31/2 -T
KT, p)+ K 3T, f)+ K 3(T), say .
Now
-B+T/2 . B
(1)(T ﬂ)—_J a(s)e'z"”“/Tdsf e_z'm“'/Td[M().)—M(— 772—8)]
p—T/2 -T/2
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1 -p+Tj2 . . P
—_—— J‘ a(s)e"‘ 2nris/T {[m(i) _ m( _ 772 _ S)] e 2nmiA/T

T -B-T/2 -T/2-s

B

+Q2nmi/T) e 2T [y )y —m(—T)2 — s)]d/l} ds.
-T/2—s

Thus we have

-B+T/2

KREAISE [ lawids [ 1mgy-mi-72-)

B—T/2

+Q2nn/T) ’ | m(A) —m(— T/2—s)|d,1].

—-T/2~s
Noting that 0<f—(—T/2—5)<T, 04— (—T/2—5)< T and that
sup |m(t+u)—m(u)| <CT,

lt]<T,— 0o <u<ow

for some constant C which is a consequence of we see that

-B+T)2

| KT, ﬁ)l—S—f la(s)|ds- C(1+2nm).

-8-T)2
Hence in view of the integral on the right hand side is o(1) when B— oo, which
proves (3.7).

K@(t, B) is handled in a similar way. In fact

1 -3T/2
IKﬁi’(T,ﬂ)Ié—f Ia(s)lds[lm(T/Z—S)—m(—T/2—s)|
T) s+1)2
e lmu)—m(—m—sw]
-T/2~—s

which is, because of 0SA—(—T/2—5)<T,

1 -3T/2 2mt -3T/2
§—J la(s)|ds- M(T)+—- la(s)|ds- M(T)T
-p+T/2 T -B+T/2

-3T/2
éf |a(s)1ds-C(1 +2nm) =o(1),
as T— 0.
In a quite similar way, we see that
-T/2

IKSS’(T)Iéj la(s)|ds- C(1 + 2nm)=o0(1) .
We thus have shown (3.7) and hence [(3.9).
We now handle K, ;(T), which can be written by
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K"3(T)=—1ij/2 e-l'"'“/Tdtr a(t — A)A[m(A) — myA]

—-T/2 -T

1 T/2 — 2mit)T T
+my— e~ “rmilde a(t—A)di .
T ) 1 T

=K3(T)+K3(T), say.
Writing m, (A)=m(A) —mgyA,

1 T T/2 .
K (T) = f ] dm,(2) ] e~ 2" Tyt )t
- ~T2
1 (7 T/2-A .
=5 J ] dmy(3) | . e~ 2+ DT g(s)ds
which turns out to be, as in
1 (-T2 : T ,
(3.11) — a(s)e = 2T e~ 2" Tdm (1)
T ) 31 -T/2-s
1 3T/2 T/2-s 1 T/2 T/2-s
+7 -dsj -dml(,l)+—7—,'[ -dsf -dm,(1).
-T/2 -T -T/2 -T/2-5s

By the argument similar to the one in handling K(7, B), we can show that the first
and second integrals in converge to zero as T— oo. The last integral in is

T/2
(3.12) iT a(s)e ™ 2rmisITgs {e'z"""m 29T, (T2 —s)—m(— T/2—s)]
-T2
2 s T/2-s )
+_n;1 [my(A)—my(—T)2—s)]e” znm/rdl} s
-T/2-s

in which | my(T/2—s) —m,(— T/2—s)| S M(T)=0o(T) and | m,(1)— m,(—T/2—s)| <
M(A+T/2+s5)=0(T), because of [(3.3). Hence (3.12) is

T/2

| lats)lds-o(my=ott),
—-T/2

as T—oco. We therefore have shown that KY(T)=0(1), as T— .
Finally noting that

1 T/2 . 1 T/2
——J e'z"’"‘/Tdtj a(t—l)dl' g—J dtf | a(u) | du
T ) 12 [Al>T TJ-12 Ju>12

=J |a(u)|du=0(1),
lu|>T/2

as T— 0. We thus have
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m
2)__"""0
K@="2

T/2 . @0
T J‘ e~ 2wl Tdt-J a(u)du+o(1)

-T/2 —
=m, J a(uydu+o(1), for n=0,

=o0(1), for n#0.
This completes the proof of Theorem 2.

4. Asymptotic behavior of the covariance of Fourier coefficients

In this section we shall study the limit behavior of
(4‘1) Lmn(T)=E[Cm(T’ w)_ECm(T’ CO)][C,,(T, (D)—EC,,(T, (l))] s

the covariance of the Fourier coefficients C,(T, w) and C,(T, w), when T goes to
infinity, m and n being kept fixed. A result concerning this, was announced in [13].
The following theorem is a generalization of that as far as the integrability condition
(3.2) on a(?) is assumed.

Theorem 3. Suppose (3.2).
(i) If, for some v,,

(4.2) d(AD)=o0(l), as |Al-o0,

then

4.3) Th_{n L,(T)=0, for all m and n.

(i) If, for some v,, )

(4.4) d(A)=0(1)

then

@45) lim 7L,,(T)=0, for mn,
=10, J‘w a(t)dt i , for m=n.

We shall prove (ii) only. Actually the proof of (i) will be found in the course of
the proof of (ii).

Proof. As we easily see,

@46) L, (T)= %5 E {fm e 2msITl X (s, ) — EX(s, w))ds

-T/2

/2
X J 2" T X(t, w) —EX(t, w)]dt}

-T/2
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= lim f f ¢~ 2mitms—m)T gy f a(s — Aa(t — AdF(3)
-T/2 -T/2

a—— ooﬁ-ocoT

= lim [—2 -[ ds f g~ Zmilms=nt)/T gy j a(s — Aa(t — A)dF(A)
- -T/2 -T/2 T

T/2 T/2 1 T/2 T/2 T
+—— ds J f -dF(A)+— ds J -dt J -dF(A)]
-T/2 T/2 T -T/2 -T/2 -T

= lim  [L,(T B)+ Lyuo(T, @)+ Lyns(T)],  say.

a— —,f—~ 0o

In what follows the computations of these quantities are made in a way similar to
those of K, (T, B), K,,(T, o) and K,;(T) in the preceding section. Appearance of triple
integral makes the manipulation more complicated or tedious. We carry out the
proof in three stages.

(i) First we show that

4.7) plim Ly(T, By=o(T""), as T-oo
and
(4.8) lil_n LT, )=0(T™ 1Y), as T—-oo

hold with the condition
(4.9) ()= 0()

in place of (4.2) or either of which is much stronger than [(4.9).
(4.7) and [(4.8)| are handled in a quite similar way and we give only the proof of

(4.7).

| Luna (T ﬂ)léizrdl’(l) " dsrlz |a(s— Aa(t—A)|dt
T T -T/2 -T/2 ’
1 B T/2—-2 2
=FI dm)[ J |a(s)|ds]
T —-T/2—2

T/2-4 -T2
j |a(s)|ds§J |a(s)|ds=0(1), T- o0,

-T/2-4 - ©

Since

1 (* T/2-4
Lpny(T, B)=0(1)'-T-5j dF(2) la(s)|ds,
T -T/2-4
where o(1) is uniform in 8 (> T'). The last integral is
-p+Tj2

B 1 [-312
(4.10) | a(s) | ds J dF(A)+ — J | a(s) | ds
-T/2-5s

2 2
T -B-TJ/2 T p+T/2
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T/2—-s 1 -T/2 T/2-s
J dF(A)+— | a(s)| ds J dF(4).

2
=T/2~s T -3T/2 T

L,...(T, p) is an analogue of K,,,(T, B), but the estimation of it is much simpler because
F(4) is nondecreasing. The integral ranges of the inner integrals of three double
integrals of are intervals of length not greater than T and hence keeping in
mind, we see that is not greater than

!,P T -p+T/2 —-3T/2 -T/2
_T()U + J +f ]Ia(S)Ids=0(T“‘).
-B-T/2 ~-Bp+T/2 -3T/2

This gives us [(4.7).

We now proceed to estimate L,,,;(7") which is written by

T

1 (T2 T/2 . _
@41) L,(MN== ds I e~ 2mitms =n)/T 4y J a(s — Aa(t — A)dG(A)
T Jo12 J-12 T

vy (T2 T/2 ' T
+— j ds J‘ e~ 2nilms—m)/T gy I a(s — Aa(t — A)dA
T -T2 -T/2 -T

=LOL(T)+L2%(T),  say,
where G(A)=F(A)— F(0)— vyA.
(ii) As the second stage of the proof, we shall show that

Jw a(t)dt

=0, for m#n.

2

4.12) lim TLZ),(T)=v, , for m=n,
T— o .

Since

1 (72 T/2 . _
‘ 2 f ds f e~ 2mitms—n)/ Ty a(s — Aa(t — A)dA
-1z J-112 A>T

1 T/2 -4}
gFf d&f |a(s—).)ldsf | a(u) | du
[Al>T -T2 ®

1 o T/2
§?2— |a(u)|du-j dsf | a(v) | dv
) -T/2 141> T/2

=o(T™1),
we have
T/2 T/2
(4.13) LA(T)=o(T" Y+ |  ds f e 2mitms=m (e — s)dt ,
T -T/2 -T/2

where
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4.14) P(uw)= J a(v)a(u+v)dv .
¢(u) is of L'(— o0, c0). Thus we may write
Vo T/2 . T/2-s )
(415) Lsnzpzs(n — O(T_ 1) +_2 e~ 21:1(m—n)s/Tds J‘ eZm:m/T¢(u)du
-T/2 -T/2-s
T/2
—-O(T 1)+ [f d)(u)eZmuu/Tdu J e—-21ti(m—n)s/Tds
-T/2—u
. T/2—-u
+ J ¢(u)e2nmu/Tdu J e~ 2ni(m —n)s/Tds] .
0 -T/2

If m % n, then, ¢(u) = p(— u) being kept in mind, the last expression is easily seen to be

sint(m—n)(1—u/T)
n(m—n)/T

T
O(T_ 1) + ;02 Re [¢(u)e—ui(m+n)u/T] du
0

and hence

| sin w(m —n)u/T|
nlm—n|

du .

T
IL$323(T)|§0(T“)+@I | $(u)|
T Jo
Take A arbitrarily large and fix it. For T> A4, we write

sint(im—nyu/T
m—n

T
| Lna(T) | S o(T™ 1)+——_[ | $)| ‘du+£9~~[ | ¢(u) | du
nT |,

|m—n]|

and see that

T o

lim sup T| L2} 3(T)|S0(1)+ -y j | p(u) | du .

Since A is arbitrarily large, this shows that
(4.16) LO(T)=o(T™").

Now we suppose m=n. We have, from (4.15),

@17) L@(T)=o(T™ Y+ 305 I:Jo d(u)e>™ ™ T(T+ u)du + JT d(u)e*™ ™ T(T— u)du
_ 0

—

=o(T™)+% f duj Pv)e>m/Tdp .

Let ¢ be any positive small number and write the last integral as

T .
2| au U +f ]qs(v)ez'""ivffdv.
T 0 uz|v|2eu lv| <eu

Then
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T T
LzJ‘ duf d(v)e*™™ v Tdy é—l—zf duf |p(v) |dv=0(T"1),
T Jo u2 |v| zeu T Jo ol 2 eu

$ince fjy) >0 | ¢(v) | dv—0, as u—co. On the other hand,

1 (7 : 1 (T ‘
= J du J‘ ¢(v)32m1cw/ Tdv =Tf '[ du 'f ¢(u)(ezmmv/T _ l)dv
lo] <eu 0 o] <eu

T (1)
1 T
+7J duJ P(v)dv,
T ] vl <eu

in which the first integral of the right hand side does not exceed in absolute value

1 T ©
FJ duf |q5(v)|dv-2|m‘|ns§2|m|nsT'1f | p(v) | dv
(4] v|<eu -
and for the second integral we see
1 T -4
—J duf ¢(v)dv—>j P(v)dv .
T 0 |v| <eu -
Therefore inserting above estimates into (4.17), we have
L) 2 f $)du| So(T™1)+2|m|neT~* f | $(0)1do.

Since ¢ is arbitrary, this gives us (4.12), in view of

© ) 2
J d(u)ydu= J a(t)dt
(iii)) As the final step, we shall show
(4.18) TLO(T)=0(1), as T—-o0.

This is the part of the proof of the theorem in which the condition is
needed. L%).(T) can be written by

'ffj- dG(AW (T, 2) e~ 2mmisiTa(s — Q)ds
T

- -T1/2
where
T/2 _
VT A=|  e™Talt—Adt.
-T/2
Thus
1 T . T/2—A4 .
Lis(T) = f VT, e~ >mHTAG() e~ 2m T glu)dy
T | 1 -T/2-2

which is, as in ((3.11),



20 T. KAWATA

1 ~-T/2 . T
j a(u)e - 2mmu/Tdu ‘[ e~ 2muil/Tlp"(T; ).)dG(A.)

T-i 3T/2 ~T/2—u
1 3T/2 T/2-u 1 T/2 T/2-u
+—7:5 'duj 'dG(/l)+—,I—,5 'duj -dG(4)
T/2 -T -T/2 -T/2—-u
=MUXT)+MGXT)+MZ2XT), say .
Now
(4.19)
-T/2 T ' T/2 . -
MS}(T) =— a(u)e-zmﬂiu/TduJ. e—3m1ul/TdG(l) e2nm(l+u)/Ta(v)dv
T -3T/2 -T/2-u -T/2
1 -T/2 . -u R T )
== a(u)e—meu/Tdu [f e2mzw/Ta(v)va‘ e—z(""”)“"/TdG(l)
T —-3T/2 -3T/2 -T/2-v
-T/2 T T+u T/2—-v
+J °va -dG(A)+ dv dG(A):I.
u -T/2 -T/2 -T/2-u

The first integral in the bracket in (4.19) with G(4)—G(— T/2—v) in place of G(A)
without changing the value of inner integral, turns out, after integration by parts, to be

J‘—u e2nniv/T@dv{[G(T) _ G(— '172 - v)]e—z(m—n)m‘
-3T/2
T

+2(m—n)1ti/TJ [G(A)—G(— T/2-—v)]e'2‘""")"“’le}

-T/2-v

which is, in view of G(1)—G(— T/2—v)=0O(T), not greater than in absolute value
3T/2
f |a(v) | dv-O(T)=0(T).
-371/2

The second integral in the bracket in (4.19) is seen, in the same way, to be, in absolute
value,
f3T/2

A

|a(v)|dv-O(T)=0(T).
J-312

The last double integral in (4.19) is in absolute value

(T +u
< |a(v)|dv-O(T)=0(T).
J-T/2
Thus we have
1 -T/2
(4.20) M{XT)=0 (——2 j‘ a(u)du)O(T) =o(T™Y).
T -3T/2

" In the quite same way, we also get
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(4.21) M@(T)=0o(T™Y).
Finally we deal with
1 T/2 ] T/2-u ) T/2—-4 .
Mgg(T) =— a(u)e - 2m1uu/Tdu J‘ e 2(m— ”)"M/TdG(;{) e2m:w/Ta(v)dv .
T -T/2 ~T/2-u -T/2—-2

This is written, by the interchange of the order of integrations, as

1 (T2 , u o (T2-u _
(422) TE a(u)e— 2mmiv/T 4, [I eanu/'I‘a(v)va‘ e2(m—n)nul/TdG(ll)

-T2 —T+u -T/)2-v

T+u T/i2-v
+j 'dvj 'dG(/D:'-
u —-T/2-u

The first integral in the bracket can be written, as before, by

J\u eZm:iv/TE(—vjdv{[G(T/z —u)—G(T)2—-1v)]e —(m = n)mi(1 — 2u/T)

-T+u
T/2-u

+2n(m—n)/T f [G(A)— G(— ’1"/2—v)]e'2""‘"”‘“/7d1}.

-T/2-v
Hence (4.22) does not exceed in absolute value
T/2 u

% |a(u)|duf |a(v) || G(T/2—u)— G(— /2 — 1) | dv
-T1/2 -T—u

1 T/2 u T/2—u
+FJ la(u)lduj Ia(v)ldvf | G(A)— G(—T)2—v)|dA
-T/2 -T+u -T/2-v

=Ni(T)+NyT), say.
Note that by the assumption
G(T/2)— G(— T)2—v) =F(T|2 — ) — F(— T)2 — v) — vp(T— i+ 1)
=o(1),

if T—u+v is large. Hence for any small ¢>0,
T/2

|a(u)| du[ j la(v)]
-T/2 {v| £3T/2,|IT—u+v|>eT

X |G(T/2—u)—G(—T/2—v)|dv+J

dv:l

0| S3T/2,|T—u+v|SeT

T/2 3T1/2

<= Ia(u)ldu[J Ia(v)ldv'0(1)+J | a(v) Idv'O(T)]
T -T/2 -3T/2 |T—u+v|SeT

as T— o0, ¢ being fixed, and G(7/2—u)— G(— T/2—u) being O(T) uniformly for u.
The above is

4.23) N;(T)g%,
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r—T/2 w+eT
=o(T~3)+0(T"?) | a(w + T)ldwj J|a(v)|dv
v—3T/2 w—eT
f—T/2 —T/2+eT
=o(T")+0(T™Y) | a(w+ T)Ide | a(v) | dv
J-31/2 —3T/2—¢T
=o(T~%)+0(T™?) |a(u)|du-o(1)=0o(T™?),
that is,
(4.24) N(T)=0o(TY).
Finally

T/2 u

Ia(u)lduj | a(v) | dv

—T+u

1
LAGIES= f

-T/2

XU | G(A)— G(—T)2—v)|dA
|A+T/2—v|>eT,—T/2—-v<A<T/2-u

N
|A+T/2—v|SeT

which is, as in (4.23),
1 T/2 u T/2—u —T/2-v+eT
éﬁj | a(u)| duj |a(v)| dv[o(l) dl+j dl:l

~-T/2 -T+w ~T/2-v =T/2~v—eT

=o(T~ 1)(J‘OO |a(w)| du)2 +0(T™? jw |a(u) | *du-eT

=o(T"YH)+O(T" )¢,
which gives us
TN,(T)-0, T—o0.
This, with [(4.24), shows ,
MENT)=o(T™).

Altogether we have shown [(4.18). The proof of (i) is now complete.
It is easily seen that for the estimate L$),(T)=o(1), the condition (4.2) is
sufficient. We have seen that for lim sup L,,,;(T, &), limsup L,,.,(T, B) and L&(T) to

a— — © p—
be o(1), the condition ®(1) = O(4), | 1|— oo is sufficient. These observations give us the
proof of (i) of the theorem.

5. Approximate Fourier series of a GLP

For a WSP represented by
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(5.1) X(t, w)= f e EdA, w)
&(S, w) being the spectral random measure, the series defined by
(52) _ Z lemit/Tén(w) ,

where 7>0 and

2(n+1)=x/T

(5.3) Cul@)=E(T, w)= d, w),

2nn/T

plays a particular role in the theory of approximation by a T-periodic Fourier series.
See and [10, II]. For the study of the sample continuity of a WSP, the series
provided a useful tool, see [10, II]. is called the approximate Fourier series of
X(t, w). Actually it is the Fourier series of some T-periodic WSP X(t, w) which
approximates X (¢, w) in | ¢|< A4, when T is much larger than 4.

This situation is true even when we deal with a GLP, which is the aim of this
section to study about.

Throughout this section we consider a GLP with mean 0, that is a GLP X(z, )
defined by (1.2) with

5.4 m(S)=0.
Again the quantity
5.5 G(A)=F(A)—F(0)—uvy4

plays a good deal.
It will be convenient to set

Condition A. Let a(t) be the Fourier transform of a function b(u):

a(t)=b(t)=(2m)~ 112 ‘ro b(wye du ,

i ¢
which b(u) is supposed to be absolutely continuous and of L!(— oo, 0).

Lemma 2. Condition A is assumed. Suppose either of the following conditions
is satisfied.
(i) For some constant v and for some 0<p<1,

56) r 1463

<00,
—o l+|A]"
(i) For some 1<p<2,

(5.7) f v AFd)

BETTyIT
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Then
2(n+1)n/T ) .
(5.8) A(T,w)= lim. @m)~ Y2 J b(u)du J e~ ME(dA, w)
a—— 00, 2nn/T a

exists, where 1.i.m. means the limit in L*(£2).

Note that if 1 <p <2, then is equivalent to and that if is assumed
is always true. We remark also that if F(2) is absolutely continuous and F'(4)=
f(A), then the condition is obviously equivalent to

© | f(A)=vo |
AL A .
(59) LO T A<
We call, for each 7>0, the formal series
(5.10) | Y AT, o)™,

the approximate Fourier series of a GLP X(z, ).
Before proving we give one more lemma

Lemma 3. Write

(5.11) S= jb f(w)du j.ﬂ e ") .

Under the condition that f(u) is absolutely continuous around the origin, we have

(5.12) lim S=2#nf0), if a<0<b,

a— — 0,8 ©
=nf(0), if a=0 or b=0,
=0, otherwise

and
(5.13) im S= im S=0.

B— o,a— 0 a=*— o0, —

Proof.
b e—iuﬂ_e—iua
S=J f(u) ——:—rd“ .

Let a <0 <b. Choose ¢ such that a< —e<0<e<b. Write

|lul <e (a, —€)u(e,b)

The second integral converges to zero as |a|—o0, | B|—>o0 by Riemann-Lebesgue

lemma.
The first integral in can be written by
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1) ———e—iuﬂ'.e_m dutr | TOTO (s -y,

lul<e —iu luj<e T

in which the second integral converges to zero as | « |— o0, | §|— oo again by Riemann-
Lebesgue lemma, since f(u) is absolutely continuous near the origin, while the first

integral is
B B e
f0) J du J e~ "4d) =£0) f dij e idy
|lul <e [

sin e

——2f(0)J A

which converges to 2nf(0) as a— — o0, f—00 and to zero as a— — o0, f—— o0 or
p— o0, a—o00. This shows the first and third cases of and also [(5.13) The
second case of is shown in a similar way.
We now prove [Lemma 2. We have to show
b ]
E j b(u)duj e MEdA, w)

2

(5.15)

with a=2nn/T, b=2(n+ 1)n/T, as f— o0, a— 00, and as a— — 0, f— — 0.
We first note that under the conditions in

2

(5.16)

b
J‘ b(u)e " ™“*du

b 2-p
éCIM"’< Ib(u)ldu) , 0sp<2,

for large | 4| and for b—a <1, C being a constant independent of .. When p=0 this is
trivial and it is easily seen even for 0 <p <2 from

b
J b(we ™ **du

érlb(u)ldu,

and

-1 —m).b(u) ’ +— 1 J br(u)e-mldu

’ il id

j b(w)e **du|=

, C

where C is constants independent of 4 Wthh may be different on each occurrence.
The above two estimates give us
Now we shall prove [(5.15). We may suppose 7> 2r.

b B
E f b(u)du -[ e~ M EdA, w)

b B b__ B —_—
=E [j b(u)du J e MEdR, w) J b(v)dv j e E(du, w):l

2

J=
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(B b b
=| dF() b(u)e‘“"duj b(v)e'**dv
rB b ‘ 2
= b(u)e ~**du
U"b b . 2 B b . 2
=] dG(A) j b(u)e ™ *du +voj dA f b(u)e ~*udy
(5.17) =J,+J,, say,
where G(4)=F(4)— F(0)—v,A as before. From [ we have
?1dG(3)| 27p
<
(5.18) IJII=CL YD Ib()ld

which converges to zero as f§, a— o0 or a, f— — co.

b b__ ]
(5.19) Jy=v, f b(u)du j b(v)dv j e Hu—v)g)

b p .
=1, j b(u)duj e gy

which converges to zero as f, a— o0 or a, f— — oo, because of [5.13).
We shall prove the following

2

Theorem 4. Assume Condition A.
() Let 0=sp=1. If (5.6) is satisfied, then there is a stochastic process X (t, ®)

such that
2
Y, AT w)e*™ T — X 1(t, w)| dt—0,

N-1
(5.20) j E
1 |a=

n=-—N

as N— oo, for every finite interval I.
(ii)) Let 1<p<2. Suppose (5.7) and moreover for large u

(5.21) f | b(v)|dv=0(u"")
2u>|v|>u

for some r>p(2—p)~'. Then there is a stochastic process X(t, w) such that (5.20)
holds as N— oo, for every finite interval I.

Proof. 1t is sufficient to prove for I=(—1T/2, T/2), because of the
periodicity of the series involved in [(5.20). Namely we have only to show

1 T/2

(5.22) Q=— o

N . 2
Z eZmut/TAn(T; w) dt—0 ,
n=M

as N—»oo, M— o0 or M— — o0, N— — 0.
Using Parseval relation, we have
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1 T/2

Q=E—
T -T/2

N . 2
Z eZnn:t/TA"('I; 60) dt
=M

n

N N

=E Y |A(T,0)|*>= Y E|A(T, w)|?
n=M n=M
1 X .

=_2_7I.n=ZM a— —lgl.}?-'oo (Jl +J2) ’

where J; and J, are those in (5.17) with a=2nn/T, b=(2n+ 1)n/T. From we

have
. © |dG(l)| <J‘2(u+1)1r/T >2—p
lim JILC : b(u) | du
a-'-oo.ﬂ-’ool 1= J.—ool+lﬂ'|p 2nn/T |50
and hence
N N 2+ 1)n/T 2-p
(5.23) Y Im |Jy|sSC Y (j |b(u)|du> .
n=Ma——®,—>w n=M \J2nn/T

Consider the case (i). Since 2—p = 1, the series on the right hand side of {(5.23) is,
by Jensen inequality,

N  (2m+)n/T 2-p 2(N+1)m/T 2-p
(5.29) é( Y J | b(u) | du) =(J | b(u) | du)

n=M J2nx/T 2M=n/T

which converges to zero, as N, M—»o0 or M, N— — 0.

As we have shown that J, converges to zero in for each N>M>0 or
M <N<0, we now complete the proof of Q going to zero as M, N-»—oo or
M, N> .

Now we handle the case (ii).

N 2(n+ 1)x/T 2-p L 2k+1
Z(f IWWQ =Y ¥ ()

n=M 2nn/T k=Kn=2k+1

L 2k+1 p—1 2k+1 2(n+ 1)n/T 2-p
=Z( y 1) ( Y J- |b(u)|du>

k=K \n=2k+1 n=2k+1 J2nn/T

L 22K+ 1+ 1)m/T 2-p
=Y 2"<P-1>(J |b(u)|du) .

k=K 2(2%+1)n/T

By the last one is

L
<CT?-Pr z k(p—1-r(2—p)
- k=K
which converges to zero as L, K— oo or — o0, because p— 1 —r(2—p) < — 1. The proof
is now complete.
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6. Approximation by approximate Fourier series

Let X(¢, w) be a GLP with EX (¢, w)=0 for all t. We here give a result on
approximation of X (¢, w) by X (¢, w).

Theorem 5. Assume Condition A.
(1) I (2.3) holds and

6.1 ub’(u)e L'(— o0, ),
then, for every 1<p <2, for every finite interval I=(A, B) and for T>2|A|, 2| B|,

6.2) IE|X(t, 0)—X (t,w)|2dt<CT @~ »
I

(i) Suppose (6.1) and (5.6) for some constant v, and for some 0<p < 1. Then for
every finite interval I1=(A, B) and for T>2|A|, 2| B|, (6.2) holds for this p.

In both cases, C is a constant independent of T and depends on I in such a way that
C=C, [ (1+13)dt, where C, is a constant independent of T and of I as well.

Proof. Denote the integral in by R=R(T).
2 .
Xt w)— Y AT, w)e* 7| dt

n=-N

R=.[ lim E
I

N-1
N- o

N-1
X, 0)= Y AT w7

n=-—N

2
§1iminffE dt
N-ow Jr

2
Sliminf lim IE dt

N2 a=—w,f~>w0 Jr

b N-1
f alt—A)édr, w)— Y AT, w)e* IT

a n=-N

<3 liminf lim JE
I

N-ow a——ow,—w®

Jp a(t — A)¢(dA, w)

@

N-1 . 2(n+1)n/T B 2
— ¥ eammilT(o)=112 f b(u)du f eMEdA, w)| dt

n=-N 2nx/T

N-1
Z e2mm/T
n=-N

+3liminf  lim f lim E
I

N-w a——ow,f—w© ]

2(n+1)n/T B’ . 2
x(2n)‘lf b(u)du .[ e*EdA, w)| dt
B

2n=/T

N-1
Z e2mut/T
n=—N

+3liminf lim j lim E
1

N—-w a——o,f—-x© a’ = —

2(n+ 1)n/T

2
x (2m) = 1/2 J dt

2nn/T

b(u)du fa eMEdA, w)

=3liminf lim (R,+R,+R;), say.

N—-wow a——ow,f—x0
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Let T be so large that
T/2
Rzg-c—j lim E|-|3%dt
T ~-T/2 p =+

for some constant C which is independent of T but depends on the interval I.
Obviously this is possible, since the series involved in the last inequality (inside of E)
is periodic with period T. Then Parseval relation shows that

2(n+1)n/T B
‘[ b(u)duj e E(dA, w)

2nn/T B

1 N-1 2
R2§Climinf2— Y E

B0 £Mpy="N

N-1
<Climinf ) (J,+J,),
B~ p=—N
where J; and J, are those in (5.17) with a=2nn/T, b=2(n+ 1)n/T and B, B’ in place of
o, p there respectively.
Therefore because of with p=1 and J, and J, converge to zero for
each n, when B’— o0, f— 0. We thus have

p—
Similarly we have
lim R3 =0 .

Hence we have
(6.3) R=3liminf Ilim R,.

N-w®w a——w,f-wo

Inserting a(t—A)=(2n) "2 {=_ b(u)e’*~ " dy into R,

|R|=Climinf lim IE
I

N—-w a——ow,f—x®

Jw b(u)e™du fﬁ e MEdA, w)

- o -2

N—-1 ] 2(n+1)x/T (] 2
— ) T j b(u)du f e~ MEdA, w)| dt

n=-N 2nr/T

2
<Climinf lim j E dt
I

N—-w a=— o0,

N-1(2(m+1)n/T ) B
Z f (e""‘—-ez"""/T)b(u)du J\ e"“‘é(d)., (D)

n=N 2nn/T a

2
dt

N-ow a—=—o,—+w

+Climinf lim fE
I

B
f e““b(u)duf e*Eda, w)
ju| >2N=n/T o

=Climinf lim (U,+U,), say .

N—-+w©w a——ow,f—0

Write

ay(v)=(2n)~ 112 J eb(u)du .

|| >2Nn/T
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Then
r

U2= E

JI

rB B
=| dt f | ap(t— A)| 2dF(A)
A a

2
dt

fﬁ an(t—A)¢(dA, o)

) B-4
=| dF(A) | an(u) | %du .

Ja A-2

By the same reasoning as in the calculation of [(3.9),

B-8 B
U2=
A-p

an(u)| 2duf dF(})
A-a B-u B-8
+f | an(u) ] 2du J dF(l)+j | an(u)

2 B~u
duf dF(4).

A—u
B—-p A—-u A—a

Using the condition [(2.3), we see, noting 0 < f— A4 +u < B— A, as before, that the first
integral is ’

B-§

p Cf | an(w)| >°du—0
A-B

as f— o0, since ay(u)€ L*(— oo, o) because of b(u)e L' n L®. The third integral is

shown, in the same way, to be o(1). The second integral is

[+ ]

écr_“nan(u)vdugcf | ay(w)| *du

A-B —
=Cf | () | 2du—0 as N- 0.
|u| Z2N=/T
Hence we have
(6.4) R<Climinf lim U,.
N—+w a——ow,f—w®
Write
gn(u, D=gnu, t; T)=e*" — T for 2nn/TSu<2(n+1)n/T,
' n=-—N,---,N—1,
=0, for |u|>2N=n/T.
Then
o0 B . 2
(6.5 U, =J. dtE I gn(u, )b(u)du J e MEdA, w)
I — a

2

. B
=fdtj dF(2)
I a

jw gn(t, wb(u)e ™*du




where

(6.6)

Noting that

W€ see

(6.7)

We also see

- o0

in which
N

= Z Ib(2(n+1)7t/T)I<—T— Z
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B
= j dt J dG(A)Pp(t, X)+v, j dt J pPN(t, Ada
I a 1 a

=U1,1+U1,2’ Say,

2

PAlt, H)=

fw gn(t, wb(we  “*dy
lgn(t, W) |S2n|t|/T,

" gut, wblue 3

2r|t| [
é—T—j_wa(u)ldu

=C|t|/T.

N-1 2(n+1)n/T

n=-—N J2nn/T

N-1
— Z ( —i i) - 1( eitu — e2m|:it/T)b(u)

n=-N

31

J‘oo anlt, u)b(u)e—iuldu — Z (eim —ez""i'/r)b(u)e"i“‘du

2(n+ 1)n/T

2nn/T

N-1 2+ )=/T .
+ Z (t/j')_lj‘ e:tub(u)e—mzdu

n=-N 2nn/T

N-1 2(n+1)n/T .
+@)t Y (¢ —e?

n=—NJ2nn/T

C N-1
ém _Z;Nlb(2(n+1)n/T)I

nrit/ T)b(u) e~ iud du

+|t|/|l|£o Ib(u)|du+C|tI/(I/1|T)Jao |b'(u) | du

N—l

r b'(u)du

2(n+1)m/T

é—— |b'(u) | du
T L(n+ 1)»/T
N_

1 2(n+1)n/T

<Y — dvf |b'(u)|du=Lf | ub'(u)| du
v 27: 0
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which is finite because of [(6.1).

Handling
1 -1
7. L 1b@n+Dm/ D)
in the same way, we have
1 N-1
T _Z |b(2(n+1)n/T)|=C.
n=—N
Thus we get
® - iua 1+][t]
(6.8) J‘_ng(t, ub(ue “du|<C T+1A[°

because this is trivial for small . (6.7) and together give us

142\ 1+|t)2P
Py, )=C TP 25C——— T2
e nse(f sy
and hence
o , C [* |dG(A)|
(6.9) I‘Iﬁg‘fw_lgﬂ,wlul-lI-S-TZ—PJ_OO1+|1|”'

We mention that C here is written by C, §; (1 +|¢|2?)dt where C, is independent of I
as well as of T.
Now we shall deal with U, ,.

(6.10) U, ,=0o J dt f ’ Py(t, A)dA
I a

=UOJ‘dt
I

N-1

© B -2 2(n+ 1)n/T 8
J gn(wb(u)du f e wAd} =( Y + Y ) j (e — 2™ T\b(u)du f e Wid]

n=1 n=—N 2nn/T

2

J - gn(u)b(u)du j ﬂe""‘d,l

in which

2n/T . B
+ I (" — 1)b(u)du f e~ viq)

0

0 (]

+I (eitu_e—-Znit/T)b(u)duJ' e—iuldl .
-2=n/T a

Each term of the series on the right hand side is easily seen to go to zero as

a— — oo and f— oo by integrating out the last integral and using Riemann-Lebesgue

lemma since the domain of u does not contain zero. The second term converges to

zero by in which f(u) in stands for (e —1)b(u). The third term
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converges as a— — o0, f— o0, to (1—e*™T)p(0) which is, in absolute value, not
greater than |¢|/T-|b(0)|=C|¢t|/T.
Thus we have
liminf lim |U |<£—
N-wow a—=—ow,f~w© 12 =T2 )

Therefore

C [ |dGA)| C 1

R= —=<
—Tz“’_[_w1+|}.|"+T2_CT2"”

for T>1, where C is a constant independent of 7. C is as before C=

Co [1(1+||?P)dt, C, being a constant independent of T as well as of I.

7. Sample continuity of a GLP

Let X(t,w), —oo<t<oo, be a GLP with EX(t, w)=0, —oo<t<oo. All
conditions in are supposed to be satisfied. Consider the approximate
Fourier series of X (¢, w)

(7.1) Y AT, w)e*™T | T>1.
First we mention that the inequality
2(n+ 1)n/T 2-p
(7.2) E|A(Tw)|*<C (I | b(u)| du)
2nn/T

for |n|> 2, holds, (i) if, for some 0 <p <1 and for some constant v, (5.6) holds, or (ii)
if, for some 1 <p <2, (5.7) holds.
The proof of this inequality is involved in the proof of and actually it

follows from (5.17), and Lemma 2. It is noted again that is
automatically satisfied when [(2.3)|is satisfied. In (7.2), C is, as we mentioned before, a
constant

(1.3) C=C0J(1+lt|2”wt,
: I

where C, is a constant independent of T and the interval 1.
We first deal with the almost sure absolute convergence of Y. 4,(T, w).

Theorem 6. Suppose Condition A. Let g(x) be a positive even function which is
nondecreasing for x 20 and is such that, for some 0<p<2,

(7.4) T [gm] P <.
n=0

(@) If0=p=1 and (5.6) holds and moreover
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(7.5) r | b(u) | g(u)du < oo ,
then
(76) S AT o)l <o,

almost surely for each T.
(i) If1<p<2 and (5.7) holds and moreover for r>p(2—p)~!,

(7.7) j ul | b(v) | g(v)dv=0(u"")
2u>|v|>u

for large u, then (7.6) holds almost surely for each T.

Proof. 1t is sufficient to prove

Now

EY |A(T,0)|=E Y g~'2C~P2nz/T)g"@~P(ann/T)| AT, )|

n=1

éI: i 9'”‘2""’(2%/7‘)]1/2[ i g0~ PQnn/T)E | AT, )| 2]”2 ,

n=1 =1

which is, by [(7.2) and (7.4)
®© 2(n+ 1)n/T 2—-p]1/2
(7.8) =C [ > 9~ P(2nn/ T)(j |b(u)ldu) ]
n=1

2nw/T

o0 2(n+ 1)x/T 2-p71/2
C[Z (f g(u)lb(u)ldu> ] :
n=1 2nn/T

The same arguments as in deriving [(5.23) and [(5.24) lead to the convergence of the
last series in the both cases (i) and (ii). The same thing is true for
-— 1 .

Y AT ).

n=-—owo

IIA

is thus proved.

Under the conditions in Theorem 6, in the both cases (i) and (ii), the
approximate series is absolutely and hence uniformly convergent for every 7> 1
almost surely. The sum of is denoted by X (¢, w). It is continuous on every finite
interval of ¢ almost surely.

Now we shall prove

Theorem 7. Assume Condition A. Let g(x) be a function in Theorem 6. Under the
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conditions (5.6) and (7.5) when 0<p <1 and under the conditions (5.7) and (1.7) when
1<p<2, there is an X(t, w) which is continuous almost surely such that

X(t, 0)=X(t, )
almost surely for almost all t on every finite interval.

Proof. 1t is sufficient to prove that X,.(t, w) converges uniformly on every finite

interval 1. This is readily seen. First note that the condition implies [(5.21). We
then have

sz + 1(t, CO) — sz(t, a)) = Z e2n1u't/2k + 1An(2k + 1’ (1))

n=—aw

®
_ Z [e2ni(2m)t/2"+ 'A2m(2k + 1, CO)
m=—oco

+e21:i(2m+ 1)t/2k+ 1A2m+ 1(2k+ 1, CU) _ e2mnit/2"Am(2k’ (D)] .

As we easily see, the identity

Am(zk’ CU) = A2m(2k+ 17 CO) + A2m+ l(2k+ 19 CO)
holds and hence

Qo
Y (ermimtimakti_ amiGmyizkety 4 ok
m=—o

2nlt| & |
Z | A+ (2K, w)|.

m= -~

| X 2012, 0) — X pult, )| = » )

é 2k+1

Let ¢, be a decreasing sequence of positive numbers converging to zero. Then

Q,=P (max | Xyt w)— X, w) | >sk>

ltl<4

[0 o]

nA
éP(z_k Z lAp(2k+law)l>8k)
pP=—
1 TCZAZ L 2
§8_2E 22k [ Z IAp(2k+19w)|:|
k p=—

7[2A2 © © 1/2
= L [g(pn/2")]‘”‘2“”{ 2 [g(pn/29]12-PE| 4, (251, w)|2} .
k P

p=—o = —00

In view of
Y [glam)]~12-P <=1 ¥ [g(n)]~ 2P
n=1 n=0

(which we have used in deriving (7.9)), we see that in the last expression, the
factor outside of {-}!'2 is not greater than CA2/(,22%), where C is a constant
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depending only on g(x), while the last factor {-} is seen to be bounded in k as in the
proof of [Theorem 6, that is

0, Ceg~ 227",

C being a constant independent of k.

Choose ¢, in such a way that

Yeg<o, g 2¢<oo.

We then have

[+ o]
Z Qi<
k=1

which shows by Borel-Cantelli lemma that

T | Xy 1(t, 0) — X2, ) |

converges uniformly in | #|< 4. This completes the proof.
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