PROJECTIONS, SYMMETRIES AND NILPOTENT OPERATORS ON A HILBERT SPACE

By
C.-S. Lin
(Received September 10, 1981; Revised December 1, 1981)

1. Introduction

Let $B(X)$ be the C^{*}-algebra of all bounded linear operators on a complex Hilbert space X, the conventional definition of a projection $T \in B(X)$ says that T is self-adjoint and idempotent. This has been extended so that we can replace "self-adjoint" by "dominant" ([5], Corollary 4). Note that the class of dominant operators [10] contains hyponormal operators (T is hyponormal iff $T^{*} T \geqslant T T^{*}$). Aside from this point of view of normality it seems natural to ask the question: "What kind of idempotent operator T is a projection?" The following are well-known results in terms of the restriction on the norm of T. The idempotent operator T is a projection if
(a) T is a contraction $(\|T\| \leqslant 1)$. This has been known for quite sometime (see a remark below), or
(b) $w(T) \leqslant 1([1]$, Lemma), where $w(T)=\sup \{|(T x, x)|: x \in X,\|x\|=1\}$, the numerical radius of T, or
(c) $T \in \mathscr{C}_{\rho}([2]$, Theorem 1 $)$; or equivalently, $w_{\rho}(T) \leqslant 1$.

Recall that $T \in \mathscr{C}_{\rho}$ iff for some $\rho>0, T$ satisfies the condition:

$$
(\rho h, h)-2 \operatorname{Re}(z(\rho-1) T h, h)+|z|^{2}((\rho-2) T h, T h) \geqslant 0
$$

for all $h \in X,|z| \leqslant 1$ ([7], p. 45). It turns out that $T \in \mathscr{C}_{\rho}$, iff $T^{*} \in \mathscr{C}_{\rho}$, iff $w_{\rho}(T) \leqslant 1$, where $w_{\rho}(T)=\inf \left\{u: u>0, T / u \in \mathscr{C}_{\rho}\right\}$. $w_{\rho}(\cdot)$ is a norm on $B(X)$ whenever $0<\rho \leqslant 2$ (but it is not, otherwise), $w_{1}(\cdot)=\|\cdot\|$ and $w_{2}(\cdot)=w(\cdot)([4]$, Theorem 3.1). Thus, (a) and (b) are nothing but special cases of (c). In fact, if $T \in \mathscr{C}_{\rho},|z|=1$ and $m \geqslant 1$, then $z T$ is a projection iff $(I-z T)^{m} T=0$, and $z T$ is a symmetry (T is a symmetry iff $T=T^{*}=T^{-1}$) iff $(I-z T)^{m}(I+z T)=0([6]$, Corollary 2).

The purpose of this note is to answer the previous question, more precisely, to look for various types of operators $T \in B(X)$ satisfying the condition: $N\left(T^{*}\right) \supseteq N(T)$, where $N(T)$ means the null space of T.

Lemma 1. Let $T \in B(X), m \geqslant 1$ and $k \geqslant 1$. If $N\left(T^{*}\right) \supseteq N(T)$, then
(1) $N(T)=N\left(T^{m}\right)$.
(2) T^{k} is a projection iff $T^{m}\left(T^{k}-I\right)=0$.
(3) $T^{k}+I$ is a projection iff $T^{m}\left(T^{k}+I\right)=0$.
(4) $T+I$ is a symmetry iff $T^{m}(T+2 I)=0$.
(5) T is a nilpotent operator iff $T=0$.

Proof. The proof is elementary and can be found in ([6], Lemma and Corollary 1). Note that the proofs of (2) and (3) are similar to that of (1) in ([6], Corollary 1) and (5) follows from (1).

In 1943 Riesz and Sz.-Nagy [8] showed that if $T \in B(X)$ is a contraction, then $N(T-I)=N\left(T^{*}-I\right)$. In 1966 Hildebrandt [3] weakened the hypothesis on T so that $W(T)$, the numerical range of T, is contained in the closed unit disc. Therefore, by applying Lemma 1, if $\|T\| \leqslant 1$, or if $w(T) \leqslant 1$ and $m \geqslant 1$, then T is a projection iff $(T-I)^{m} T=0, T$ is a symmetry iff $(T-I)^{m}(T+I)=0$, and $T=I$ iff $T-I$ is a nilpotent operator.

Incidentally, Riesz, Sz.-Nagy and Hildebrandt's result can be generalized as follows: $N(z T-I)^{*}=N(z T-I)=N(z T-I)^{n}$ for $n>1$ and any complex number z with $|z|=1$ (cf. Corollary 2, [6]).

2. The class S_{z}

Let us generalize the condition on $T \in \mathscr{C}_{\rho}$.
Definition. An operator $T \in B(X)$ is said to be in the class S_{z} if the inequality

$$
(S h, h)-2 \operatorname{Re}(z(S-I) T h, h)+|z|^{2}((S-2 I) T h, T h) \geqslant 0
$$

holds for all $h \in X$, some self-adjoint operator $S \in B(X)$ and some complex number $z \neq 0$.

The following are immediate results: (a) $T \in \mathscr{C}_{\rho}$ iff $T \in \rho_{z}$ (in our sense) for all z, $|z| \leqslant 1$. (b) $\|T\| \leqslant 1$ iff $T \in 1_{z}$ for any z with $|z|=1$. (c) If $w(T) \leqslant 1$, then $T \in 2_{z}$ for any z with $|z| \leqslant 1$. (d) If $w(T) \leqslant 1$ and $T \in 0_{z}$ for any z with $|z| \geqslant 1$, then $\|T\| \leqslant 1$. (e) If T is a projection, then $T \in T_{z}$ for any z with $|z| \leqslant 1$. (f) $1 / z \in S_{z}$.

Theorem 1. If $T \in B(X)$ is in S_{z} and $m \geqslant 1$, then
(1) $z T$ is a projection iff $(I-z T)^{m} T=0$.
(2) $z T$ is a symmetry iff $(I-z T)^{m}(I+z T)=0$.
(3) $T=1 / z$ iff $I-z T$ is a nilpotent operator.

Proof. By Lemma 1 it suffices to show that $N\left(I-\bar{z} T^{*}\right) \supseteq N(I-z T)$. Let $x \in N(I-z T)$, i.e., $z T x=x$ and suppose that $(I-z T)^{*} x=y$, then $(x, y)=$ $\left(x,(I-z T)^{*} x\right)=((I-z T) x, x)=0$. Let $h=x+t y$ for $t<0$, then

$$
\begin{aligned}
& (S(x+t y), x+t y)-2 \operatorname{Re}(z(S-I) T(x+t y), x+t y) \\
& \quad+|z|^{2}((S-2 I) T(x+t y), T(x+t y)) \geqslant 0
\end{aligned}
$$

To simplify this inequality is cumbersome. Let us write some of the simplified forms only.

$$
\begin{aligned}
& \operatorname{Re}(S x+t S y-2 S x-2 z t S T y+2 x+2 z t T y, x+t y) \\
& \quad+(S x+z t S T y-2 x-2 z t T y, x+z t T y) \geqslant 0 \\
& \operatorname{Re}\left[t^{2}(S y, y)-2 z t^{2}(S T y, y)-2 z t(T y, x)+2 z t^{2}(T y, y)\right. \\
& \left.\quad+|z|^{2} t^{2}(S T y, T y)-2|z|^{2} t^{2}(T y, T y)\right] \geqslant 0, \\
& (S y, y)-2 \operatorname{Re} z(S T y-T y, y)-|z|^{2}(2 T y-S T y, T y) \geqslant-2 t^{-1}(y, y) .
\end{aligned}
$$

In order that the last inequality hold for any negative number t it is necessary that $y=0$ and the theorem is verified.

Note that a stronger version of the class S_{z} is that if S is replaced by $A \in B(X)$, a positive and invertible operator, and the inequality holds for all $z,|z| \leqslant 1$, then such a T is said to be in the class \mathscr{C}_{A}, and it turns out that $\mathscr{C}_{A} \subseteq \mathscr{C}_{\rho}$ if $\rho \geqslant\|A\|$ ([7], p. 55).

An alternative definition of the class S_{z} is that $T \in S_{z}$ iff

$$
(I-z T)^{*}(S-2 I)(I-z T)+(I-z T)+(I-z T)^{*} \geqslant 0
$$

holds. Because the inequality in Definition can be rewritten as follows:

$$
\begin{aligned}
& \operatorname{Re}\left(S-2 z(S-I) T+|z|^{2} T^{*}(S-2 I) T\right) \geqslant 0, \\
& \operatorname{Re}\left(\left(S-\bar{z} T^{*} S+2 \bar{z} T^{*}\right)-\left(S-\bar{z} T^{*} S+2 \bar{z} T^{*}\right) z T\right) \geqslant 0, \\
& \operatorname{Re}\left(\left((I-z T)^{*}(S-2 I)+2 I\right)(I-z T)\right) \geqslant 0
\end{aligned}
$$

The desired relation follows since $\operatorname{Re} E=\frac{1}{2}\left(E+E^{*}\right)$ for $E \in B(X)$. Immediately, if $T \in S_{z}$ and $S \leqslant S^{\prime} \in B(X)$, another self-adjoint operator, then $T \in S_{z}{ }^{\prime}$. In particular, $T \in k_{z}$ for $k \geqslant\|S\|$.

Now, let us give an alternative proof of Theorem 1. By the definition in [6] $T \in C_{S}$ iff the relation $T^{*} S T+T+T^{*} \geqslant 0$ holds for some self-adjoint operator S. Hence, $T \in S_{z}$ iff $I-z T \in C_{S-2 I}$, and if $(I-z T) x_{n} \rightarrow 0$ for some bounded sequence $\left\{x_{n}\right\}$ in X, then $(I-z T)^{*} x_{n} \rightarrow 0$ ([6], Lemma). The proof follows by applying Lemma 1.

3. Generalized sequentially G_{1} operators and proper boundary points

Let $d(v)$ denote the distance between v and $\sigma(T)$, and $\partial \sigma(T)$ the boundary of $\sigma(T)$. Let us recall the following well-known conditions on T : (a) T is called a sequentially G_{1} operator [11] if for every $v \in \partial \sigma(T)$ there exists a sequence $v_{n} \notin \sigma(T)$ such that $v_{n} \rightarrow v$ and $\left\|\left(v_{n}-T\right)^{-1}\right\|=1 / d\left(v_{n}\right)$ for all n. This is, of course, an extension of the G_{1} growth condition: $\left\|(v-T)^{-1}\right\|=1 / d(v)$ for all $v \notin \sigma(T)$. For example, a hyponormal operator satisfies this. (b) A point $v \in \partial \sigma(T)$ will be called proper [9] if there exists a bounded sequence $v_{n} \notin \sigma(T)$ such that $\left\|\left(v_{n}-v\right)\left(v_{n}-T\right)^{-1}\right\| \rightarrow 1$. Two examples of such v are: (1) If $\|T\|=|v|$, and (2) If $v \in \sigma(T)$ is a boundary point of $W(T)$ [9].

In virtue of $w_{\rho}(\cdot)$ indicated previously (also note that $w_{\rho}(z T)=|z| w_{\rho}(T)$) the above two relations on T can be naturally extended as follows:
(a') $\quad w_{\rho}\left(\left(v_{n}-T\right)^{-1}\right) \leqslant k / d\left(v_{n}\right)$, or equivalently, $k^{-1} d\left(v_{n}\right)\left(v_{n}-T\right)^{-1} \in \mathscr{C}_{\rho}$ for some
constant k and all n.
($\left.\mathrm{b}^{\prime}\right) \quad w_{\rho}\left(\left(v_{n}-v\right)\left(v_{n}-T\right)^{-1}\right) \rightarrow 1$. Hence, either $\left(v_{m}-v\right)\left(v_{m}-T\right)^{-1} \in \mathscr{C}_{\rho}$ for some integer $m>0$, or, given $\varepsilon>0$, there exists an integer $m>0$ such that $(1+\varepsilon)^{-1}\left(v_{m}-v\right)\left(v_{m}-T\right)^{-1} \in \mathscr{C}_{\rho}$.
Here, we add another one: $w_{\rho}\left((v-T)^{-1}\right) \leqslant 1 /|v|$, or equivalently, $v(v-T)^{-1} \in \mathscr{C}_{\rho}$ for some $v \notin \sigma(T)$ and $v \neq 0$.

We want to consider above situations in terms of the class S_{z}.
Theorem 2. (1) If there exists a sequence $v_{n} \notin \sigma(T)$ such that $v_{n} \rightarrow 0 \in \partial \sigma(T)$ and $k^{-1} d\left(v_{n}\right)\left(v_{n}-T\right)^{-1} \in S_{z}$ for some constant k and all n, or
(2) If $v(v-T)^{-1} \in S_{1}$ for some $v \notin \sigma(T)$ and $v \neq 0$, then, the statements (2), (3), (4) and (5) in Lemma 1 hold.

Proof. In both cases we need only show that $N\left(T^{*}\right) \supseteq N(T)$.
(1) For every n we have

$$
\begin{aligned}
N\left(v_{n}-T-z k^{-1} d\left(v_{n}\right)\right)^{*} & =N\left(I-z k^{-1} d\left(v_{n}\right)\left(v_{n}-T\right)^{-1}\right)^{*} \\
& \supseteq N\left(I-z k^{-1} d\left(v_{n}\right)\left(v_{n}-T\right)^{-1}\right) \\
& =N\left(v_{n}-T-z k^{-1} d\left(v_{n}\right)\right) .
\end{aligned}
$$

Hence, $N\left(T^{*}\right) \supseteq N(T)$ as $n \rightarrow \infty$.
(2) $\quad N\left(T^{*}\right)=N\left(I-v(v-T)^{-1}\right)^{*} \supseteq N\left(I-v(v-T)^{-1}\right)=N(T)$.

Theorem 3. For $0 \neq v \in \partial \sigma(T)$, if there exists a bounded sequence $v_{n} \notin \sigma(T)$ which satisfies one of the following conditions:
(i) $\left(v_{m}-v\right)\left(v_{m}-T\right)^{-1} \in S_{1}$ for some integer $m>0$,
(ii) for any $\varepsilon>0$, there exists an integer $m>0$ such that

$$
(1+\varepsilon)^{-1}\left(v_{m}-v\right)\left(v_{m}-T\right)^{-1} \in S_{1}
$$

then, for $k \geqslant 1$,
(1) $v^{-1} T$ is a projection iff $(T-v)^{k} T=0$.
(2) $v^{-1} T$ is a symmetry iff $(T-v)^{k}(T+v)=0$.
(3) $T=v$ iff $T-v$ is a nilpotent operator.

Proof. The proof of the first case is the same as (2) in Theorem 2. Suppose that

$$
(1+\varepsilon)^{-1}\left(v_{m}-v\right)\left(v_{m}-T\right)^{-1} \in S_{1}
$$

then

$$
\begin{aligned}
N\left(v_{m}-T-(1+\varepsilon)^{-1}\left(v_{m}-v\right)\right)^{*} & =N\left(I-(1+\varepsilon)^{-1}\left(v_{m}-v\right)\left(v_{m}-T\right)^{-1}\right)^{*} \\
& \supseteq N\left(I-(1+\varepsilon)^{-1}\left(v_{m}-v\right)\left(v_{m}-T\right)^{-1}\right) \\
& =N\left(v_{m}-T-(1+\varepsilon)^{-1}\left(v_{m}-v\right)\right) .
\end{aligned}
$$

Since $\left\{v_{n}\right\}$ is bounded and ε was arbitrary we see that $N\left(v^{-1} T-I\right)^{*} \supseteq N\left(v^{-1} T-I\right)$. Now, Lemma 1 is applicable.

Corollary 1. (a) If $0 \in \partial \sigma(T)$ is replaced by $v \neq 0$ in (1) of Theorem 2 , then the statements (1), (2) and (3) in Theorem 3 hold.
(b) If $v \in \partial \sigma(T)$ is replaced by 0 in Theorem 3, then the statements (2), (3), (4) and (5) in Lemma 1 hold.

Corollary 2. (a) Let $T \in B(X)$ be a sequentially G_{1} operator. If $0 \in \partial \sigma(T)$, then the statements (2), (3), (4) and (5) in Lemma 1 hold. If $0 \neq v \in \partial \sigma(T)$, then the statements (1), (2) and (3) in Theorem 3 hold.
(b) If $T \in B(X)$ has a proper boundary point $0 \in \partial \sigma(T)$, then the statements (2), (3), (4) and (5) in Lemma 1 hold. If it has a proper boundary point $v \in \partial \sigma(T), v \neq 0$, then the statements (1), (2) and (3) in Theorem 3 hold.

Remark that if T is nilpotent, then $\sigma(T)=\{0\}$. Hence, above statements about a nilpotent operator can be stated in a more simpler forms. For example, if T is a nilpotent and sequentially G_{1} operator, then $T=0$ ([11], Proposition 1.2).

Theorem 4. For $0 \neq T \in B(X)$ it is either
(a) there exists a complex number $v \neq 0$ such that (1), (2) and (3) in Theorem 3 hold, or
(b) (2), (3), (4) and (5) in Lemma 1 hold.

Proof. We note that for any $T \in B(X)$, there exists a complex number v such that $N(T-v)^{*}=N(T-v)$. To see this, take $z \notin$ the closure of $W(T)$ and let $c=$ the distance between z and $W(T)$, then $\left\|c(T-z)^{-1}\right\| \leqslant 1$, i.e., $w_{1}\left(c(T-z)^{-1}\right) \leqslant 1$. Let $v=$ $z+c$ and we have the desired relation (cf. [6], (1) in Corollary 2). Of course, for $T \neq 0, N(T-\|T\|)^{*}=N(T-\|T\|)$ since $\left\|\|T\|^{-1} T\right\|=1$.

4. The direct sum of the zero and a unitary operator

It is well known that an idempotent operator in the class \mathscr{C}_{ρ} is not only a projection, but also the direct sum of the zero and a unitary operator ([2], Theorem 2). Instead of an idempotent operator it has been generalized to a polynomial equation of that operator ([11], Theorem 2.5). The next result shows that the same holds for an operator in S_{z}. But first let us prove

Lemma 2. Suppose that $T \in B(X)$ is in S_{z}, or in $S_{z_{0}}$ and $0 \neq z \neq z_{0} \neq 0$. If z^{-1} and $z_{0}{ }^{-1} \in \sigma(T)$, and if $(I-z T) x_{n} \rightarrow 0$ and $\left(I-z_{0} T\right) y_{n} \rightarrow 0$ for some bounded sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X, then $\left(x_{n}, y_{n}\right) \rightarrow 0$. In particular, $N(I-z T) \perp N\left(I-z_{0} T\right)$.

Proof. Suppose that $T \in S_{z_{0}}$.

$$
\begin{aligned}
\left|\left(z^{-1}-z_{0}^{-1}\right)\left(x_{n}, y_{n}\right)\right| & =\left|z^{-1}\left(x_{n}, y_{n}\right)-z_{0}^{-1}\left(x_{n}, y_{n}\right)\right| \\
& =\left|\left(z^{-1} x_{n}-T x_{n}, y_{n}\right)+\left(x_{n}, T^{*} y_{n}-\bar{z}_{0}^{-1} y_{n}\right)\right| \\
& \leqslant\left\|z^{-1}(I-z T) x_{n}\right\|\left\|y_{n}\right\|+\left\|x_{n}\right\|\left\|\bar{z}_{0}^{-1}\left(I-z_{0} T\right)^{*} y_{n}\right\| \rightarrow 0
\end{aligned}
$$

by the alternative proof of Theorem 1. Hence $\left(x_{n}, y_{n}\right) \rightarrow 0$.

Theorem 5. Let $T \in B(X)$ and suppose that $p(z)$ is a polynomial so that $p(T)=0$. If $T \in S_{z^{-1}}$ for all reciprocals of the roots z of $p(z)$ except for, perhaps, a root z_{0} of multiplicity one, then

$$
T=\sum_{0}^{m} \oplus z_{i} P_{i}
$$

where $z_{i}(i=0,1, \cdots, m)$ is a root of $p(z), z_{i} \in \sigma(T)$ and $P_{i}(i=0,1, \cdots, m)$ is a projection. Moreover, if $\left|z_{i}\right|=1(i=1,2, \cdots, m)$, then

$$
T=U \oplus z_{0} P_{0}
$$

where U is a unitary operator.
Proof. Let z_{i} be the distinct roots of $p(z)$ of multiplicity $n_{i}(i=1,2, \cdots, m)$, then $p(z)=\left(z-z_{0}\right)\left(z_{1}-z\right)^{n_{1}} \cdots\left(z_{n}-z\right)^{n_{n}}$ and hence

$$
X=\sum_{1}^{n} N\left(z_{i}-T\right)^{n_{i}}+N\left(T-z_{0} I\right)
$$

Note that $N\left(z_{i}-T\right)^{n_{i}}=N\left(z_{i}-T\right)$, and this is equal to $\{0\}$ if $z_{i} \notin \sigma(T)$. $N\left(z_{i}-T\right) \perp N\left(z_{j}-T\right)$ for $i \neq j$ by Lemma 2. $N\left(z_{i}-T\right) \subseteq N\left(z_{i}-T\right)^{*}$ and $N\left(T-z_{0} I\right) \perp N\left(z_{i}-T\right)$ hold for every i. Therefore, we conclude from these remarks that

$$
T=\sum_{0}^{m} \oplus z_{i} P_{i}, \quad m \leq n
$$

where P_{i} and P_{0} are projections of X onto $N\left(z_{i}-T\right)(i=1,2, \cdots, m)$ and $N\left(T-z_{0} I\right)$, respectively. Moreover, if $\left|z_{i}\right|=1 \quad(i=1,2, \cdots, m)$, then $\sum_{1}^{m} \oplus z_{i} P_{i}$ is a unitary operator and hence $T=U \oplus z_{0} P_{0}$.

Corollary 3. Suppose that $T \in B(X)$ is in S_{z}. If $T=z T^{2}, 0$ and $z^{-1} \in \sigma(T)$ and $|z|=1$, then $T=U \oplus 0$, where $U \in B(X)$ is a unitary operator.

Acknowledgement. The author is grateful to the referee for his valuable suggestions.

References

[1] T. Furuta and R. Nakamoto: Certain numerical radius contraction operators, Proc. Amer. Math. Soc., 29 (1971), 521-524.
[2] T. Furuta: Some theorems on unitary ρ-dilations of Sz-Nagy and Foias, Acta Sci. Math., 33 (1972), 119-122.
[3] S. Hildebrandt: Über den numerischen Wertebereich lines Operators, Math. Ann., 163 (1966), 230247.
[4] J. A. R. Holbrook: On the power-bounded operators of Sz-Nagy and Foias, Acta Sci. Math., 29 (1968), 299-310.
[5] C.-S. Lin: Quasi-similarity and quasi-congruency of operators on Hilbert spaces, Math. Japonica, 22 (1977), 431-438.
[6] C.-S. Lin: Operator radii and the normal approximate spectrum, Math. Japonica, 25 (1980), 337-340.
[7] Sz-Nagy and C. Foiaş: Harmonic Analysis of Operators on Hilbert Space, Akadémiai Kiadó, Budapest, 1970.
[8] F. Riesz and B. Sz.-Nagy: Über Kontraktionen des Hilbertschen Raumes, Acta Sci. Math., 10 (1943), 202-205.
[9] M. Schechter: Proper boundary points of the spectrum, Osaka J. Math., 12 (1975), 41-44.
[10] J. G. Stampfli and B. L. Wadhwa: An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana U. Math. J., 25 (1976), 359-365.
[11] B. L. Wadhwa: Operators satisfying a sequential growth condition, Acta Sci. Math., 35 (1973), 181-186.

Department of Mathematics Bishop's University
Lennoxville, Que.
Canada

