Yokohama Mathematical Journal Vol. 30, 1982

PROJECTIONS, SYMMETRIES AND NILPOTENT OPERATORS ON A HILBERT SPACE

By

C.-S. Lin

(Received September 10, 1981; Revised December 1, 1981)

1. Introduction

Let B(X) be the C*-algebra of all bounded linear operators on a complex Hilbert space X, the conventional definition of a projection $T \in B(X)$ says that T is self-adjoint and idempotent. This has been extended so that we can replace "self-adjoint" by "dominant" ([5], Corollary 4). Note that the class of dominant operators [10] contains hyponormal operators (T is hyponormal iff $T^*T \ge TT^*$). Aside from this point of view of normality it seems natural to ask the question: "What kind of idempotent operator T is a projection?" The following are well-known results in terms of the restriction on the norm of T. The idempotent operator T is a projection if

(a) T is a contraction ($||T|| \leq 1$). This has been known for quite sometime (see a remark below), or

(b) $w(T) \leq 1$ ([1], Lemma), where $w(T) = \sup \{ |(Tx, x)| : x \in X, ||x|| = 1 \}$, the numerical radius of T, or

(c) $T \in \mathscr{C}_{\rho}$ ([2], Theorem 1); or equivalently, $w_{\rho}(T) \leq 1$. Recall that $T \in \mathscr{C}_{\rho}$ iff for some $\rho > 0$, T satisfies the condition:

$$(\rho h, h) - 2 \operatorname{Re} (z(\rho - 1)Th, h) + |z|^{2} ((\rho - 2)Th, Th) \ge 0$$

for all $h \in X$, $|z| \leq 1$ ([7], p. 45). It turns out that $T \in \mathscr{C}_{\rho}$, iff $T^* \in \mathscr{C}_{\rho}$, iff $w_{\rho}(T) \leq 1$, where $w_{\rho}(T) = \inf \{u: u > 0, T/u \in \mathscr{C}_{\rho}\}$. $w_{\rho}(\cdot)$ is a norm on B(X) whenever $0 < \rho \leq 2$ (but it is not, otherwise), $w_1(\cdot) = \|\cdot\|$ and $w_2(\cdot) = w(\cdot)$ ([4], Theorem 3.1). Thus, (a) and (b) are nothing but special cases of (c). In fact, if $T \in \mathscr{C}_{\rho}$, |z| = 1 and $m \geq 1$, then zT is a projection iff $(I - zT)^m T = 0$, and zT is a symmetry (T is a symmetry iff $T = T^* = T^{-1}$) iff $(I - zT)^m (I + zT) = 0$ ([6], Corollary 2).

The purpose of this note is to answer the previous question, more precisely, to look for various types of operators $T \in B(X)$ satisfying the condition: $N(T^*) \supseteq N(T)$, where N(T) means the null space of T.

Lemma 1. Let $T \in B(X)$, $m \ge 1$ and $k \ge 1$. If $N(T^*) \ge N(T)$, then (1) $N(T) = N(T^m)$.

- (2) T^k is a projection iff $T^m(T^k-I)=0$.
- (3) $T^{k}+I$ is a projection iff $T^{m}(T^{k}+I)=0$.

(4) T+I is a symmetry iff $T^{m}(T+2I)=0$.

(5) T is a nilpotent operator iff T=0.

Proof. The proof is elementary and can be found in ([6], Lemma and Corollary 1). Note that the proofs of (2) and (3) are similar to that of (1) in ([6], Corollary 1) and (5) follows from (1).

In 1943 Riesz and Sz.-Nagy [8] showed that if $T \in B(X)$ is a contraction, then $N(T-I) = N(T^*-I)$. In 1966 Hildebrandt [3] weakened the hypothesis on T so that W(T), the numerical range of T, is contained in the closed unit disc. Therefore, by applying Lemma 1, if $||T|| \le 1$, or if $w(T) \le 1$ and $m \ge 1$, then T is a projection iff $(T-I)^m T=0$, T is a symmetry iff $(T-I)^m (T+I)=0$, and T=I iff T-I is a nilpotent operator.

Incidentally, Riesz, Sz.-Nagy and Hildebrandt's result can be generalized as follows: $N(zT-I)^* = N(zT-I) = N(zT-I)^n$ for n > 1 and any complex number z with |z|=1 (cf. Corollary 2, [6]).

2. The class S_z

Let us generalize the condition on $T \in \mathscr{C}_{\rho}$.

Definition. An operator $T \in B(X)$ is said to be in the class S_z if the inequality

 $(Sh, h) - 2 \operatorname{Re} (z(S-I)Th, h) + |z|^{2} ((S-2I)Th, Th) \ge 0$

holds for all $h \in X$, some self-adjoint operator $S \in B(X)$ and some complex number $z \neq 0$.

The following are immediate results: (a) $T \in \mathscr{C}_{\rho}$ iff $T \in \rho_z$ (in our sense) for all z, $|z| \leq 1$. (b) $||T|| \leq 1$ iff $T \in I_z$ for any z with |z|=1. (c) If $w(T) \leq 1$, then $T \in 2_z$ for any z with $|z| \leq 1$. (d) If $w(T) \leq 1$ and $T \in 0_z$ for any z with $|z| \geq 1$, then $||T|| \leq 1$. (e) If T is a projection, then $T \in T_z$ for any z with $|z| \leq 1$. (f) $1/z \in S_z$.

Theorem 1. If $T \in B(X)$ is in S_z and $m \ge 1$, then

(1) zT is a projection iff $(I-zT)^mT=0$.

(2) zT is a symmetry iff $(I-zT)^m(I+zT)=0$.

(3) T=1/z iff I-zT is a nilpotent operator.

Proof. By Lemma 1 it suffices to show that $N(I-\bar{z}T^*) \supseteq N(I-zT)$. Let $x \in N(I-zT)$, i.e., zTx = x and suppose that $(I-zT)^*x = y$, then $(x, y) = (x, (I-zT)^*x) = ((I-zT)x, x) = 0$. Let h = x + ty for t < 0, then

$$(S(x+ty), x+ty) - 2 \operatorname{Re} (z(S-I)T(x+ty), x+ty) + |z|^{2} ((S-2I)T(x+ty), T(x+ty)) \ge 0.$$

To simplify this inequality is cumbersome. Let us write some of the simplified forms only.

2

$$\operatorname{Re} (Sx + tSy - 2Sx - 2ztSTy + 2x + 2ztTy, x + ty) + (Sx + ztSTy - 2x - 2ztTy, x + ztTy) \ge 0,$$

$$\operatorname{Re} [t^{2}(Sy, y) - 2zt^{2}(STy, y) - 2zt(Ty, x) + 2zt^{2}(Ty, y) + |z|^{2}t^{2}(STy, Ty) - 2|z|^{2}t^{2}(Ty, Ty)] \ge 0,$$

$$(Sy, y) - 2\operatorname{Re} z(STy - Ty, y) - |z|^{2}(2Ty - STy, Ty) \ge -2t^{-1}(y, y).$$

In order that the last inequality hold for any negative number t it is necessary that y=0 and the theorem is verified.

Note that a stronger version of the class S_z is that if S is replaced by $A \in B(X)$, a positive and invertible operator, and the inequality holds for all $z, |z| \leq 1$, then such a T is said to be in the class \mathscr{C}_A , and it turns out that $\mathscr{C}_A \subseteq \mathscr{C}_\rho$ if $\rho \geq ||A||$ ([7], p. 55).

An alternative definition of the class S_z is that $T \in S_z$ iff

$$(I-zT)^*(S-2I)(I-zT) + (I-zT) + (I-zT)^* \ge 0$$

holds. Because the inequality in Definition can be rewritten as follows:

$$\operatorname{Re} \left(S - 2z(S - I)T + |z|^2 T^*(S - 2I)T \right) \ge 0,$$

$$\operatorname{Re} \left(\left(S - \overline{z}T^*S + 2\overline{z}T^* \right) - \left(S - \overline{z}T^*S + 2\overline{z}T^* \right) zT \right) \ge 0,$$

$$\operatorname{Re} \left(\left(\left(I - zT \right)^* (S - 2I) + 2I \right) (I - zT) \right) \ge 0.$$

The desired relation follows since Re $E = \frac{1}{2}(E + E^*)$ for $E \in B(X)$. Immediately, if $T \in S_z$ and $S \leq S' \in B(X)$, another self-adjoint operator, then $T \in S_z'$. In particular, $T \in k_z$ for $k \geq ||S||$.

Now, let us give an alternative proof of Theorem 1. By the definition in [6] $T \in C_s$ iff the relation $T^*ST + T + T^* \ge 0$ holds for some self-adjoint operator S. Hence, $T \in S_z$ iff $I - zT \in C_{s-2I}$, and if $(I - zT)x_n \rightarrow 0$ for some bounded sequence $\{x_n\}$ in X, then $(I - zT)^*x_n \rightarrow 0$ ([6], Lemma). The proof follows by applying Lemma 1.

3. Generalized sequentially G_1 operators and proper boundary points

Let d(v) denote the distance between v and $\sigma(T)$, and $\partial \sigma(T)$ the boundary of $\sigma(T)$. Let us recall the following well-known conditions on T: (a) T is called a sequentially G_1 operator [11] if for every $v \in \partial \sigma(T)$ there exists a sequence $v_n \notin \sigma(T)$ such that $v_n \rightarrow v$ and $||(v_n - T)^{-1}|| = 1/d(v_n)$ for all n. This is, of course, an extension of the G_1 growth condition: $||(v - T)^{-1}|| = 1/d(v)$ for all $v \notin \sigma(T)$. For example, a hyponormal operator satisfies this. (b) A point $v \in \partial \sigma(T)$ will be called proper [9] if there exists a bounded sequence $v_n \notin \sigma(T)$ such that $||(v_n - v)(v_n - T)^{-1}|| \rightarrow 1$. Two examples of such v are: (1) If ||T|| = |v|, and (2) If $v \in \sigma(T)$ is a boundary point of W(T) [9].

In virtue of $w_{\rho}(\cdot)$ indicated previously (also note that $w_{\rho}(zT) = |z| w_{\rho}(T)$) the above two relations on T can be naturally extended as follows:

(a') $w_{\rho}((v_n - T)^{-1}) \leq k/d(v_n)$, or equivalently, $k^{-1}d(v_n)(v_n - T)^{-1} \in \mathscr{C}_{\rho}$ for some

constant k and all n.

(b') $w_{\rho}((v_n-v)(v_n-T)^{-1}) \rightarrow 1$. Hence, either $(v_m-v)(v_m-T)^{-1} \in \mathscr{C}_{\rho}$ for some integer m > 0, or, given $\varepsilon > 0$, there exists an integer m > 0 such that $(1+\varepsilon)^{-1}(v_m-v)(v_m-T)^{-1} \in \mathscr{C}_{\rho}$. Here, we add another one: $w_{\rho}((v-T)^{-1}) \leq 1/|v|$, or equivalently, $v(v-T)^{-1} \in \mathscr{C}_{\rho}$ for some $v \notin \sigma(T)$ and $v \neq 0$.

We want to consider above situations in terms of the class S_z .

Theorem 2. (1) If there exists a sequence $v_n \notin \sigma(T)$ such that $v_n \to 0 \in \partial \sigma(T)$ and $k^{-1}d(v_n)(v_n - T)^{-1} \in S_z$ for some constant k and all n, or (2) If $v(v - T)^{-1} \in S_1$ for some $v \notin \sigma(T)$ and $v \neq 0$,

then, the statements (2), (3), (4) and (5) in Lemma 1 hold.

Proof. In both cases we need only show that $N(T^*) \supseteq N(T)$.

(1) For every *n* we have

$$N(v_n - T - zk^{-1}d(v_n))^* = N(I - zk^{-1}d(v_n)(v_n - T)^{-1})^*$$

$$\supseteq N(I - zk^{-1}d(v_n)(v_n - T)^{-1})$$

$$= N(v_n - T - zk^{-1}d(v_n)).$$

Hence, $N(T^*) \supseteq N(T)$ as $n \to \infty$.

(2) $N(T^*) = N(I - v(v - T)^{-1})^* \supseteq N(I - v(v - T)^{-1}) = N(T).$

Theorem 3. For $0 \neq v \in \partial \sigma(T)$, if there exists a bounded sequence $v_n \notin \sigma(T)$ which satisfies one of the following conditions:

- (i) $(v_m v)(v_m T)^{-1} \in S_1$ for some integer m > 0,
- (ii) for any $\varepsilon > 0$, there exists an integer m > 0 such that

$$(1+\varepsilon)^{-1}(v_m-v)(v_m-T)^{-1} \in S_1$$
,

then, for $k \ge 1$,

(1) $v^{-1}T$ is a projection iff $(T-v)^kT=0$.

(2) $v^{-1}T$ is a symmetry iff $(T-v)^{k}(T+v)=0$.

(3) T=v iff T-v is a nilpotent operator.

Proof. The proof of the first case is the same as (2) in Theorem 2. Suppose that

$$(1+\varepsilon)^{-1}(v_m-v)(v_m-T)^{-1} \in S_1$$
,

then

$$\begin{split} N(v_m - T - (1 + \varepsilon)^{-1}(v_m - v))^* &= N(I - (1 + \varepsilon)^{-1}(v_m - v)(v_m - T)^{-1})^* \\ &\supseteq N(I - (1 + \varepsilon)^{-1}(v_m - v)(v_m - T)^{-1}) \\ &= N(v_m - T - (1 + \varepsilon)^{-1}(v_m - v)) \;. \end{split}$$

Since $\{v_n\}$ is bounded and ε was arbitrary we see that $N(v^{-1}T-I)^* \supseteq N(v^{-1}T-I)$. Now, Lemma 1 is applicable.

4

Corollary 1. (a) If $0 \in \partial \sigma(T)$ is replaced by $v \neq 0$ in (1) of Theorem 2, then the statements (1), (2) and (3) in Theorem 3 hold.

(b) If $v \in \partial \sigma(T)$ is replaced by 0 in Theorem 3, then the statements (2), (3), (4) and (5) in Lemma 1 hold.

Corollary 2. (a) Let $T \in B(X)$ be a sequentially G_1 operator. If $0 \in \partial \sigma(T)$, then the statements (2), (3), (4) and (5) in Lemma 1 hold. If $0 \neq v \in \partial \sigma(T)$, then the statements (1), (2) and (3) in Theorem 3 hold.

(b) If $T \in B(X)$ has a proper boundary point $0 \in \partial \sigma(T)$, then the statements (2), (3), (4) and (5) in Lemma 1 hold. If it has a proper boundary point $v \in \partial \sigma(T)$, $v \neq 0$, then the statements (1), (2) and (3) in Theorem 3 hold.

Remark that if T is nilpotent, then $\sigma(T) = \{0\}$. Hence, above statements about a nilpotent operator can be stated in a more simpler forms. For example, if T is a nilpotent and sequentially G_1 operator, then T=0 ([11], Proposition 1.2).

Theorem 4. For $0 \neq T \in B(X)$ it is either

(a) there exists a complex number $v \neq 0$ such that (1), (2) and (3) in Theorem 3 hold, or

(b) (2), (3), (4) and (5) in Lemma 1 hold.

Proof. We note that for any $T \in B(X)$, there exists a complex number v such that $N(T-v)^* = N(T-v)$. To see this, take $z \notin$ the closure of W(T) and let c = the distance between z and W(T), then $||c(T-z)^{-1}|| \leq 1$, i.e., $w_1(c(T-z)^{-1}) \leq 1$. Let v = z+c and we have the desired relation (cf. [6], (1) in Corollary 2). Of course, for $T \neq 0$, $N(T-||T||)^* = N(T-||T||)$ since $|||T||^{-1}T|| = 1$.

4. The direct sum of the zero and a unitary operator

It is well known that an idempotent operator in the class \mathscr{C}_{ρ} is not only a projection, but also the direct sum of the zero and a unitary operator ([2], Theorem 2). Instead of an idempotent operator it has been generalized to a polynomial equation of that operator ([11], Theorem 2.5). The next result shows that the same holds for an operator in S_z . But first let us prove

Lemma 2. Suppose that $T \in B(X)$ is in S_z , or in S_{z_0} and $0 \neq z \neq z_0 \neq 0$. If z^{-1} and $z_0^{-1} \in \sigma(T)$, and if $(I-zT)x_n \rightarrow 0$ and $(I-z_0T)y_n \rightarrow 0$ for some bounded sequences $\{x_n\}$ and $\{y_n\}$ in X, then $(x_n, y_n) \rightarrow 0$. In particular, $N(I-zT) \perp N(I-z_0T)$.

Proof. Suppose that $T \in S_{z_0}$.

$$|(z^{-1}-z_0^{-1})(x_n, y_n)| = |z^{-1}(x_n, y_n) - z_0^{-1}(x_n, y_n)|$$

= |(z^{-1}x_n - Tx_n, y_n) + (x_n, T^*y_n - \bar{z_0}^{-1}y_n)|
 $\leq ||z^{-1}(I-zT)x_n|| ||y_n|| + ||x_n|| ||\bar{z_0}^{-1}(I-z_0T)^*y_n|| \to 0$

by the alternative proof of Theorem 1. Hence $(x_n, y_n) \rightarrow 0$.

C.-S. LIN

Theorem 5. Let $T \in B(X)$ and suppose that p(z) is a polynomial so that p(T)=0. If $T \in S_{z^{-1}}$ for all reciprocals of the roots z of p(z) except for, perhaps, a root z_0 of multiplicity one, then

$$T = \sum_{0}^{m} \bigoplus z_i P_i,$$

where z_i $(i=0, 1, \dots, m)$ is a root of p(z), $z_i \in \sigma(T)$ and P_i $(i=0, 1, \dots, m)$ is a projection. Moreover, if $|z_i|=1$ $(i=1, 2, \dots, m)$, then

$$T = U \oplus z_0 P_0 ,$$

where U is a unitary operator.

Proof. Let z_i be the distinct roots of p(z) of multiplicity n_i $(i=1, 2, \dots, m)$, then $p(z) = (z - z_0)(z_1 - z)^{n_1} \cdots (z_n - z)^{n_n}$ and hence

$$X = \sum_{1}^{n} N(z_{i} - T)^{n_{i}} + N(T - z_{0}I) .$$

Note that $N(z_i-T)^{n_i} = N(z_i-T)$, and this is equal to $\{0\}$ if $z_i \notin \sigma(T)$. $N(z_i-T) \perp N(z_j-T)$ for $i \neq j$ by Lemma 2. $N(z_i-T) \subseteq N(z_i-T)^*$ and $N(T-z_0I) \perp N(z_i-T)$ hold for every *i*. Therefore, we conclude from these remarks that

$$T = \sum_{0}^{m} \bigoplus z_i P_i, \quad m \leq n,$$

where P_i and P_0 are projections of X onto $N(z_i - T)$ $(i = 1, 2, \dots, m)$ and $N(T - z_0 I)$, respectively. Moreover, if $|z_i| = 1$ $(i = 1, 2, \dots, m)$, then $\sum_{i=1}^{m} \bigoplus z_i P_i$ is a unitary operator and hence $T = U \bigoplus z_0 P_0$.

Corollary 3. Suppose that $T \in B(X)$ is in S_z . If $T = zT^2$, 0 and $z^{-1} \in \sigma(T)$ and |z| = 1, then $T = U \oplus 0$, where $U \in B(X)$ is a unitary operator.

Acknowledgement. The author is grateful to the referee for his valuable suggestions.

References

- [1] T. Furuta and R. Nakamoto: Certain numerical radius contraction operators, Proc. Amer. Math. Soc., 29 (1971), 521-524.
- [2] T. Furuta: Some theorems on unitary ρ-dilations of Sz-Nagy and Foiaş, Acta Sci. Math., 33 (1972), 119-122.
- [3] S. Hildebrandt: Über den numerischen Wertebereich lines Operators, Math. Ann., 163 (1966), 230-247.
- [4] J. A. R. Holbrook: On the power-bounded operators of Sz-Nagy and Foiaş, Acta Sci. Math., 29 (1968), 299-310.
- [5] C.-S. Lin: Quasi-similarity and quasi-congruency of operators on Hilbert spaces, Math. Japonica, 22 (1977), 431-438.
- [6] C.-S. Lin: Operator radii and the normal approximate spectrum, Math. Japonica, 25 (1980), 337-340.

- [7] Sz-Nagy and C. Foias: Harmonic Analysis of Operators on Hilbert Space, Akadémiai Kiadó, Budapest, 1970.
- [8] F. Riesz and B. Sz.-Nagy: Über Kontraktionen des Hilbertschen Raumes, Acta Sci. Math., 10 (1943), 202-205.
- [9] M. Schechter: Proper boundary points of the spectrum, Osaka J. Math., 12 (1975), 41-44.
- [10] J. G. Stampfi and B. L. Wadhwa: An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana U. Math. J., 25 (1976), 359-365.
- [11] B. L. Wadhwa: Operators satisfying a sequential growth condition, Acta Sci. Math., 35 (1973), 181-186.

Department of Mathematics Bishop's University Lennoxville, Que. Canada