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1. Introduction

Let $B(X)$ be the $C^{*}$-algebra of all bounded linear operators on a complex Hilbert
space $X$, the conventional definition of a projection $T\in B(X)$ says that $T$ is self-adjoint
and idempotent. This has been extended so that we can replace “self-adjoint” by
“dominant” ([5], Corollary 4). Note that the class ofdominant operators [10] contains
hyponormal operators ( $T$ is hyponormal iff $T^{*}T\geq TT^{*}$). Aside $1\dot{r}om$ this point of
view of normality it seems natural to ask the question: “What kind of idempotent
operator $T$ is a projection?” The following are well-known results in terms of the
restriction on the norm of $T$. The idempotent operator $T$ is a projection if

(a) $T$ is a contraction $(\Vert T\Vert\leq 1)$ . This has been known for quite sometime (see a
remark below), or

(b) $w(T)\leq 1$ ([1], Lemma), where $w(T)=\sup\{|(Tx, x)|:x\in X, \Vert x\Vert=1\}$ ,
the numerical radius of $T$, or

(c) $T\in \mathscr{C}_{\rho}$ ([2], Theorem 1); or equivalently, $w_{\rho}(T)\leq 1$ .
Recall that $T\in \mathscr{C}_{\rho}$ iff for some $\rho>0,$ $T$ satisfies the condition:

$(\rho h,h)-2{\rm Re}(z(\rho-1)Th, h)+|z|^{2}((\rho-2)Th, Th)\geq 0$

for all $h\in X,$ $|z|\leq 1$ ([7], p. 45). It tums out that $T\in C_{\rho}$ , iff $T^{*}\in \mathscr{C}_{\rho}$ , iff $w_{\rho}(T)\leq 1$ ,
where $w_{\rho}(T)=\inf\{u:u>0, T/u\in \mathscr{C}_{\rho}\}$ . $w_{\rho}(\cdot)$ is a norm on $B(X)$ whenever $0<\rho\leq 2$ (but
it is not, otherwise), $ w_{1}(\cdot)=\Vert\cdot\Vert$ and $w_{2}(\cdot)=w(\cdot)$ ([4], Theorem 3.1). Thus, (a) and (b)
are nothing but special cases of (c). In fact, if $T\in \mathscr{C}_{\rho},$ $|z|=1$ and $m\geq 1$ , then $zT$ is a
projection iff $(I-zT)^{m}T=0$ , and $zT$ is a symmetry ( $T$ is a symmetry iff $T=T^{*}=T^{-1}$ )
iff $(I-zT)^{m}(I+zT)=0$ ([6], Corollary 2).

The purpose of this note is to answer the previous question, more precisely, to
look for various types of operators $T\in B(X)$ satisfying the condition: $N(T^{*})\supseteq N(T)$ ,
where $N(T)$ means the null space of $T$.

Lemma 1. Let $T\in B(X),$ $m\geq 1$ and $k\geq 1$ . If $N(T^{*})\supseteq N(T)$ , then
(1) $N(T)=N(T^{m})$ .
(2) $T^{k}$ is a projection iff $T^{m}(T^{k}-I)=0$ .
(3) $T^{k}+I$ is a projection iff $T^{m}(T^{k}+I)=0$ .
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(4) $T+I$ is a symmetry $\iota ffT^{m}(T+2I)=0$ .
(5) Tisanilpotent operator zff $T=0$ .

Proof. The proof is elementary and can be found in ([6], Lemma and Corollary
1). Note that the proofs of (2) and (3) are similar to that of (1) in ([6], Corollary 1) and
(5) follows from (1).

In 1943 Riesz and Sz.-Nagy [8] showed that if $T\in B(X)$ is a contraction, then
$N(T-I)=N(T^{*}-I)$ . In 1966 Hildebrandt [3] weakened the hypothesis on $T$ so that
$W(T)$ , the numerical range of $T$, is contained in the closed unit disc. Therefore, by
applying Lemma 1, if $\Vert T\Vert\leq 1$ , or if $w(T)\leq 1$ and $m\geq 1$ , then $T$ is a projection iff
$(T-I)^{m}T=0,$ $T$ is a symmetry iff $(T-I)^{m}(T+I)=0$ , and $T=I$ iff $T-I$ is a nilpotent
operator.

Incidentally, Riesz, Sz.-Nagy and Hildebrandt’s result can be generalized as
follows: $N(zT-I)^{*}=N(zT-I)=N(zT-I)^{n}$ for $n>1$ and any complex number $z$

with $|z|=1$ (cf. Corollary 2, [6]).

2. The class $S_{z}$

Let us generalize the condition on $T\in \mathscr{C}_{\rho}$ .

Definition. An operator $T\in B(X)$ is said to be in the class $S_{z}$ if the inequality

$(Sh, h)-2{\rm Re}(z(S-I)Th, h)+|z|^{2}((S-2I)Th, Th)\geq 0$

holds for all $h\in X$, some self-adjoint operator $S\in B(X)$ and some $mplex$ number
z\yen 0.

The following are immediate results: (a) $T\in \mathscr{C}_{\rho}$ iff $T\in\rho_{z}$ (in our sense) for all $z$ ,
$|z|\leq 1$ . $(b)\Vert T\Vert\leq 1$ iff $T\in 1_{z}$ for any $z$ with $|z|=1$ . $(c)$ If $w(T)\leq 1$ , then $T\in 2_{z}$ for
any $z$ with $|z|\leq 1$ . $(d)$ If $w(T)\leq 1$ and $T\in 0_{z}$ for any $z$ with $|z|\geq 1$ , then $\Vert T\Vert\leq 1$ .
(e) If $T$ is a projection, then $T\in T_{z}$ for any $z$ with $|z|\leq 1$ . $(f)1/z\in S_{z}$ .

Theorem 1. If $T\in B(X)$ is in $S_{z}$ and $m\geq 1$ , then
(1) $zT$ is a projection iff $(I-zT)^{m}T=0$ .
(2) $zT$ is a symmetry iff $(I-zT)^{m}(I+zT)=0$ .
(3) $T=1/z\ell ffI-zT$ isa nilpotent operator.

Proof. By Lemma 1 it suffices to show that $N(I-\overline{z}T^{*})\supseteq N(I-zT)$ . Let
$x\in N(I-zT)$ , i.e., $zTx=x$ and suppose that $(I-zT)^{*}x=y$ , then $(x, y)=$

$(x, (I-zT)^{*}x)=((I-zT)x, x)=0$ . Let $h=x+ty$ for $t<0$ , then

$(S(x+ty), x+ty)-2{\rm Re}(z(S-I)T(x+ty), x+ty)$

$+|z|^{2}((S-2I)T(x+ty), T(x+ty))\geq 0$ .
To simplify this inequality is cumbersome. Let us write some of the simplified forms
only.
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${\rm Re}(Sx+tSy-2Sx-2ztSTy+2x+2ztTy, x+ty)$

$+(Sx+ztSTy-2x-2ztTy, x+ztTy)\geq 0$ ,

${\rm Re}[t^{2}(Sy, y)-2zt^{2}(STy, y)-2zt(Ty, x)+2zt^{2}(Ty, y)$

$+|z|^{2}t^{2}(STy, Ty)-2|z|^{2}t^{2}(Ty, Ty)]\geq 0$ ,

$(Sy, y)-2{\rm Re} z(STy-Ty, y)-|z|^{2}(2Ty-STy, Ty)\geq-2t^{-1}(y, y)$ .
In order that the last inequality hold for any negative number $t$ it is necessary that
$y=0$ and the theorem is verified.

Note that a stronger version of the class $S_{z}$ is that if $S$ is replaced by $A\in B(X)$ , a
positive and invertible operator, and the inequality holds for all $z,$ $|z|\leq 1$ , then such a
$T$ is said to be in the class $\mathscr{C}_{A}$ , and it tums out that $\mathscr{C}_{A}\subseteq \mathscr{C}_{\rho}$ if $\rho\geq\Vert A\Vert$ ([7], p. 55).

An alternative definition of the class $S_{z}$ is that $T\in S_{z}$ iff

$(I-zT)^{*}(S-2I)(I-zT)+(I-zT)+(I-zT)^{*}\geq 0$

holds. Because the inequality in Definition can be rewritten as follows:
${\rm Re}(S-2z(S-I)T+|z|^{2}T^{*}(S-2I)T)\geq 0$ ,

${\rm Re}((S-\overline{z}T^{*}S+2\overline{z}T^{*})-(S-\overline{z}T^{*}S+2\overline{z}T^{*})zT)\geq 0$ ,

${\rm Re}(((I-zT)^{*}(S-2I)+2I)(I-zT))\geq 0$ .

The desired relation follows since ${\rm Re} E=*(E+E^{*})$ for $E\in B(X)$ . Immediately, if
$T\in S_{z}$ and $S\leq S^{\prime}\in B(X)$ , another self-adjoint operator, then $T\in S_{z}^{\prime}$ . In particular,
$T\in k_{z}$ for $ k\geq\Vert S\Vert$ .

Now, let us give an alternative proof of Theorem 1. By the definition in [6] $T\in C_{S}$

iff the relation $T^{*}ST+T+T^{*}\geq 0$ holds for some self-adjoint operator $S$. Hence,
$T\in S_{z}$ iff $I-zT\in C_{S-2I}$ , and if $(I-zT)x_{n}\rightarrow 0$ for some bounded sequence $\{x_{n}\}$ in $X$,
then $(I-zT)^{*}x_{n}\rightarrow 0$ ([6], Lemma). The proof follows by applying Lemma 1.

3. Generalized sequentially $G_{1}$ operators and proper boundary points

Let $d(v)$ denote the distance between $v$ and $\sigma(T)$ , and $\partial\sigma(T)$ the boundary of
$\sigma(T)$ . Let us recall the following well-known conditions on $T:(a)T$ is called a
sequentially $G_{1}$ operator [11] if for every $v\in\partial\sigma(T)$ there exists a sequence $v_{n}\not\in\sigma(T)$

such that $v_{n}\rightarrow v$ and $\Vert(v_{n}-T)^{-1}\Vert=1/d(v_{n})$ for all $n$ . This is, of course, an extension of
the $G_{1}$ growth condition: $\Vert(v-T)^{-1}\Vert=1/d(v)$ for all $v\not\in\sigma(T)$ . For example, a
hyponormal operator satisfies this. (b) A point $v\in\partial\sigma(T)$ will be called proper [9] if
there exists a bounded sequence $v_{n}\not\in\sigma(T)$ such that $\Vert(v_{n}-v)(v_{n}-T)^{-1}\Vert\rightarrow 1$ . Two ex-
amples of such $v$ are: (1) If $\Vert T\Vert=|v|$ , and (2) If $v\in\sigma(T)$ is a boundary point of
$W(T)[9]$ .

In virtue of $w_{\rho}(\cdot)$ indicated previously (also note that $w_{\rho}(zT)=|z|w_{\rho}(T)$) the
above two relations on $T$ can be naturally extended as follows:

$(a^{\prime})$ $w_{\rho}((v_{n}-T)^{-1})\leq k/d(v_{n})$ , or equivalently, $k^{-1}d(v_{n})(v_{n}-T)^{-1}\in \mathscr{C}_{\rho}$ for some
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constant $k$ and all $n$ .
$(b^{\prime})$ $w_{\rho}((v_{n}-v)(v_{n}-T)^{-1})\rightarrow 1$ . Hence, either $(v_{m}-v)(v_{m}-T)^{-1}\in C_{\rho}$ for some

integer $m>0$ , or, given $\epsilon>0$ , there exists an integer $m>0$ such that
$(1+\epsilon)^{-1}(v_{m}-v)(v_{m}-T)^{-1}\in C_{\rho}$ .
Here, we add another one: $w_{\rho}((v-T)^{-1})\leq 1/|v|$ , or equivalently, $v(v-T)^{-1}\in C_{\rho}$ for
some $v\not\in\sigma(T)$ and $v\neq 0$ .

We want to consider above situations in terms of the class $S_{z}$ .
Theorem 2. (1) If there exists a sequence $v_{n}\not\in\sigma(T)$ such that $v_{n}\rightarrow 0\in\partial\sigma(T)$

and $k^{-1}d(v_{n})(v_{n}-T)^{-1}\in S_{z}$ for some constant $k$ and all $n$ , or
(2) If $v(v-T)^{-1}\in S_{1}$ for some $v\not\in\sigma(T)$ and $v\neq 0$ ,

then, the statements (2), (3), (4) and (5) in Lemma 1 hold.

Proof. In both cases we need only show that $N(T^{*})\supseteq N(T)$ .
(1) For every $n$ we have

$N(v_{n}-T-zk^{-1}d(v_{n}))^{*}=N(I-zk^{-1}d(v_{n})(v_{n}-T)^{-1})^{*}$

$\supseteq N(I-zk^{-1}d(v_{n})(v_{n}-T)^{-1})$

$=N(v_{n}-T-zk^{-1}d(v_{n}))$ .

Hence, $N(T^{*})\supseteq N(T)$ as $ n\rightarrow\infty$ .
(2) $N(T^{*})=N(I-v(v-T)^{-1})^{*}\supseteq N(I-v(v-T)^{-1})=N(T)$ .
Theorem 3. For $0\neq v\in\partial\sigma(T)$ , if there exists a bounded sequence $v_{n}\not\in\sigma(T)$ which

satisfies one of the following conditions:
(i) $(v_{m}-v)(v_{m}-T)^{-1}\in S_{1}$ for some integer $m>0$ ,

(ii) for any $\epsilon>0$ , there exists an integer $m>0$ such that
$(1+\epsilon)^{-1}(v_{m}-v)(v_{m}-T)^{-1}\in S_{1}$ ,

then, for $k\geq 1$ ,
(1) $v^{-1}T$ is a projection $\iota ff(T-v)^{k}T=0$ .
(2) $v^{-1}T$ is a symmetry iff $(T-v)^{k}(T+v)=0$ .
(3) $T=v\ell ff$ T-visanilpotent operator.

Proof. The proof of the first case is the same as (2) in Theorem 2. Suppose that

$(1+\epsilon)^{-1}(v_{m}-v)(v_{m}-T)^{-1}\in S_{1}$ ,

then
$N(v_{m}-T-(1+\epsilon)^{-1}(v_{m}-v))^{*}=N(I-(1+\epsilon)^{-1}(v_{m}-v)(v_{m}-T)^{-1})^{*}$

$\supseteq N(I-(1+\epsilon)^{-1}(v_{m}-v)(v_{m}-T)^{-1})$

$=N(v_{m}-T-(1+\epsilon)^{-1}(v_{m}-v))$ .

Since $\{v_{n}\}$ is bounded and $\epsilon$ was arbitrary we see that $N(v^{-1}T-I)^{*}\supseteq N(v^{-1}T-I)$ .
Now, Lemma 1 is applicable.
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Corollary 1. (a) If $0\in\partial\sigma(T)$ is replaced by $v\neq 0$ in (1) of Theorem 2, then the
statements (1), (2) and (3) in Theorem 3 hold.

(b) If $v\in\partial\sigma(T)$ is replaced by $0$ in Theorem 3, then the statements (2), (3), (4) and
(5) in Lemma 1 hold.

Corollary 2. (a) Let $T\in B(X)$ be a sequentially $G_{1}$ operator. If $0\in\partial\sigma(T)$ , then
the statements (2), (3), (4) and (5) in Lemma 1 hold. If $0\neq v\in\partial\sigma(T)$ , then the state-
ments (1), (2) and (3) in Theorem 3 hold.

(b) If $T\in B(X)$ has a proper boundary point $0\in\partial\sigma(T)$ , then the statements (2),
(3), (4) and (5) in Lemma 1 hold. If it has a proper boundary point $v\in\partial\sigma(T),$ $v\neq 0$ , then
the statements (1), (2) and (3) in Theorem 3 hold.

Remark that if $T$ is nilpotent, then $\sigma(T)=\{0\}$ . Hence, above statements about a
nilpotent operator can be stated in a more simpler forms. For example, if $T$ is a
nilpotent and sequentially $G_{1}$ operator, then $T=0$ ([11], Proposition 1.2).

Theorem 4. For $0\neq T\in B(X)$ it is either
(a) there exists a complex number $v\neq 0$ such that (1), (2) and (3) in Theorem

3 hold, $or$

(b) (2), (3), (4) and (5) in Lemma 1 hold.

Proof. We note that for any $T\in B(X)$ , there exists a complex number $v$ such
that $N(T-v)^{*}=N(T-v)$ . To see this, take $z\not\in the$ closure of $W(T)$ and let $c=the$

distance between $z$ and $W(T)$ , then $\Vert c(T-z)^{-1}\Vert\leq 1$ , i.e., $w_{1}(c(T-z)^{-1})\leq 1$ . Let $v=$

$z+c$ and we have the desired relation (cf. [6], (1) in Corollary 2). Of course, for
$T\neq 0,$ $N(T-\Vert T\Vert)^{*}=N(T-\Vert T\Vert)$ since $\Vert\Vert T\Vert^{-1}T\Vert=1$ .

4. The direct sum of the zero and a unitary operator

It is well known that an idempotent operator in the class $C_{\rho}$ is not only a
projection, but also the direct sum of the zero and a unitary operator ([2], Theorem 2).
Instead of an idempotent operator it has been generalized to a polynomial equation
of that operator ([11], Theorem2.5). The next result shows that the same holds for
an operator in $S_{z}$ . But first let us prove

Lemma 2. Suppose that $T\in B(X)$ is in $S_{z}$ , or in $S_{z_{O}}$ and $0\neq z\neq z_{0}\neq 0$ . If $z^{-1}$

and $z_{0}^{-1}\in\sigma(T)$, and if $(I-zT)x_{n}\rightarrow 0$ and $(I-z_{0}T)y_{n}\rightarrow 0$ for some bounded sequences
$\{x_{n}\}$ and $\{y_{n}\}$ in $X$, then $(x_{n}, y_{n})\rightarrow 0$ . In particular, $N(I-zT)\perp N(I-z_{0}T)$ .

Proof. Suppose that $T\in S_{z_{O}}$ .
$|(z^{-1}-z_{0^{-1}})(x_{n}, y_{n})|=|z^{-1}(x_{n}, y_{n})-z_{0}^{-1}(x_{n}, y_{n})|$

$=|(z^{-1}x_{n}-Tx_{n}, y_{n})+(x_{n}, T^{*}y_{n}-\overline{z}_{0}^{-1}y_{n})|$

$\leq\Vert z^{-1}(I-zT)x_{n}\Vert\Vert y_{n}\Vert+\Vert x_{n}\Vert\Vert\overline{z}_{0}^{-1}(I-z_{0}T)^{*}y_{n}\Vert\rightarrow 0$

by the alternative proof of Theorem 1. Hence $(x_{n}, y_{n})\rightarrow 0$ .
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Theorem 5. Let $T\in B(X)$ and suppose that $p(z)$ is a polynomial so that $p(T)=0$ .
If $T\in S_{z^{-1}}$ for all reciprocals of the roots $z$ of $p(z)$ except for, perhaps, a root $z_{0}$ of
multiplicity one, then

$T=\sum_{0}^{m}\oplus z_{i}P_{i}$ ,

where $z_{i}(i=0,1, \cdots, m)$ is a root of $p(z),$ $z_{i}\in\sigma(T)$ and $P_{i}(i=0,1, \cdots, m)$ is a
projection. Moreover, if $|z_{i}|=1(i=1,2, \cdots, m)$ , then

$T=U\oplus z_{0}P_{0}$ ,

where $U$ is a unitary operator.

Proof. Let $z_{i}$ be the distinct roots of$p(z)$ of multiplicity $n_{i}(i=1,2, \cdots, m)$ , then
$p(z)=(z-z_{0})(z_{1}-z)^{n_{1}}$ . . . $(z_{n}-z)^{n_{n}}$ and hence

$X=\sum_{1}^{n}N(z_{i}-T)^{\hslash\ell}+N(T-z_{0}I)$ .

Note that $N(z_{i}-T)^{n\iota}=N(z_{i}-T)$ , and this is equal to $\{0\}$ if $z_{i}\not\in\sigma(T)$ .
$N(z_{i}-T)\perp N(z_{j}-T)$ for $i\neq j$ by Lemma 2. $N(z_{i}-T)\subseteq N(z_{i}-T)^{*}$ and
$N(T-z_{0}I)\perp N(z_{i}-T)$ hold for every $i$ . Therefore, we conclude from these remarks
that

$T=\sum_{0}^{m}\oplus z_{i}P_{i}$ , $m\leq n$ ,

where $P_{i}$ and $P_{0}$ are projections of $X$ onto $N(z_{i}-T)(i=1,2, \cdots, m)$ and $N(T-z_{0}I)$ ,
respectively. Moreover, if $|z_{t}|=1(i=1,2, \cdots, m)$ , then $\sum_{1}^{m}\oplus z_{i}P_{i}$ is a unitary
operator and hence $T=U\oplus z_{0}P_{0}$ .

Corollary 3. Suppose that $T\in B(X)$ is in $S_{z}$ . If $T=zT^{2},0$ and $z^{-1}\in\sigma(T)$ and
$|z|=1$ , then $T=U\oplus 0$ , where $U\in B(X)$ is a unitary operator.

Acknowledgement. The author is grateful to the referee for his valuable
suggestions.
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