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1. Introduction

Let B(X) be the C *-algebra of all bounded linear operators on a complex Hilbert
space X, the conventional definition of a projection T e B(X) says that T'is self-adjoint
and idempotent. This has been extended so that we can replace “self-adjoint” by
“dominant” ([5], Corollary 4). Note that the class of dominant operators [10] contains
hyponormal operators (7 is hyponormal iff T*T > T'T*). Aside trom this point of
view of normality it seems natural to ask the question: “What kind of idempotent
operator T is a projection?”” The following are well-known results in terms of the
restriction on the norm of T. The idempotent operator T is a projection if

(a) Tisacontraction (|| 7| <1). This has been known for quite sometime (see a
remark below), or

(b) w(T)<1 ([1], Lemma), where w(T)=sup {|(Tx, x)|: xeX, |x|=1},
the numerical radius of T, or

(c) Te%, (2] Theorem 1); or equivalently, w,(T)<1.

Recall that Te %, iff for some p>0, T satisfies the condition:

(ph,h)—2 Re (z(p—1)Th, h)+|z|*((p—2)Th, Th) =0

for all he X, |z|<1 ([7], p. 45). It turns out that Te%,, iff T*e%,, iff w,(T)<1,
where w,(T)=inf {u: u>0, T/ue®,}. w,(-) is a norm on B(X) whenever 0 < p <2 (but
it is not, otherwise), w,(-)=| - | and w,(-)=w(-) ([4], Theorem 3.1). Thus, (a) and (b)
are nothing but special cases of (c). In fact, if Te%¥,, |z|=1 and m>1, then zT is a
projection iff (/—zT)"T=0, and zT is a symmetry (T is a symmetry iff T=T*=T"1)
iff (I—zT)"(I+2T)=0 ([8}, [Corollary 2).

The purpose of this note is to answer the previous question, more precisely, to
look for various types of operators T e B(X) satisfying the condition: N(T*)=2N (T),
where N (T) means the null space of 7.

Lemma 1. Let Te B(X), m>1 and k>1. If N(T*)2 N(T), then
(1) N(D=N(T™).

(2) T*is a projection iff T™(T*—1)=0.

(@) T*+1is a projection iff T™(T*+1)=0.
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@) T+I1is a symmetry iff T™(T+2I)=0.
(5) T is a nilpotent operator iff T=0.

Proof. The proof is elementary and can be found in ([6], Lemma and
1). Note that the proofs of (2) and (3) are similar to that of (1) in ([6], [Corollary 1)) and
(5) follows from (1).

In 1943 Riesz and Sz.-Nagy [8] showed that if T'e B(X) is a contraction, then
N(T—I)=N(T*-1I). In 1966 Hildebrandt [3] weakened the hypothesis on T so that
W (T), the numerical range of T, is contained in the closed unit disc. Therefore, by
applying Lemma 1, if |T|| <1, or if w(T)<1 and m>1, then T is a projection iff
- (T—-I)"T=0, T is a symmetry iff (T—=D™(T+1)=0, and T=1iff T—Iis a nilpotent

operator. :

Incidentally, Riesz, Sz.-Nagy and Hildebrandt’s result can be generalized as
follows: N(zT—D*=N@ET—I)=N(zT—-1I)" for n>1 and any complex number z

with |z|=1 (cf. [Corollary 2 [6).

2. The class S,

Let us generalize the condition on Te€%,.
Definition. An operator Te B(X) is said to be in the class S, if the inequality
(Sh, h)—2 Re (z(S—I)Th, h)+|z|*((S—21)Th, Th)>0

holds for all e X, some self-adjoint operator Se B(X) and some complex number
zx0.

The following are immediate results: (a) T€ %, iff Te p, (in our sense) for all z,
|z|<1. (b) |T|<1iff T€1, for any z with (z|=1. (c) If w(T)<1, then Te2, for
any z with |z|<1. (d) If w(T)<1 and Te0, for any z with |z|>1, then ||T| <1.
(e) If T is a projection, then Te T, for any z with |z|<1. (f) 1/z€S,.

Theorem 1. If Te B(X) is in S, and m=1, then

(1) zT is a projection iff (I—zT)"T=0.

(2) zT is a symmetry iff I—zT)"(I+2zT)=0.

(3) T=1/z iff I—zT is a nilpotent operator.

Proof. By Lemma 1 it suffices to show that N(/—zZT*)2N(I—zT). Let
xeN({I—zT), ie., zTx=x and suppose that (J—zT)*x=y, then (x,y)=
(x, I—zT)*x)=(I—zT)x, x)=0. Let h=x+1ty for t<0, then

(S(x+1ty), x+ty)—2 Re (2(S— DT (x+1ty), x+1ty)
+|z|2((S—=2DT(x+ty), T(x+1y)) =0.

To simplify this inequality is cumbersome. Let us write some of the simplified forms
only.
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Re (Sx+1Sy—28x —22tSTy +2x+2ztTy, x + ty)
+(Sx+ztSTy—2x—2ztTy, x+ztTy) =0,

Re [2(Sy, y)—2z2(STy, y)—2z¢(Ty, x)+2z22(Ty, y)
+1z|*2(STy, Ty)—2|z)**(Ty, Ty)) >0,

(8, »)=2 Re 2(STy— Ty, y)—|z|*QTy— STy, Ty) 2 —2t7(, y) .

In order that the last inequality hold for any negative number ¢ it is necessary that
y=0 and the theorem is verified.

Note that a stronger version of the class S, is that if S is replaced by 4 eB(X), a
positive and invertible operator, and the inequality holds for all z, |z|<1, then such a
T is said to be in the class €, and it turns out that ¥ 4S€,if p=|A4| (7] p. 55).

An alternative definition of the class S, is that TeS, iff

(—zTYXS=2I)I—2zT)+(I—zT)+(I—zT)* >0
holds. Because the inequality in can be rewritten as follows:
Re (S—22(S— DT+|z|*T*S—2DT) >0,

Re ((S—2T*S+2:T*)—(S—2T*S+2:T*)zT)>0,
Re (I—zT)*(S—21)+21)(I—zT)) >0

The desired relation follows since Re E=4(E+E*) for Ee B(X). Immediately, if
TeS, and S<S’eB(X), another self-adjoint operator, then Te S, . In particular,
Tek, for k=|S|.

Now, let us give an alternative proof of Theorem 1. By the definition in [6] Te C
iff the relation T*ST+ T+ T*>0 holds for some self-adjoint operator S. Hence,
TeS, iff I-zTeCg_,,;, and if (I—2zT)x,—0 for some bounded sequence {x,} in X,
then (I—zT)*x,—0 Lemma). The proof follows by applying [Lemma 1.

3. Generalized sequentially G, operators and proper boundary points

Let d(v) denote the distance between v and ¢(T’), and da(T) the boundary of
o(T). Let us recall the following well-known conditions on 7T: (a) T is called a
sequentially G; operator if for every ve do(T') there exists a sequence v, ¢ o(T)
such that v,—v and |(v,— T)~!| =1/d(v,) for all n. This is, of course, an extension of -
the G; growth condition: ||(v—T)""|=1/d(v) for all v¢o(T). For example, a
hyponormal operator satisfies this. (b) A point veda(T) will be called proper [9] if
there exists a bounded sequence v, ¢ 6(T) such that ||(v,—v)(v,— T) " !||—»1. Two ex-
amples of such v are: (1) If |T||=|v|, and (2) If veo(T) is a boundary point of
w(T) [9].

In virtue of w,(-) indicated previously (also note that wy(zT)=|z|w,(T)) the
above two relations on T can be naturally extended as follows:

@) w,((v,—T) Y)<k/d(v,), or equivalently, k™ 'd(v,)(v,— T) ! €%, for some



4 C.-S. LIN

constant k and all n.
b)) w,(v,—v)(v,—T)~!)—1. Hence, either (v,,—)(Vp— T) 'e¥, for some
integer m>0, or, given &>0, there exists an integer m>0 such that
(148 Hop—0)v,—T) €%,
Here, we add another one: w,((v— T)~1)<1/|v|, or equivalently, v(v—T)* €%, for
some v¢ o(T) and v#0.
We want to consider above situations in terms of the class S,.

Theorem 2. (1) If there exists a sequence v,¢o(T) such that v,—~0€0do(T)
and k~'d(v,)(v,— T)~* €S, for some constant k and all n, or

2 Ifv(v—T) ‘€S, for some v¢o(T) and v+#0,
then, the statements (2), (3), (4) and (S) in Lemma 1 hold.

Proof. In both cases we need only show that N(T*)2N(T).
(1) For every n we have

N(o, — T—zk~'d(v,))* = NI — zk~*d(v,)(v,— T)~1)*
2N(—zk *dw)v,—T) ")
=N(,— T—zk~'d(v,)) .

Hence, N(T*)=2N(T) as n—oo0.
Q) N(T*=NI—-v(w—T)")*2NI—-v@w—T)"")=N(T).

Theorem 3. For 05 veda(T), if there exists a bounded sequence v, ¢ 6(T) which
satisfies one of the following conditions:

() (@,—v)(v,—T)"'€S, for some integer m>0,

(ii) for any £>0, there exists an integer m>0 such that

(1 +8)—1(vm_v)(vm“ T)_l eSl ’

then, for k=1,
(1) v~'T is a projection iff (T—v)*T=0.
(2) v T is a symmetry iff (T—v)"(T+v)=0.
(3) T=v iff T—v is a nilpotent operator.

Proof. The proof of the first case is the same as (2) in Theorem 2. Suppose that
(A+&) Y (vp—0)v,—T) 'S,
then
Nw,—T—(1+¢&) '(v,—v)*=N{I-( +8) (v, — V), — T) " 1)*
o2N(UI-(1+8&) '(v,—)v,— )71
=N@,— T—(1+8&) '(v,—0)).

Since {v,} is bounded and ¢ was arbitrary we see that N(v™'T— D*2N@™T-1).
Now, is applicable.
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Corollary 1. (a) If0e€0da(T) is replaced by v#0 in (1) of Theorem 2, then the
statements (1), (2) and (3) in Theorem 3 hold.

(b) Ifveda(T) is replaced by O in Theorem 3, then the statements (2), (3), (4) and
(5) in Lemma 1 hold.

Corollary 2. (a) Let TeB(X) be a sequentially G, operator. If 0€ da(T), then

the statements (2), (3), (4) and (5) in Lemma hold. If 0#2veda(T), then the state-
ments (1), (2) and (3) in Theorem 3 hold.

(b) If Te B(X) has a proper boundary point 0€ da(T), then the statements (2),
(3), (4) and (5) in Lemma 1 hold. If it has a proper boundary point ve da(T), v#0, then
the statements (1), (2) and (3) in Theorem 3 hold.

Remark that if T is nilpotent, then ¢(T) = {0}. Hence, above statements about a
- nilpotent operator can be stated in a more simpler forms. For example, if T is a
nilpotent and sequentially G, operator, then T=0 ([T1], Proposition 1.2).

Theorem 4. For 0# TeB(X) it is either

(@) there exists a complex number v+#0 such that (1), (2) and (3) in Theorem
3 hold, or

®) (), (3), (4) and (5) in Lemma 1 hold.

Proof. We note that for any Te B(X), there exists a complex number v such
that N(T—v)*=N(T—v). To see this, take z¢the closure of W(T) and let c=the
distance between z and W(T), then ||c(T—2)"! || <1, i.e., w,(c(T—2)"1)<1. Let v=

z+c and we have the desired relation (cf. [6], (1) in [Corollary 2). Of course, for
T#0, N(T—|T|)*=N(T—|T|) since |||T|~'T|=1.

4. The direct sum of the zero and a unitary operator

It is well known that an idempotent operator in the class %, is not only a
projection, but also the direct sum of the zero and a unitary operator @, Theorem 2).
Instead of an idempotent operator it has been generalized to a polynomial equation
of that operator ([11], Theorem 2.5). The next result shows that the same holds for
an operator in S,. But first let us prove

Lemma 2. Suppose that Te B(X) is in S,, or in S,, and 0#£z#2,#0. If z7!
and z,"' € o(T), and if (I—zT)x,—0 and (I— zeT)y,—0 for some bounded sequences
{x,} and {y,} in X, then (x,, y,)—0. In particular, NI—zT) LN(I —z,T).

Proof. Suppose that TeS, .
17" = 2™ ) Y | =127 (X Y) — 20~ (%o ¥) |
=1 %= T, Y + s T*Va—257" y,) |
SIz7 T=zD)x | 17al+ x4l 120~ (= 2 T)*p,ll 0
by the alternative proof of Theorem 1. Hence (x,, y,)—0.



6 C.-S. LIN

Theorem 5. Let Te B(X) and suppose that p(z) is a polynomial so that p(T)=0.
If T€S, -1 for all reciprocals of the roots z of p(z) except for, perhaps, a root z, of
multiplicity one, then

m

T=Z ®ziPi ’

0
where z; (i=0,1, ---,m) is a root of p(2), z;eo(T) and P; (i=0,1,---,m) is a
projection. Moreover, if |z;|=1 (i=1,2, - - -, m), then

T= U@Z()PO N
where U is a unitary operator.

Proof. Let z; be the distinct roots of p(z) of multiplicity n; (i=1,2, - - -, m), then
p(2)=(z—2zo)(z;—2)" -+ (z,—2)"™ and hence

X=z": N(z;— T)"+ N(T—2z,1).
1

Note that N(z;—T)*=N(z;—T), and this is equal to {0} if z¢a(T).
N(z;—T)LN(z;—T) for i#j by Lemma 2. N(z;—T)sN(z;—T)* and
N(T—z,) LN(z;— T) hold for every i. Therefore, we conclude from these remarks
that

T=3 ®z,P;, m<n,
< :

where P, and P, are projections of X onto N(z;,— T) (i=1, 2, - - -, m) and N(T—z,]),
respectively. Moreover, if |z;|=1 (i=1,2, -+, m), then 3T @zP; is a unitary
operator and hence T= U@z, P,.

Corollary 3. Suppose that Te B(X) is in S,. If T=zT?, 0 and z~' € o(T) and
|z|=1, then T=U®O, where Ue B(X) is a unitary operator.

Acknowledgement. The author is grateful to the referee for his valuable
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