RIEMANNIAN MANIFOLDS WITH COMPACT BOUNDARY

By
Ryosuke Ichida
(Received August 4, 1981)

§ 0. Introduction

The main purpose of this paper is to prove the following theorem.
Theorem. Let $\bar{M}=M \cup \partial M$ be an $n+1$-dimensional ($n \geqq 1$) connected C^{∞} Riemannian manifold with compact C^{∞} boundary ∂M. Suppose that M is of non-negative Ricci curvature and the mean curvature (with respect to the inner normal direction) of ∂M is non-negative. Then ∂M has at most two connectecd components. Moreover, if ∂M has just two connected components, then \bar{M} is isometric to a Riemannian product manifold $\Gamma \times[0, a](a>0)$ where Γ is an n-dimensional compact connected ${ }^{\text {© }}$ Riemannian manifold of non-negative Ricci curvature without boundary.

In order to prove this theorem, in §1, we study properties of solutions of some non-linear differential equation. We show that the minimum principle holds for solutions of a non-linear differential equation which is closely related to geometrical problems. In §2, we give an application (Theorem 2.1) of the minimum principle showed in §1. Theorem 2.1 will be used to prove the theorem stated above. The proof of the main theorem is given in $\S 3$.

§ 1. Minimum principle

Let D be a bounded domain in n-dimensional ($n \geqq 1$) Euclidean space R^{n}. We denote the set of real-valued functions of class C^{k} on D by $C^{k}(D)$ where k is a nonnegative integer. In the following, for a $u \in C^{2}(D)$ we use the following notations:

$$
u_{i}=\partial u / \partial x_{i}, \quad \nabla u=\left(u_{1}, \cdots, u_{n}\right) \quad \text { and } \quad u_{i j}=\partial^{2} u / \partial x_{i} \partial x_{j}
$$

where x_{1}, \cdots, x_{n} are the canonical coordinate functions in R^{n}. Let \| \| be the standard Euclidean norm of R^{n}.

Let us consider a non-linear differential equation of second order on D :

$$
\begin{equation*}
L(u)=\sum_{i, j=1}^{n} A_{i j}(x, u, \nabla u) u_{i j}-B(x, u, \nabla u) \equiv 0 \tag{1.1}
\end{equation*}
$$

where $A_{i j}$ and B are real-valued continuous functions on $D \times[a, b] \times R^{n}, a<b$, and
$A_{i j}=A_{j_{i}}(1 \leqq i, j \leqq n)$. In the case $n=1$, of course, (1.1) is an ordinary differential equation of second order. We denote by (x, t, p) a point of $D \times[a, b] \times R^{n}$.

We assume that the equation (1.1) is elliptic, that is, for every non vanishing real vector $X=\left(X_{1}, \cdots, X_{n}\right) \in R^{n}$

$$
\begin{equation*}
\sum_{i, j=1}^{n} A_{i j}(x, t, p) X_{i} X_{j}>0 \tag{1.2}
\end{equation*}
$$

holds on $D \times[a, b] \times R^{n}$.
It is called that $u \in C^{2}(D), a \leqq u \leqq b$, is a supersolution of equation (1.1) if $L(u) \leqq 0$ holds.

Theorem 1.1. For equation (1.1), assume that B is of class C^{1} with respect to the variables $p_{i}(1 \leqq i \leqq n)$ and that

$$
\begin{equation*}
B(x, t, 0) \leqq 0 \quad \text { on } \quad D \times[a, b] \times\{0\} . \tag{1.3}
\end{equation*}
$$

If $u \in C^{2}(D), a \leqq u \leqq b$, is a supersolution of equation (1.1), then u can not take the minimum value in D unless u is constant.

Proof. Suppose for contradiction that u takes the minimum value m in D and that u is not constant. We set $E=\{x \in D ; u(x)=m\}$. E can not be open in D. Then we can choose a $x_{0} \in D-E$ and the closed metric ball \bar{D}_{0} of radius r_{0} and center x_{0} in R^{n} such that

$$
\begin{equation*}
\bar{D}_{0} \cap E=\left\{y_{0}\right\}, \quad \bar{D}_{0} \subset D . \tag{1.4}
\end{equation*}
$$

Let \bar{D}_{1} be the closed metric ball in R^{n} of radius r_{1} and center y_{0} such that $0<$ $r_{1}<r_{0}$ and that $\bar{D}_{1} \subset D$. Then we have

$$
\begin{equation*}
r_{2} \leqq\left\|x-x_{0}\right\| \leqq r_{8}, \quad x \in \bar{D}_{1} \tag{1.5}
\end{equation*}
$$

where $r_{2}=r_{0}-r_{1}, r_{3}=r_{0}+r_{1}$. There exists a constant $\delta(0<\delta<1)$ satisfying the condition

$$
\begin{equation*}
u>m+\delta \quad \text { on } \quad \bar{D}_{0} \cap \partial \bar{D}_{1} \tag{1.6}
\end{equation*}
$$

where $\partial \bar{D}_{1}=\left\{x \in R^{n} ;\left\|x-y_{0}\right\|=r_{1}\right\}$. Since equation (1.1) satisfies the condition (1.2), there exists positive constants λ_{1} and λ_{2} such that

$$
\begin{equation*}
\lambda_{1}\|X\|^{2} \leqq \sum_{i, j=1}^{n} A_{i f}(x, u(x), p(x)) X_{i} X_{j} \leqq \lambda_{2}\|X\|^{2}, \quad x \in \bar{D}_{1} \tag{1.7}
\end{equation*}
$$

where $X=\left(X_{1}, \cdots, X_{n}\right) \in R^{n}$ and we put $\nabla u(x)=p(x)=\left(p, \cdots, p_{n}\right)$. (In the following we use this notation.) Since B is of class C^{1} with respect to the variables $p_{i}(1 \leqq$ $i \leqq n$, on \bar{D}_{1} we have

$$
|B(x, u(x), p(x))-B(x, u(x), 0)| \leqq c\|p(x)\|
$$

where

$$
\begin{equation*}
c=\sup _{\bar{D}} \sum_{i=1}^{n} \int_{0}^{1}\left|\frac{\partial B}{\partial p_{i}}(x, u(x), t p(x))\right| d t \tag{1.8}
\end{equation*}
$$

Then by (1.3) we have

$$
\begin{equation*}
B(x, u(x), p(x)) \leqq c\|p(x)\|, \quad x \in \bar{D}_{1} . \tag{1.9}
\end{equation*}
$$

Let us consider the auxiliary function w on \bar{D}_{1} defined by

$$
\begin{equation*}
w(x)=u(x)-h(x), \quad x \in \bar{D}_{1} \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
h(x)=\exp \left(-\alpha\left\|x-x_{0}\right\|^{2}\right)-\exp \left(-\alpha r_{0}^{2}\right), \tag{1.11}
\end{equation*}
$$

α being a positive constant such that

$$
\begin{equation*}
\alpha>\max \left\{\log (1 / \delta) / r_{2}^{2},\left(n \lambda_{2}+c r_{3}\right) / 2 \lambda_{1} r_{2}^{2}\right\} \tag{1.12}
\end{equation*}
$$

Since $\left\|x-x_{0}\right\|>r_{0}$ on $\partial \bar{D}_{1}-\bar{D}_{0}, h<0$ on $\partial \bar{D}_{1}-\bar{D}_{0}$. Hence, we have

$$
\begin{equation*}
w>m \quad \text { on } \quad \partial \bar{D}_{1}-\bar{D}_{0} . \tag{1.13}
\end{equation*}
$$

From (1.5), (1.6) and (1.12), on $\partial \bar{D}_{1} \cap \bar{D}_{0}$ we have

$$
\begin{equation*}
w>m+\delta-\exp \left(-\alpha r_{2}{ }^{2}\right)>m . \tag{1.14}
\end{equation*}
$$

On the other hand, at y_{0} we have

$$
\begin{equation*}
w\left(y_{0}\right)=u\left(y_{0}\right)=m . \tag{1.15}
\end{equation*}
$$

Thus it follows from (1.13), (1.14) and (1.15) that w takes the minimum value at an interior point y of \bar{D}_{1}. From (1.9) and (1.10), at y we have

$$
\begin{equation*}
\sum_{i, j=1}^{n} A_{i j}(y, u(y), p(y))\left(w_{i j}(y)+h_{i j}(y)\right) \leqq c\|p(y)\| \tag{1.16}
\end{equation*}
$$

In the following we shall estimate the inequality (1.16), By (1.11) we have

$$
\begin{equation*}
h_{i}(y)=-2 \alpha z_{i} \xi, \quad h_{i j}(y)=-2 \alpha\left(\delta_{i j}-2 \alpha z_{i} z_{j}\right) \xi \tag{1.17}
\end{equation*}
$$

where $z=\left(z_{1}, \cdots, z_{n}\right)=y-x_{0}$ and $\xi=\exp \left(-\alpha\left\|y-x_{0}\right\|^{2}\right)$. Since w takes the minimum value at y, we have

$$
\begin{equation*}
u_{i}(y)=h_{i}(y), \quad 1 \leqq i \leqq n, \tag{1.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i, j=1}^{n} A_{i j}(y, u(y), p(y)) w_{i j}(y) \geqq 0 \tag{1.19}
\end{equation*}
$$

From (1.5), (1.7), (1.17) and (1.19), at y we have

$$
\text { the left-hand side of } \begin{align*}
(1.16) & \geqq 2 \alpha \xi\left(2 \alpha \lambda_{1}\|z\|^{2}-n \lambda_{2}\right) \tag{1.20}\\
& \geqq 2 \alpha \xi\left(2 \alpha \lambda_{1} r_{2}{ }^{2}-n \lambda_{2}\right) .
\end{align*}
$$

By (1.17) and (1.18), we have $\|p(y)\|=2 \alpha \xi\|z\| \neq 0$. Hence, from (1.5), (1.16) and (1.20), we get

$$
2 \alpha \lambda_{1} r_{2}{ }^{2}-n \lambda_{2} \leqq c\|z\| \leqq c r_{3} .
$$

This contradicts (1.12). We complete the proof.

§2. A geometrical application of Theorem $\mathbf{1 . 1}$

Let N be a C^{∞} Riemannian manifold without boundary and let \langle,$\rangle be the$ inner product defined by the Riemannian metric of N. Let e_{1}, \cdots, e_{n} be an orthonormal basis of the tangent vector space $T_{p} N$ at a point p of $N, n=\operatorname{dim} N$, and let X be a unit vector at p. The quantity $\operatorname{Ric}(X)=\sum_{i=1}^{n}\left\langle R\left(e_{i}, X\right) X, e_{i}\right\rangle$ is called the Ricci curvature of N with respect to X direction where R denotes the Riemannian curvature tensor of N. We say that N is of non-negative (resp. positive) Ricci curvature if $\operatorname{Ric}(X) \geqq 0$ (resp. Ric $(X)>0$) for every unit vector X at every point of N. Let M be an imbedded hypersurface in N. It is called that M is totally geodesic if the second fundamental form of M vanishes everywhere.

Now, let D be an open metric ball in n-dimensional ($n \geqq 1$) Euclidean space R^{n}. Let $\left(x_{1}, \cdots, x_{n}\right)$ be the canonical coordinate system in R^{n}. For a $\varepsilon>0$, let us consider a Riemannian manifold $N=\left(D \times(-\varepsilon, \varepsilon), d s^{2}\right)$ whose line element is given by $d s^{2}=\sum_{i, j=1}^{n} g_{i j}(x, t) d x_{i} d x_{j}+d t^{2}$ where $g_{i j} \in C^{\infty}(D \times(-\varepsilon, \varepsilon))$ and the matrix $\left(g_{i j}\right)$ is symmetric and positive definite everywhere. Let ∇ be the Riemannian connection of N. For a $t,|t|<\varepsilon$, we denote the mean curvature (with respect to $\partial / \partial t$) of the level hypersurface $S_{t}=\{(x, t) ; x \in D\}$ in N by H_{t}. In the case $n=1$, by the mean curvature we mean the geodesic curvature.

Lemma 2.1. Suppose that N is of non-negative Ricci curvature. Then $H_{t} \leqq H_{t^{\prime}}$ holds for any $t<t^{\prime}$. If $H_{t}=H_{t^{\prime}}$ for $t<t^{\prime}$, then for each $r\left(t \leqq r \leqq t^{\prime}\right) S_{r}$ is totally geodesic.

Proof. Let $\left\{e_{1}, \cdots, e_{n}, \partial / \partial t\right\}$ be an orthonormal frame on N such that $\nabla_{\partial / \partial t} e_{i}=0$. We put $h_{i j}=\left\langle\nabla_{e_{i}} e_{j}, \partial \mid \partial t\right\rangle$. Since $H_{t}=\frac{1}{n} \sum_{i=1}^{n}\left\langle\nabla_{e_{i}} e_{i}, \partial / \partial t\right\rangle$, we have

$$
\partial H_{t} / \partial t=\frac{1}{n}\left\{\operatorname{Ric}(\partial / \partial t)+\sum_{i, j=1}^{n}\left(h_{i j}\right)^{2}\right\} .
$$

The lemma follows directly from the above formula.
Now, for a $u \in C^{2}(D),|u|<\varepsilon$, we consider the hypersurface $S(u)=\{(x, u(x)) ; x \in D\}$ in N. We put $X_{i}=\partial / \partial x_{i}+u_{i} \partial / \partial t, \tilde{g}_{i j}=g_{i j}+u_{i} u_{j}, 1 \leqq i, j \leqq n$. We can give a unit normal vector field $\xi=\sum_{i=1}^{n} \xi^{\iota} \partial / \partial x_{i}+\xi^{n+1} \partial / \partial t$ on $S(u)$ as follows:

$$
\xi^{i}=-u^{i} /\left(1+\|\nabla u\|^{2}\right)^{1 / 2} \quad(1 \leqq i \leqq n) \quad \text { and } \quad \xi^{n+1}=1 /\left(1+\|\nabla u\|^{2}\right)^{1 / 2}
$$

where $\|\nabla u\|^{2}=\sum_{i, j=1}^{n} g^{i j}(x, u(x)) u_{i} u_{j}, \quad u^{i}=\sum_{j=1}^{n} g^{i s}(x, u(x)) u_{j}$ and here $g^{i j}$ is the (i, j) component of the inverse matrix of $\left(g_{i j}\right)$. Let Λ be the mean curvature of $S(u)$ with respect to ξ. Λ is given by $\Lambda=\frac{1}{n} \sum_{i, j=1}^{n} \tilde{g}^{i\langle }\left\langle V_{x_{i}} X_{j}, \xi\right\rangle$ where $\tilde{g}^{i j}=g^{i j}(x, u(x))-$ $u^{i} u^{j} /\left(1+\|\nabla u\|^{2}\right)$. Rewriting it we get

$$
\begin{align*}
& \sum_{i, j=1}^{n}\left\{\left(1+\|\nabla u\|^{2}\right) g^{i j}(x, u(x))-u^{i} u^{j}\right\} u_{i j} \tag{2.1}\\
&= n \Lambda(x)\left(1+\|\nabla u\|^{2}\right)^{3 / 2}-n H(x, u(x))\left(1+\|\nabla u\|^{2}\right)+\frac{1}{2} \sum_{i, j=1}^{n} \partial g_{i j} \partial t(x, u(x)) u^{i} u^{j} \\
&+\sum_{i, j, k=1}^{n}\left\{\left(1+\|\nabla u\|^{2}\right) g^{i j}(x, u(x))-u^{i} u^{j}\right\} \Gamma_{i j}^{k}(x, u(x)) u_{k}
\end{align*}
$$

where $H(x, u(x))=-\frac{1}{2 n} \sum_{i, j=1}^{n} g^{i j}(x, u(x)) \partial g_{i j} / \partial t(x, u(x))$ and $\Gamma_{i j}^{k}$ denotes the Christoffel's symbol.

In (2.1), if we regard Λ as a given real-valued continuous function on D, then (2.1) is a non-linear differential equation of second order on D. We see that the equation (2.1) satisfies the condition (1.2). We put

$$
\begin{aligned}
B(x, t, p)= & n \Lambda(x)\left(1+\|p\|^{2}\right)^{3 / 2}-n H(x, t)\left(1+\|p\|^{2}\right) \\
& +\frac{1}{2} \sum_{i, j=1}^{n} \partial g_{i j} / \partial t(x, t) p^{i} p^{j}+\sum_{i, j, k=1}^{n}\left\{\left(1+\|p\|^{2}\right) g^{4 j}(x, t)-p^{i} p^{\jmath}\right\} \Gamma_{i j}^{k} p_{k}
\end{aligned}
$$

where $p=\left(p, \cdots, p_{n}\right) \in R^{n},\|p\|^{2}=\sum_{i, j=1}^{n} g^{i j}(x, t) p_{i} p_{j}$ and $p^{i}=\sum_{j=1}^{n} g^{i j}(x, t) p_{j}$. Then it is clear that B is of class C^{1} on $D \times(-\varepsilon, \varepsilon) \times R^{n}$. If N is of non-negative Ricci curvature and $\Lambda \leqq H_{0}$ holds on D, then by Lemma 2.1 we have $B(x, t, 0)=n \Lambda(x)$ $n H_{t}(x) \leqq 0$ on $D \times[0, \varepsilon) \times\{0\}$. Applying Theorem 1.1 to the equation (2.1), we have the following.

Theorem 2.1. Suppose that N is of non-negative Ricci curvature. Let Λ be a given real-valued continuous function on D such that $\Lambda \leqq H_{0}$ on D. Then any solution u of the equation (2.1) such that $0 \leqq u<\varepsilon$ can not take the minimum value in D unless u is constant.

§ 3. Proof of the main theorem

Let $\bar{M}=M \cup \partial M$ be an $n+1$-dimensional ($n \geqq 1$) connected C^{∞} Riemannian manifold with compact C^{∞} boundary ∂M. Let ρ be the distance function on \bar{M} which is defined by the Riemannian metric of \bar{M}. Compactness of ∂M implies that \bar{M} is complete as a metric space. For each point p of M there is a geodesic from p to ∂M whose length is equal to $\rho(p, \partial M)$. A geodesic $c:[a, b] \rightarrow \bar{M}$ is called minimal if the length of c is equal to $\rho(c(a), c(b))$. Let p be a point of M and let r be a positive such that $r<\rho(p, \partial M)$. We put $B_{r}(p)=\{q \in M ; \rho(p, q)<r\}$, $\bar{B}_{r}(p)=\{q \in \bar{M} ; \rho(p, q) \leqq r\}$ and $\partial B_{r}(p)=\bar{B}_{r}(p)-B_{r}(p)$. We can choose a positive $r(2 r<\rho(p, \partial M))$ such that for any distinct points q and q^{\prime} of $\bar{B}_{r}(p)$ there is a unique minimal geodesic from q to q^{\prime} whose interior is contained in $B_{r}(p)$ ([2], pp. 103-105). Such an open metric ball is called strongly convex.

Now, since ∂M is compact, it can be expressed by $\partial M=\bigcup_{i=1}^{k} \Gamma_{i}$ where each Γ_{i} is an n-dimensional compact connected Riemannian manifold without boundary. For a $\delta>0$ we put $\perp_{\delta}^{+}\left(\Gamma_{i}\right)=\left\{\xi \in T \bar{M} ; \xi\right.$ is an inner normal vector to Γ_{i} and $\left.\|\xi\|<\delta\right\}$, $\perp_{\delta}^{+}\left(U_{i}\right)=\left\{\xi \in \perp_{\delta}^{\dagger}\left(\Gamma_{i}\right) ; \xi\right.$ is an inner normal vector to $\left.U_{i}\right\}$ where $T \bar{M}$ denotes the tangent vector bundle of \bar{M} and $\|\|$ stands for the norm defined by the Riemannian metric of \bar{M} and U_{i} is an open subset of $\Gamma_{i}, 1 \leqq i \leqq k$. When exp: $\perp_{\delta}^{+}\left(\Gamma_{i}\right) \rightarrow \bar{M}$ (resp. exp: $\left.\perp_{\delta}^{+}\left(U_{i}\right) \rightarrow \bar{M}\right)$ is an imbedding of C^{∞} for a $\delta>0$, we put $\Gamma_{i}(\delta)=\left\{\exp _{p} \delta \eta_{i}(p)\right.$; $\left.p \in \Gamma_{i}\right\}$ (resp. $U_{i}(\delta)=\left\{\exp _{p} \delta \eta_{i}(p) ; p \in U_{i}\right\}$ where exp stands for the exponential map and $\eta_{i}(p)$ is the inner normal vector to Γ_{i} at $p \in \Gamma_{i}$.

Under the situation described above, we shall prove the following.
Lemma 3.1. Let $\bar{M}=M \cup \partial M$ be as above. Suppose $\rho\left(\Gamma_{1}, \Gamma_{2}\right)=\min \left\{\rho\left(\Gamma_{i}, \Gamma_{j}\right)\right.$; $1 \leqq i<j \leqq k\}$. Let p_{1} and p_{2} be points of Γ_{1} and Γ_{2} such that $\rho\left(p_{1}, p_{2}\right)=\rho\left(\Gamma_{1}, \Gamma_{2}\right)$, respectively. Then there is a unique minimal geodesic c: $[0, a] \rightarrow \bar{M}, a=\rho\left(\Gamma_{1}, \Gamma_{2}\right)$, with unit speed such that $c(0)=p_{1}, c(a)=p_{2}, c((0, a)) \subset M$ and $\dot{c}(0)($ resp. $\dot{c}(a))$ is orthogonal to $\Gamma_{1}\left(\right.$ resp. $\left.\Gamma_{2}\right)$ respectively, where $\dot{c}(t)$ denotes the velocity vector of c.

Proof. Since Γ_{1} is compact, we can take $a \varepsilon(0<2 \varepsilon<a)$ such that exp: $\perp_{2 \varepsilon}^{+}\left(\Gamma_{1}\right) \rightarrow$ \bar{M} is an imbedding of C^{∞} and $\Gamma_{1}(\varepsilon)=\left\{p \in M ; \rho\left(p, \Gamma_{1}\right)=\varepsilon\right\}$. There is a point p_{3} of $\Gamma_{1}(\varepsilon)$ such that $\rho\left(p_{1}, p_{2}\right)=\rho\left(p_{1}, p_{3}\right)+\rho\left(p_{3}, p_{2}\right)$. Then, using Gauss' lemma, we see $\exp _{p_{1}} \xi \xi=p_{3}$ where ξ is the inner unit normal vector to Γ_{1} at p_{1}. Let $t_{0}=$ $\sup \left\{t \in[0, a] ; \exp _{p_{1}} s \xi \in M(0<s \leqq t)\right.$ and $\left.\rho\left(\exp _{p_{1}} t \xi, p_{2}\right)=a-t\right\}$. It is clear $\varepsilon \leqq t_{0}$. We shall show $t_{0}=a$. Suppose $t_{0}<a$. By completeness of \bar{M} the geodesic $\exp _{p_{1}} t \xi$ $\left(0 \leqq t<t_{0}\right)$ can be extended to the geodesic $c_{1}(t)=\exp _{p_{1}} t \xi\left(0 \leqq t \leqq t_{0}\right)$. Since $a=$ $\rho\left(\Gamma_{1}, \Gamma_{2}\right) \leqq \rho\left(\Gamma_{i}, \Gamma_{j}\right)(1 \leqq i<j \leqq k), c_{1}\left(t_{0}\right) \in M$. We take a $\delta\left(0<2 \delta<\rho\left(c_{1}\left(t_{0}\right), \partial M\right)\right)$ such
that $B_{8}\left(c_{1}\left(t_{0}\right)\right)$ is strongly convex. Let p be a point of $\partial B_{8}\left(c_{1}\left(t_{0}\right)\right)$ such that $\rho\left(c_{1}\left(t_{0}\right), p_{2}\right)=$ $\rho\left(c_{1}\left(t_{0}\right), p\right)+\rho\left(p, p_{2}\right)$, and let $c_{2}(t)=\exp _{c_{1}\left(t_{0}\right)} t X(0 \leqq t \leqq \delta)$ be a unique minimal geodesic from $c_{1}\left(t_{0}\right)$ to p where X is a unit tangent vector at $c_{1}\left(t_{0}\right)$. Since $\rho\left(c_{1}\left(t_{0}\right), p_{2}\right)=$ $a-t_{0}$, we have $\rho\left(p_{1}, p\right) \geqq t_{0}+\delta$. Hence, $\rho\left(p_{1}, p\right)=t_{0}+\delta$ because t_{0} is equal to the length of the geodesic c_{1} and δ is equal to the length of the geodesic c_{2}. This implies $\dot{c}_{1}\left(t_{0}\right)=X$. Thus we can extend the geodesic c_{1} to the geodesic $\exp _{p_{1}} t \xi$ $\left(0 \leqq t \leqq t_{0}+\delta\right)$ which satisfies $\exp _{p_{1}} t \xi \in M\left(0<t \leqq t_{0}+\delta\right)$ and $\rho\left(\exp _{p_{1}}\left(t_{0}+\delta\right) \xi, p_{2}\right)=a-$ $\left(t_{0}+\delta\right)$. This contradicts the definition of t_{0}. Hence we have $t_{0}=a$. Thus there is a minimal geodesic $c:[0, a] \rightarrow \bar{M}$ with unit speed such that $c(0)=p_{1}, c(a)=p_{2}$ and $c((0, a)) \subset M$. Since Γ_{1} and Γ_{2} are hypersurfaces in \bar{M} and c is a shortest geodesic from Γ_{1} to $\Gamma_{2}, \dot{c}(0)$ (resp. $\dot{c}(a)$) is orthogonal to Γ_{1} (resp. Γ_{2}), respectively. The uniqueness is then clear. We complete the proof.

Proof of the main theorem. Since ∂M is compact, it can be expressed by $\partial M=\bigcup_{i=1}^{k} \Gamma_{i}$ where each Γ_{i} is an n-dimensional compact connected Riemannian manifold without boundary. Suppose $k \geqq 2$, and let $a=\min \left\{\rho\left(\Gamma_{i}, \Gamma_{j}\right) ; 1 \leqq i<j \leqq k\right\}$. By exchanging the indecies, we assume $a=\rho\left(\Gamma_{1}, \Gamma_{2}\right)$. Then we shall prove that $\partial M=\Gamma_{1} \cup \Gamma_{2}$ and Γ_{1}, Γ_{2} are totally geodesic hypersurfaces in \bar{M} and that \bar{M} is isometric to the Riemannian product manifold $\Gamma_{1} \times[0, a]$. We put $C=\left\{q \in \Gamma_{2}\right.$; $\left.\rho\left(q, \Gamma_{1}\right)=a\right\}$. It is clear that C is a non-empty closed subset of Γ_{2}. We shall show that C is open in Γ_{2}. Let p_{2} be an arbitrary point of C. We choose a $p_{1} \in \Gamma_{1}$ such that $\rho\left(p_{1}, p_{2}\right)=a$. By Lemma 3.1, there is a unique minimal geodesic $c:[0, a] \rightarrow \bar{M}$ with unit speed such that $c(0)=p_{1}, c(a)=p_{2}, c((0, a)) \subset M$ and $\dot{c}(0)$ (resp. $\dot{c}(a))$ is orthogonal to Γ_{1} (resp. Γ_{2}), respectively. Since Γ_{2} is compact, we can choose a $\delta(0<2 \delta<a)$ so that exp: $\perp_{2 \delta}^{+}\left(\Gamma_{2}\right) \rightarrow \bar{M}$ is an imbedding of C^{∞} and $\Gamma_{2}(\delta)=$ $\left\{q \in M ; \rho\left(q, \Gamma_{2}\right)=\delta\right\}$. Then $\Gamma_{2}(\delta)$ is a compact connected hypersurface of C^{∞} in M and $\dot{c}(a-\delta)$ is the outer unit normal vector to $\Gamma_{2}(\delta)$ at $c(a-\delta)$. Since c is a shortest geodesic from Γ_{1} to $\Gamma_{2}, c(t), 0<t<a$, is not focal point of Γ_{1} along c. Therefore we can take a local coordinate system ($U_{1},\left(x_{1}, \cdots, x_{n}\right)$) about p_{1} in Γ_{1} and $a_{\varepsilon}(a-\delta<\varepsilon<a)$ such that exp: $\perp_{\varepsilon}^{+}\left(U_{1}\right) \rightarrow \bar{M}$ is an imbedding of C^{∞} and $\exp \left(\perp_{t}^{+}\left(U_{1}\right)\right) \cap \Gamma_{i}=\phi, 2 \leqq i \leqq k$. By using Gauss' lemma the line element on $\exp \left(\perp_{t}^{+}\left(U_{1}\right)\right)$ can be expressed by $d s^{2}=\sum_{i, j=1}^{n} g_{i j}(x, t) d x_{i} d x_{j}+d t^{2},(x, t) \in U_{1} \times[0, \varepsilon]$. Since $c(a-\delta) \in \Gamma_{2}(\delta)$ and $\rho\left(\Gamma_{2}(\delta), \Gamma_{1}\right) \geqq a-\delta$, by the implicit function theorem, there exists an open neighborhood V_{1} of p_{1} in $\Gamma_{1}, V_{1} \subset U_{1}$, and a $u \in C^{\infty}\left(V_{1}\right)$ satisfying the conditions: (1) V_{1} is diffeomorphic to an open metric ball in R^{n}; (2) $a-\delta \leqq u<\varepsilon$ on V_{1} and $u\left(p_{1}\right)=a-\delta$; (3) $\Gamma_{2}(\delta)$ can be locally expressed by a hypersurface $W=$ $\left\{\exp _{x} u(x) \eta_{1}(x) ; x \in V_{1}\right\}$ about $c(a-\delta)$ where $\eta_{1}(x)$ is the inner unit normal vector to
Γ_{1} at $x \in V_{1}$. Let W_{2} be the open neighborhood of p_{2} in Γ_{2} such that $W_{2}(\delta)=W$. Now, let Λ be the mean curvature of $\Gamma_{2}(\delta)$ with respect to the outer normal direction. From the argument in $\S 2$ we see that u is a solution of the equation (2.1) having the minimum value $a-\delta$ at an interior point p_{1} of V_{1}. We denote the mean curvature of $V_{1}(t)$ with respect to $\partial / \partial t$ by H_{t} where $V_{1}(0)=V_{1}$ and $0 \leqq$ $t \leqq \varepsilon$. Since M is of non-negative Ricci curvature and the mean curvature (with respect to the inner normal direction) of ∂M is non-negative, by Lemma 2.1 $H_{t} \geqq 0$ $(0 \leqq t \leqq \varepsilon)$ and $\Lambda \leqq 0$. Applying Theorem 2.1 to the present situation, we have $u \equiv a-\delta$ on V_{1}. This implies $W_{2}(\delta)=W=V_{1}(a-\delta)$. Since Λ is the mean curvature of $\Gamma_{2}(\delta)$ with respect to the outer normal direction, then we have $\Lambda=H_{a-\delta}$ on $W_{2}(\delta)=V_{1}(a-\delta)$. This yields $\Lambda=H_{a-\delta} \equiv 0$ because they have an opposite sign each other. Then, by Lemma 2 $1, V_{1}(t)(0 \leqq t \leqq a-\delta)$ and $W_{2}(r)(0 \leqq r \leqq \delta)$ are all totally geodesic hypersurfaces in \bar{M} where $W_{2}(0)=W_{2}$. Thus we see that exp: $\perp_{a}^{+}\left(V_{1}\right) \rightarrow \bar{M}$ is an imbedding of $C^{\infty}, W_{2}=V_{1}(a)$ and $\exp \left(\perp_{a}^{+}\left(V_{1}\right)\right)-\left(V_{1} \cup V_{1}(a)\right) \subset M$. Hence we have $\rho\left(W_{2}, \Gamma_{1}\right)=a$, which implies that C is open in Γ_{2}. By connectedness of Γ_{2} we have $C=\Gamma_{2}$. Thus we have proved that $\Gamma_{2} \subset\left\{q \in \bar{M} ; \rho\left(q, \Gamma_{1}\right)=a\right\}$. By a similar argument as above, we have $\Gamma_{1} \subset\left\{p \in \bar{M} ; \rho\left(p, \Gamma_{2}\right)=a\right\}$. From the above argument, we have the following.

Lemma. For each point $p_{1}\left(\right.$ resp. $\left.p_{2}\right)$ of Γ_{1} (resp. Γ_{2}) there exists an open neighborhood V_{1} of $p_{1}\left(\right.$ resp. V_{2} of $\left.p_{2}\right)$ in $\Gamma_{1}\left(\right.$ resp. $\left.\Gamma_{2}\right)$ such that (1) exp: $\perp_{a}^{+}\left(V_{i}\right) \rightarrow \bar{M}$ is an imbedding of $C^{\infty}, i=1,2$; (2) $V_{1}(a) \subset \Gamma_{2}, V_{2}(a) \subset \Gamma_{1}$; (3) $\exp \left(\perp_{a}^{+}\left(V_{i}\right)\right)-\left(V_{i} \cup\right.$ $\left.V_{i}(a)\right) \subset M, i=1,2$; (4) for each $p \in V_{i} \exp _{p} t \eta_{i}(p)(0 \leqq t \leqq a)$ is a minimal geodesic where $\eta_{i}(p)$ is the inner unit normal vector to Γ_{i} at $p \in V_{i}, i=1,2 ;(5) V_{i}(t) \quad(0 \leqq$ $t \leqq a)$ are all totally geodesic hypersurfaces in \bar{M} where $V_{i}(0)=V_{i}, i=1,2$.

By virtue of this lemma and Lemma 31, we see that exp: $\perp_{a}^{+}\left(\Gamma_{i}\right) \rightarrow \bar{M}$ is an imbedding of $C^{\infty}(i=1,2), \quad \Gamma_{1}(a)=\Gamma_{2}, \quad \Gamma_{2}(a)=\Gamma_{1}$ and $\exp \left(\perp_{a}^{+}\left(\Gamma_{i}\right)\right)-\left(\Gamma_{1} \cup \Gamma_{2}\right) \subset M$, $i=1,2$. By the connectedness of $\bar{M}, \exp \left(\perp_{a}^{+}\left(\Gamma_{i}\right)\right)=\bar{M}, i=1,2$. Hence we have $\partial M=\Gamma_{1} \cup \Gamma_{2}$. From the above lemma, for each $t(0 \leqq t \leqq a)$ the level hypersurface $\Gamma_{1}(t)$ is totally geodesic where $\Gamma_{1}(0)=\Gamma_{1}$. Now let $\Phi: \Gamma_{1} \times[0, a] \rightarrow \bar{M}$ be a map defined by $\Phi(p, t)=\exp _{p} t \eta_{1}(p)$ where $\eta_{1}(p)$ is the inner unit normal vector to Γ_{1} at p. Then Φ is an isometry from the Riemannian product manifold $\Gamma_{1} \times[0, a]$ onto \bar{M}. We complete the proof.

As a corollary of the main theorem we have the following.
Corollary. Let $\bar{M}=M \cup \partial M$ be an $n+1$-dimensional ($n \geqq 1$) connected C^{∞} Riemannian manifold with compact C^{∞} boundary ∂M. Suppose that M is of non-
negative (resp. positive) Ricci curvature and the mean curvature (with respect to the inner normal direction) of ∂M is positive (resp. non-negative). Then ∂M is connected.

Theorem 2.1 has interesting geometrical applications. For example, let M be an n-dimensional ($n \geqq 2$) connected complete real analytic Riemannian manifold of non-negative Ricci curvature without boundary. Suppose that M contains isometrically imbedded compact connected real analytic minimal hypersurfaces which are disjoint. Then M is isometric to one of some four types of Riemannian manifolds, in the case $n=2$ such Riemannian manifolds are flat torus, cylider, Klein bottle and Möbius band. The proof of this result will be given in the author's paper [4].

Remark. Recently Mr. Atsushi Kasue informed the author that he had independently proved our main theorem by a different method ([5]).

References

[1] R. Bishop and R. Crittenden: Geometry of manifolds, Academic Press, New York, 1964.
[2] J. Cheeger and D. G. Ebin: Comparison theorems in Riemannian geometry, North. Holland Mathematical Library, 1975.
[3] R. Courant and D. Hilbert: Methods of Mthematical Physics, Vol. II, Interscience, 1962.
[4] R. Ichida: On Riemannian manifolds of non-negative Ricci curvature containing compact minimal hypersurfaces, to appear.
[5] A. Kasue: On Riemannian manifolds with boundary, to appear.

