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\S 0. Introduction

The main purpose of this paper is to prove the following theorem.

Theorem. Let $\overline{M}=M\cup\partial M$ be an $n+1$-dimensional $(n\geqq 1)$ connected $C^{\infty}$ Rieman-
nian manifold with compact $C^{\infty}$ boundary $\partial M$. Suppose that $M$ is of non-negative
Ricci curvature and the mean curvature (with respect to the inner normal direction)

of $\partial M$ is non-negative. Then $\partial M$ has at most two connectecd compments. Moreover,
if $\partial M$ has just two connected components, then $\overline{M}$ is isometric to a Riemannian
product manifold $\Gamma\times[0, a](a>0)$ where $\Gamma$ is an n-dimensional comPact connected
$C^{-}R\dot{u}$mannian manifold of non-negative Ricci curvature without boundary.

In order to prove this theorem, in \S 1, we study Properties of solutions of
some non-linear differential equation. We show that the minimum principle holds
for solutions of a non-linear differential equation which is closely related to geo-
metrical problems. In \S 2, we give an application (Theorem 2.1) of the minimum
principle showed in \S 1. Theorem 2.1 will be used to prove the theorem stated
above. The proof of the main theorem is given in \S 3.

\S 1. Minimum principle

Let $D$ be a bounded domain in n-dimensional $(n\geqq 1)$ Euclidean space $R^{n}$ . We
denote the set of real-valued functions of class $C^{k}$ on $D$ by $C^{k}(D)$ where $k$ is a non $\cdot$

negative integer. In the following, for a $u\in C^{2}(D)$ we use the following notations:
$u_{\ell}=\partial u/\partial x_{\ell}$ , $\nabla u=(u_{1}, \cdots, u_{n})$ and $u_{\ell j}=\partial^{2}u/\partial x_{\ell}\partial x_{j}$

where $x_{1},$ $\cdots,$ $x_{n}$ are the canonical coordinate functions in $R^{n}$ . Let $\Vert$ $\Vert$ be the
standard Euclidean norm of $R^{n}$ .

Let us consider a non-linear differential equation of second order on $D$ :

(1.1) $L(u)=\sum_{i.j=1}^{n}A_{\ell j}(x, u, \nabla u)u_{\ell j}-B(x, u, \nabla u)\equiv 0$

where $A_{ij}$ and $B$ are real-valued continuous functions on $D\times[a, b]\times R^{n},$ $a<b$ , and



170 RYOSUKE ICHIDA

$A_{\ell f}=A_{ji}(1\leqq i, j\leqq n)$ . In the case $n=1$ , of course, (1.1) is an ordinary differential
equation of second order. We denote by $(x, t, p)$ a point of $D\times[a, b]\times R^{n}$ .

We assume that the equation (1.1) is elliptic, that is, for every non vanishing

[ real vector $X=(X_{1}, \cdots, X_{n})\in R^{n}$

(1.2) $\sum_{i,\dot{g}=1}^{l}A_{\ell j}(x, t, p)X_{\ell}X_{j}>0$

holds on $D\times[a, b]\times R^{n}$ .
It is called that $u\in C^{2}(D),$ $a\leqq u\leqq b$ , is a supersolution of equation (1.1) if

$L(u)\leqq 0$ holds.

Theorem 1.1. For equation (1.1), assume that $B$ is of class $C^{1}$ with respect

to the variables $p_{\ell}(1\leqq i\leqq n)$ and that

(1.3) $B(x, t, 0)\leqq 0$ on $D\times[a, b]\times\{0\}$ .
If $u\in C^{2}(D),$ $a\leqq u\leqq b$ , is a supers0lution of equation (1.1), then $u$ cm not take the
minimum value in $D$ unless $u$ is constant.

Proof. Suppose for contradiction that $u$ takes the minimum value $m$ in $D$

and that $u$ is not constant. We set $E=\{x\in D;u(x)=m\}$ . $E$ can not be open in
$D$ . Then we can $chse$ a $x_{0}\in D-E$ and the closed metric ball $\overline{D}_{0}$ of radius $r_{0}$

and center $x_{0}$ in $R^{n}$ such that

(1.4) $\overline{D}_{0}\cap E=\{y_{0}\}$ , $\overline{D}_{0}\subset D$ .
Let $D_{1}$ be the closed metric ball in $R^{n}$ of radius $r_{1}$ and center $y_{0}$ such that $0<$

$r_{1}<r_{0}$ and that $\overline{D}_{1}\subset D$ . Then we have

(1.5) $r_{2}\leqq\Vert x-x_{0}\Vert\leqq r_{8}$ , $x\in\overline{D}_{1}$

where $r_{2}=r_{0}-r_{1},$ $r_{8}=r_{0}+r_{1}$ . There exists a constant $\delta(0<\delta<1)$ satisfying the
condition

(1.6) $ u>m+\delta$ on $\overline{D}_{0}\cap\partial\overline{D}_{1}$

where $\partial\overline{D}_{1}=\{x\in R^{n};\Vert x-y_{0}\Vert=r_{\iota}\}$ . Since equation (1.1) satisfies the condition (1.2),

there exists positive constants $\lambda_{1}$ and $\lambda_{2}$ such that

(1.7) $\lambda_{1}\Vert X\Vert^{2}\leqq\sum_{\ell.j=1}A_{iJ}(x, u(x),p(x))X_{\ell}X_{j}\leqq\lambda_{2}\Vert X\Vert^{2}$ , $x\in\overline{D}_{1}$

where $X=(X_{1}, \cdots, X_{n})\in R^{n}$ and we put $\nabla u(\wp)=p(x)=(p, \cdots, p_{n})$ . (In the following

we use this notation.) Since $B$ is of class $C^{1}$ with respect to the variables $ p_{i}(1\leqq$

$i\leqq n)$ , on $D_{1}$ we have
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$|B(x, u(x),p(x))-B(x, u(x),$ $O$) $|\leqq c\Vert p(x)\Vert$

where

(1.8) $c=s_{\frac{u}{D}}p\sum_{\ell=1}^{\hslash}\int_{0}^{1}|\frac{\partial B}{\partial p_{l}}(x, u(x),$ $tp(x))|dt$ .

Then by (1.3) we have

(1.9) $B(x, u(x),$ $ p(x))\leqq c\Vert p(x)\Vert$ , $x\in\overline{D}_{1}$ .
Let us consider the auxiliary function $w$ on $\overline{D}_{1}$ defined by

(1.10) $w(x)=u(x)-h(x)$ , $x\in\overline{D}_{1}$

where

(1.11) $h(x)=\exp(-\alpha\Vert x-x_{0}\Vert^{2})-\exp(-\alpha r_{0}^{2})$ ,

$\alpha$ being a positive constant such that

(1.12) $\alpha>\max\{\log(1/\delta)/r_{2}^{2}, (n\lambda_{2}+cr_{3})/2\lambda_{1}r_{2}^{2}\}$ .
Since $\Vert x-x_{0}\Vert>r_{0}$ on $\partial\overline{D}_{1}-\overline{D}_{0},$ $h<0$ on $\partial\overline{D}_{1}-\overline{D}_{0}$ . Hence, we have

(1.13) $w>m$ on $\partial\overline{D}_{1}-\overline{D}_{0}$ .
From (1.5), (1.6) and (1.12), on $\partial\overline{D}_{1}\cap\overline{D}_{0}$ we have

(1.14) $w>m+\delta-\exp(-\alpha r_{2}^{2})>m$ .
On the other hand, at $y_{0}$ we have

(1.15) $w(y_{0})=u(y_{0})=m$ .
Thus it follows from (1.13), (1.14) and (1.15) that $w$ takes the minimum value at
an interior point $y$ of $\overline{D}_{1}$ . From (1.9) and (1.10), at $y$ we have

(1.16) $\sum_{\ell,j=1}^{n}A_{i!}(y, u(y),$ $ p(y))(w_{iJ}(y)+h_{\ell j}(y))\leqq c\Vert p(y)\Vert$ .
In the following we shall estimate the inequality (1.16). By (1.11) we have

(1.17) $ h_{\ell}(y)=-2\alpha z_{\ell}\xi$ , $ h_{\ell j}(y)=-\&(\delta_{ij}-\& z_{:}z_{j})\xi$

where $z=(z_{1}, \cdots, z_{n})=y-x_{0}$ and $\xi=\exp(-\alpha\Vert y-x_{0}\Vert^{2})$ . Since $w$ takes the minimum
value at $y$ , we have

(1.18) $u_{\ell}(y)=h_{l}(y)$ , $1\leqq i\leqq n$ ,

and
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(1.19) $\sum_{i.j=1}^{\prime}A_{tf}(y, u(y),$ $P(y))w_{\ell j}(y)\geqq 0$ .

From (1.5), (1.7), (1.17) and (1.19), at $y$ we have

(1.20) the left-hand side of $(1.16)\geqq 2\alpha\xi(2\alpha\lambda_{1}\Vert z\Vert^{2}-n\lambda_{2})$

$\geqq 2\alpha\xi(2\alpha\lambda_{1}r_{2}^{2}-n\lambda_{2})$ .
By (1.17) and (1.18), we have $\Vert p(y)\Vert=2\alpha\xi\Vert z\Vert\neq 0$ . Hence, from (1.5), (1.16) and
(1.20), we get

$2\alpha\lambda_{1}r_{2}^{2}-n\lambda_{2}\leqq c\Vert z\Vert\leqq cr_{3}$ .
This contradicts (1.12). We complete the proof.

\S 2. A geometrical application of Theorem 1.1

Let $N$ be a $C^{\infty}$ Riemannian manifold without boundary and let $\langle, \rangle$ be the
inner product defined by the Riemannian metric of $N$. Let $e_{1},$ $\cdots,$ $e_{n}$ be an
orthonormal basis of the tangent vector space $T_{p}N$ at a point $P$ of $N,$ $n=\dim N$,

and let $X$ be a unit vector at $p$ . The quantity Ric $(X)=\sum_{\ell=1}^{\sim}\langle R(e_{\ell}, X)X, e_{\ell}\rangle$ is

called the Ricci curvature of $N$ with respect to $X$ direction where $R$ denotes the
Riemannian curvature tensor of $N$. We say that $N$ is of non-negative (resp.

positive) Ricci curvature if Ric $(X)\geqq 0$ (resp. Ric $(X)>0$) for every unit vector $X$

at every point of $N$. Let $M$ be an imbedded hypersurface in $N$. It is called that
$M$ is totally geodesic if the second fundamental form of $M$ vanishes everywhere.

Now, let $D$ be an open metric ball in n-dimensional $(n\geqq 1)$ Euclidean space
$R^{n}$ . Let $(x_{1}, \cdots, x_{n})$ be the canonical coordinate system in $R^{n}$ . For a $\epsilon>0$, let
us consider a Riemannian manifold $N=(D\times(-\epsilon, \epsilon),$ $ds^{2}$ ) whose line element is given

by $ds^{2}=\sum_{\ell.j=1}^{*}g_{\ell f}(x, t)dx_{\ell}dx_{j}+dt^{2}$ where $g_{\ell j}\in C^{\infty}(D\times(-\epsilon, \epsilon))$ and the matrix $(g_{\ell j})$ is
symmetric and positive definite everywhere. Let $\nabla$ be the Riemannian connection
of $N$. For a $t,$ $|t|<\epsilon$ , we denote the mean curvature (with respect to $\partial/\partial t$ ) of the

level hypersurface $S=\{(x, t);x\in D\}$ in $N$ by $H$ . In the case $n=1$ , by the mean
curvature we mean the geodesic curvature.

Lemma 2.1. SuPpose that $N$ is of non.negative Ricci curvature. Then $H_{l}\leqq H$ ,

holds for any $t<t^{\prime}$ . If $H_{t}=H$ , for $t<t^{\prime}$ , then for each $r(t\leqq r\leqq t^{\prime})$ S. is totally

geodesic.

Proof. Let $\{e_{1}, \cdots, e_{n}, \partial/\partial t\}$ be an orthonormal frame on $N$ such that $\nabla_{\partial/\partial\iota}e_{\ell}=0$.
We Put $ h_{\ell j}=\langle\nabla_{c\ell}e_{j}, \partial/\partial t\rangle$ . Since $ H=\frac{1}{n}\sum_{\ell=1}\langle\nabla_{e\ell}e_{t}, \partial/\partial t\rangle$ , we have
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$\partial H_{t}/\partial t=\frac{1}{n}\{Ric(\partial/\partial t)+\sum_{\ell.j=1}^{n}(h_{tJ})^{2}\}$ .

The lemma follows directly from the above formula.
Now, for a $u\in C^{2}(D),$ $|u|<\epsilon$ , we consider the hypersurface $S(u)=\{(x, u(x));x\in D\}$

in $N$. We Put $X_{\ell}=\partial/\partial x+u_{i}\partial/\partial t,\tilde{g}_{:j}=g_{\ell j}+u_{\ell}u_{j},$ $1\leqq i,$ $j\leqq n$ . We can give a unit
normal vector field $\xi=\sum_{l=1}\xi^{\ell}\partial/\partial x_{i}+\xi^{n+1}\partial/\partial t$ on $S(u)$ as follows:

$\xi^{\ell}=-u/(1+\Vert\nabla u\Vert^{2})^{1/2}$ $(1\leqq i\leqq n)$ and $\xi^{n+1}=1/(1+\Vert\nabla u\Vert^{2})^{1/2}$

where $\Vert\nabla u\Vert^{2}=\sum g^{j}(x, u(x))u_{i}u_{f},$ $u‘=\sum g^{\ell j}(x, u(x))u_{f}$ and here $g^{j}$ is the $(i, j)-$

$\ell,j=1$ $j=1$

component of the inverse matrix of $(g_{\ell j})$ . Let $\Lambda$ be the mean curvature of $S(u)$

1 $\#$

with respect to $\xi$ . $\Lambda$ is given by $\Lambda=-\sum\tilde{g}^{\ell j}\langle\nabla_{X\ell}X_{f}, \xi\rangle$ where $\overline{g}^{j}=g^{ij}(x, u(x))-$

$n\iota,;=1$

$u^{i}u^{j}/(1+\Vert\nabla u\Vert^{2})$ . Rewriting it we get

(2.1) $\tilde{\sum_{i,j=1}}\{(1+||\nabla u\Vert^{2})g^{\ell j}(x, u(x))-u^{i}u^{j}\}u_{:j}$

$=n\Lambda(x)(1+\Vert\nabla u\Vert^{2})^{8/2}-nH(x, u(x))$( $ 1+\Vert$ Vu $\Vert^{2}$ ) $+\frac{1}{2}\sum_{\ell,j=1}^{\prime}\partial g_{\ell j}/\partial t(x, u(x))u^{\ell}u^{j}$

$+\sum_{\ell,\dot{g},k=1}\{(1+\Vert\nabla u\Vert^{2})g^{ij}(x, u(x))-u^{i}u^{J}\}\Gamma_{i;}^{k}(x, u(x))u_{k}$

where $H(x, u(x))=-\frac{1}{2n}\sum_{i,\dot{g}=1}^{n}g^{ij}(x, u(x))\partial g_{\ell j}/\partial t(x, u(x))$ and $\Gamma_{\ell f}^{k}$ denotes the Christoffel’s
symbol.

In (2.1), if we regard $\Lambda$ as a given real-valued continuous function on $D$,
then (2.1) is a non-linear differential equation of second order on $D$ . We see that
the equation (2.1) satisfies the condition (1.2). We put

$B(x, t, p)=n\Lambda(x)(1+\Vert p\Vert^{2})^{3/2}-nH(x, t)(1+\Vert p\Vert^{2})$

$+\frac{1}{2}\sum_{\ell,\dot{g}=1}^{\hslash}\partial g_{iJ}/\partial t(x, t)pipj+\sum_{i,j,k=1}\{(1+\Vert p\Vert^{2})g^{ij}(x, t)-p^{\ell}p^{j}\}\Gamma_{\ell j}^{k}p_{k}$

where $p=(p, \cdots, p_{n})\in R^{n},$ $\Vert p\Vert^{2}=\sum_{\ell,;=1}^{l}g^{ij}(x, t)p_{\ell}p_{f}$ and $p^{\ell}=\sum_{j=1}g^{j}(x, t)p_{j}n$ Then it is
clear that $B$ is of class $C^{1}$ on $D\times(-\epsilon, \text{\’{e}})\times R^{n}$ . If $N$ is of non-negative Ricci
curvature and $\Lambda\leqq H_{0}$ holds on $D$, then by Lemma 2.1 we have $B(x, t, O)=n\Lambda(x)-$

$nH_{t}(x)\leqq 0$ on $D\times[0,$ \’e) $\times$ {0}. Applying Theorem 1.1 to the equation (2.1), we have
the following.

Theorem 2.1. Suppose that $N$ is of non-negative Ricci curvature. Let $\Lambda$ be
a given real-valued continuous function on $D$ such that $\Lambda\leqq H_{0}$ on D. Then any
solution $u$ of the equation (2.1) such that $ 0\leqq u<.\epsilon$ can not take the minimum value
in $D$ unless $u$ is constant.
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\S 3. Proof of the main theorem

Let $\overline{M}=M\cup\partial M$ be an $n+1$-dimensional $(n\geqq 1)$ connected $C^{\infty}$ Riemannian
manifold with compact $C^{\infty}$ boundary $\partial M$. Let $\rho$ be the distance function on $\overline{M}$

which is defined by the Riemannian metric of $\overline{M}$. Compactness of $\partial M$ implies

that $\overline{M}$ is complete as a metric space. For each point $l$ of $M$ there is a geodesic

from $p$ to $\partial M$ whose length is equal to $\rho(p, \partial M)$ . A geodesic $c:[a, b]\rightarrow\overline{M}$ is called
minimal if the length of $c$ is equal to $\rho(c(a), c(b))$ . Let $p$ be a point of $M$ and
let $r$ be a positive such that $r<\rho(p, \partial M)$ . We put $B_{r}(p)=\{q\in M;\rho(p, q)<r\}$ ,
$\overline{B}_{f}(p)=\{q\in\overline{M};\rho(p, q)\leqq r\}$ and $\partial B_{f}(p)=\overline{B}_{r}(p)-B_{f}(p)$ . We can $chse$ a positive

$r(2r<\rho(p, \partial M))$ such that for any distinct points $q$ and $q^{\prime}$ of $\overline{B}_{r}(p)$ there is a
unique minimal $gdaeic$ from $q$ to $q^{\prime}$ whose interior is contained in $B_{r}(p)([2]$ ,

pp. 103-105). Such an open metric ball is called strongly convex.
Now, since $\partial M$ is compact, it can be expressed by $\partial M=\cup k\Gamma_{\ell}$ where each $\Gamma_{i}$

$t=1$

is an n-dimensional compact connected Riemannian manifold without boundary.

For a $\delta>0$ we put $\perp_{\delta}^{+}(\Gamma_{\ell})=$ {$\xi\in T\overline{M};\xi$ is an inner normal vector to $\Gamma$ and $\Vert\xi\Vert<\delta$},

$\perp_{\delta}^{+}(U_{\ell})=$ {$\xi\in\perp_{\delta}^{+}(\Gamma_{\ell});\xi$ is an inner normal vector to $U_{i}$} where $T\overline{M}$ denotes the
tangent vector bundle of $\overline{M}$ and $\Vert$ $\Vert$ stands for the norm defined by the Riemannian
metric of $\overline{M}$ and $U_{i}$ is an open subset of $\Gamma_{\ell},$ $1\leqq i\leqq k$ . When $exp:\perp_{\delta}^{+}(\Gamma_{\ell})\rightarrow\overline{M}$

(resp. $exp:\perp_{\delta}^{+}(U)\rightarrow\overline{M}$) is an imbedding of $C^{\infty}$ for a $\delta>0$, we put $\Gamma(\delta)=\{\exp_{p}\delta\eta_{\ell}(p)$ ;

$p\in\Gamma_{i}\}$ (resp. $U_{\ell}(\delta)=\{\exp_{p}\delta\eta_{\ell}(p);p\in U_{\ell}\}$ where exp stands for the exponential map

and $\eta_{\ell}(p)$ is the inner normal vector to $\Gamma_{\ell}$ at $p\in r_{\ell}$ .
Under the situation described above, we shall prove the following.

Lemma 3.1. Let $\overline{M}=M\cup\partial M$ be as above. Suppose $\rho(\Gamma_{1}, \Gamma_{2})=\min\{\rho(\Gamma_{i}, \Gamma_{j})$ ;
$1\leqq i<j\leqq k\}$ . Let $p_{1}$ and $p_{2}$ be points of $\Gamma_{1}$ and $\Gamma_{2}$ such that $\rho(p_{1},p_{2})=\rho(\Gamma_{1}, \Gamma_{2})$ ,

respectively. Then there is a unique minimal geodesic $c:[0, a]\rightarrow\overline{M},$ $a=\rho(\Gamma_{1}, \Gamma_{2})$ ,

with unit speed such that $c(O)=p_{1},$ $c(a)=p_{2},$ $c((O, a))\subset M$ and $\dot{c}(0)$ (resp. $\dot{c}(a)$ ) is
orthogonal to $\Gamma_{1}$ (resp. $\Gamma_{2}$ ) respectively, where $\dot{c}(t)$ denotes the velocity vector of $c$ .

Proof. Since $\Gamma_{1}$ is compact, we can take $a\epsilon(0<2\epsilon<a)$ such that $exp:\perp 2+.(\Gamma_{1})\rightarrow$

$\overline{M}$ is an imbedding of $C^{\infty}$ and $\Gamma_{1}(\epsilon)=\{p\in M;\rho(p, \Gamma_{1})=\epsilon\}$ . There is a point $p_{3}$ of
$\Gamma_{1}(\epsilon)$ such that $\rho(p_{1}, p_{2})=\rho(p_{1}, p_{\epsilon})+\rho(p_{8},p_{2})$ . Then, using Gauss’ lemma, we see
$\exp_{p_{1}}\epsilon\xi=p_{3}$ where $\xi$ is the inner unit normal vector to $\Gamma_{1}$ at $p_{1}$ . Let $t_{0}=$

sup {$t\in[0,$ $a];\exp_{p_{1}}s\xi\in M(0<s\leqq t)$ and $\rho(\exp_{p_{1}}t\xi,p,)=a-\ell$}. It is clear $\epsilon\leqq t_{0}$ . We
shall show $t_{0}=a$ . Suppose $t_{0}<a$ . By completeness of $\overline{M}$ the $gd\infty ic\exp_{p_{1}}t\xi$

$(0\leqq t<\ell_{0})$ can be extended to the $gd\infty icc_{1}(t)=\exp_{p_{1}}t\xi(0\leqq\ell\leqq t_{0})$ . Since $a=$

$\rho(\Gamma_{1}, \Gamma_{2})\leqq\rho(\Gamma_{i}, \Gamma_{j})(1\leqq i<j\leqq k),$ $c_{1}(t_{0})\in M$. We take a $\delta(0<2\delta<dc_{1}(\ell_{0}), \partial M))$ such
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that $B_{\delta}(c_{1}(t_{0}))$ is strongly convex. Let $P$ be a point of $\partial B_{\delta}(c_{1}(t_{0}))$ such that $\rho(c_{1}(t_{0}), P_{2})=$

$\rho(c_{1}(t_{0}),p)+\rho(p,p_{2})$ , and let $c_{2}(t)=\exp_{e_{1}(t_{0})}tX(0\leqq t\leqq\delta)$ be a unique minimal geodesic

from $c_{1}(t_{0})$ to $p$ where $X$ is a unit tangent vector at $c_{\iota}(t_{0})$ . Since $\rho(c_{1}(t_{0}),P_{2})=$

$a-t_{0}$ , we have $\rho(P_{1},P)\geqq t_{0}+\delta$ . Hence, $\rho(l_{1}P)=t_{0}+\delta$ because $t_{0}$ is equal to the
length of the geodesic $c_{1}$ and $\delta$ is equal to the length of the $gdoeicc_{2}$ . This
implies $\dot{c}_{1}(t_{0})=X$. Thus we can extend the geodesic $c_{1}$ to the $gdaeic\exp_{p1}t\xi$

$(0\leqq t\leqq t_{0}+\delta)$ which satisfies $\exp_{p_{1}}t\xi\in M(0<t\leqq t_{0}+\delta)$ and $\rho(\exp_{p_{1}}(t_{0}+\delta)\xi,p_{2})=a-$

$(t_{0}+\delta)$ . This contradicts the definition of $t_{0}$ . Hence we have $t_{0}=a$ . Thus there
is a minimal geodesic $c:[0, a]\rightarrow\overline{M}$ with unit speed such that $c(O)=P_{1},$ $c(a)=P_{2}$ and
$c((O, a))\subset M$. Since $\Gamma_{1}$ and $\Gamma_{2}$ are hypersurfaces in $\overline{M}$ and $c$ is a shortest $gdaeic$

from $\Gamma_{1}$ to $\Gamma_{2},\dot{c}(0)$ (resp. $\dot{c}(a)$ ) is orthogonal to $\Gamma_{1}$ (resp. $\Gamma_{2}\rangle$ , respectively. The
uniqueness is then clear. We complete the proof.

Proof of the main theorem. Since $\partial M$ is compact, it can be expressed by
$\partial M=\bigcup_{\ell=1}^{k}\Gamma_{\ell}$ where each $\Gamma_{i}$ is an n-dimensional compact connected Riemannian
manifold without boundary. Suppose $k\geqq 2$, and let $a=\min\{\rho(\Gamma_{\ell}, \Gamma_{j});1\leqq i<j\leqq k\}$ .
By exchanging the indecies, we assume $a=\rho(\Gamma_{1}, \Gamma_{2})$ . Then we shall prove that
$\partial M=\Gamma_{1}\cup\Gamma_{2}$ and $\Gamma_{1},$ $\Gamma_{2}$ are totally geodesic hypersurfaces in $\overline{M}$ and that $\overline{M}$ is

isometric to the Riemannian product manifold $\Gamma_{1}\times[0, a]$ . We put $C=\{q\in\Gamma_{2}$ ;

$\rho(q, \Gamma_{1})=a\}$ . It is clear that $C$ is a non-empty closed subset of $\Gamma_{2}$ . We shall
show that $C$ is open in $\Gamma_{2}$ . Let $p_{2}$ be an arbitrary point of $C$. We choose a
$p_{1}\in\Gamma_{1}$ such that $\rho(p_{1}, p_{2})=a$ . By Lemma 3.1, there is a unique minimal geodesic
$c:[0, a]\rightarrow\overline{M}$ with unit speed such that $c(O)=p_{1},$ $c(a)=P_{2},$ $c((O, a))\subset M$ and $\dot{c}(0)$ (resp.

$\dot{c}(a))$ is orthogonal to $\Gamma_{1}$ (resp. $\Gamma_{2}$), respectively. Since $\Gamma_{2}$ is compact, we can
choose a $\delta(0<2\delta<a)$ so that $exp:\perp_{2\delta}^{+}(\Gamma_{2})\rightarrow\overline{M}$ is an imbedding of $C^{\infty}$ and $\Gamma_{2}(\delta)=$

$\{q\in M;\rho(q, \Gamma_{2})=\delta\}$ . Then $\Gamma_{2}(\delta)$ is a compact connected hypersurface of $C^{\infty}$ in $M$

and $\dot{c}(a-\delta)$ is the outer unit normal vector to $\Gamma_{2}(\delta)$ at $c(a-\delta)$ . Since $c$ is a
shortest geodesic from $\Gamma_{1}$ to $\Gamma_{2},$ $c(t),$ $0<t<a$ , is not focal point of $\Gamma_{1}$ along $c$ .
Therefore we can take a local coordinate system $(U_{1}, (x_{1}, \cdots, x_{n}))$ about $p_{1}$ in
$\Gamma_{1}$ and $a\epsilon(a-\delta<\epsilon<a)$ such that $exp:\perp_{*}^{+}(U_{1})\rightarrow\overline{M}$ is an imbedding of $C^{\infty}$ and
$\exp(\perp+(U_{1}))\cap\Gamma_{\ell}=\phi$ , $2\leqq i\leqq k$ . By using Gauss’ lemma the line element on
exp $(\perp*+(U_{1}))$ can be expreaeed by $ds^{2}=\sum_{i,j=1}^{t}g_{\ell j}(x, t)dx_{i}dx_{j}+dt^{2},$ $(x, t)\in U_{1}\times[0,\epsilon]$ . Since
$c(a-\delta)\in\Gamma_{2}(\delta)$ and $\rho(\Gamma_{2}(\delta), \Gamma_{1})\geqq a-\delta$ , by the implicit function theorem, there exists
an open neighborhood $V_{1}$ of $p_{1}$ in $\Gamma_{1},$ $V_{1}\subset U_{1}$ , and a $u\in C^{\infty}(V_{1})$ satisfying the
conditions: (1) $V_{1}$ is $diffmorphic$ to an open metric ball in $ R^{n};(2)a-\delta\leqq u<\epsilon$

on $V_{1}$ and $u(P_{1})=a-\delta;(3)\Gamma_{2}(\delta)$ can be locally expressed by a hypersurface $W=$

$\{\exp_{x}u(x)\eta_{1}(x):x\in V_{1}\}$ about $c(a-\delta)$ where $\eta_{1}(x)$ is the inner unit normal vector to
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$\Gamma_{1}$ at $xeV_{1}$ . Let $W_{2}$ be the open neighborhood of $P_{2}$ in $\Gamma_{2}$ such that $W_{2}(\delta)=W$.
Now, let $\Lambda$ be the mean curvature of $\Gamma_{2}(\delta)$ with respect to the outer normal
direction. From the argument in \S 2 we see that $u$ is a solution of the equation
(2.1) having the minimum value $ a-\delta$ at an interior point $p_{1}$ of $V_{1}$ . We denote
the mean curvature of $V_{1}(t)$ with respect to $\partial/\partial t$ by $H_{t}$ where $V_{1}(0)=V_{1}$ and $ 0\leqq$

$ t\leqq\epsilon$ . Since $M$ is of non-negative Ricci curvature and the mean curvature (with
respect to the inner normal direction) of $\partial M$ is non-negative, by Lemma 2.1 $H\geqq 0$

$(0\leqq t\leqq\epsilon)$ and $\Lambda\leqq 0$ . Applying Theorem 2.1 to the present situation, we have
$ u\equiv a-\delta$ on $V_{1}$ . This implies $W_{2}(\delta)=W=V_{1}(a-\delta)$ . Since $\Lambda$ is the mean curvature
of $\Gamma_{2}(\delta)$ with respect to the outer normal direction, then we have $\Lambda=H_{a-\delta}$ on
$W_{2}(\delta)=V_{1}(a-\delta)$ . This yields $\Lambda=H_{a-\delta}\equiv 0$ because they have an opposite sign each
other. Then, by Lemma 2.1, $V_{1}(t)(0\leqq t\leqq a-\delta)$ and $W_{2}(r)(0\leqq r\leqq\delta)$ are all totally
geodesic hypersurfacae in $\overline{M}$ where $W_{2}(0)=W_{2}$ . Thus we see that $exp:\perp\ddagger(V_{1})\rightarrow\overline{M}$

is an imbedding of $C^{\infty},$ $W_{2}=V_{1}(a)$ and exp $(\perp a+(V_{1}))-(V_{1}\cup V_{1}(a))\subset M$. Hence we
have $\rho(W_{2}, \Gamma_{1})=a$ , which implies that $C$ is open in $\Gamma_{2}$ . By connectedness of
$\Gamma_{2}$ we have $C=\Gamma_{2}$ . Thus we have proved that $\Gamma_{2}\subset\{q\in\overline{M};\rho(q, \Gamma_{1})=a\}$ . By a
similar argument as above, we have $r_{1}\subset\{p\in\overline{M};\rho(p, \Gamma_{2})=a\}$ . From the above
argument, we have the following.

Lemma. For each Point $p_{1}$ (resp. $p_{2}$ ) of $\Gamma_{1}$ (resp. $\Gamma_{2}$ ) there exists an open
neighborhood $V_{1}$ of $p_{1}$ (resp. $V_{2}$ of $p_{2}$ ) in $\Gamma_{1}$ (resp. $\Gamma_{2}$ ) such that (1) $exp:\perp_{a}^{+}(V_{\ell})\rightarrow\overline{M}$

is an imbedding of $C^{\infty},$ $i=1,2$ ; (2) $V_{1}(a)\subset\Gamma_{2},$ $V_{2}(a)\subset\Gamma_{1}$ ;(3) exp $(\perp+a(V_{\ell}))-(V_{\ell}\cup$

$V_{\ell}(a))\subset M,$ $i=1,2;(4)$ for each $p\in V_{\ell}\exp_{p}t\eta_{\ell}(p)(0\leqq t\leqq a)$ is a minimal geodesic
where $\eta_{\ell}(p)$ is the inner unit normal vector to $\Gamma_{:}$ at $p\in V_{\ell},$ $i=1,2$ ; (5) $ V_{t}(t)(0\leqq$

$t\leqq a)$ are all totally geodesic hyPersurfaces in $\overline{M}$ where $V(0)=V_{\ell},$ $i=1,2$ .
By virtue of this lemma and Lemma 3.1, we see that $exp:\perp_{a}^{+}(\Gamma_{\ell})\rightarrow\overline{M}$ is an

imbedding of $C^{\infty}(i=1,2),$ $\Gamma_{1}(a)=\Gamma_{2},$ $\Gamma_{2}(a)=\Gamma_{1}$ and exp $(\perp a+(\Gamma_{\ell}))-(\Gamma_{1}\cup\Gamma_{2})\subset M$,
$i=1,2$ . By the connectedness of $\overline{M}$, exp $(\perp a+(\Gamma_{s}))=\overline{M},$ $i=1,2$. Hence we have
$\partial M=\Gamma_{1}\cup\Gamma_{2}$ . From the above lemma, for each $t(0\leqq t\leqq a)$ the level hypersurface
$\Gamma_{1}(t)$ is totally geodesic where $\Gamma_{1}(0)=\Gamma_{1}$ . Now let $\Phi:\Gamma_{1}\times[0, a]\rightarrow\overline{M}$ be a map
defined by $\Phi(p, t)=\exp_{p}t\eta_{1}(p)$ where $\eta_{1}(p)$ is the inner unit normal vector to $\Gamma_{1}$

at $p$ . Then $\Phi$ is an isometry from the Riemannian product manifold $\Gamma_{1}\times[0, a]$

onto $\overline{M}$. We complete the proof.

As a corollary of the main theorem we have the following.

Corollary. Let $\overline{M}=M\cup\partial M$ be an $n+1$-dimensional $(n\geqq 1)$ connected $C^{\infty}$

Riemannian manifold with compact $C^{\infty}$ boundary $\partial M$. Suppose that $M$ is of non-
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negative (resp. positive) Ricci curvature and the mean curvature (with respect to
the inner normal direction) of $\partial M$ is positive(resp. non-negative). Then $\partial M$ is
connected.

Theorem 2.1 has interesting geometrical applications. For example, let $M$ be
an n-dimensional $(n\geqq 2)$ connected complete real analytic Riemannian manifold of
non-negative Ricci curvature without boundary. Suppose that $M$ contains isometri-
cally imbedded compact connected real analytic minimal hypersurfaces which are
disjoint. Then $M$ is isometric to one of some four types of Riemannian manifolds,
in the case $n=2$ such Riemannian manifolds are flat torus, cylider, Klein bottle
and M\"obius band. The proof of this result will be given in the author’s paper
[4].

Remark. Recently Mr. Atsushi Kasue informed the author that he had
independently proved our main theorem by a different method ([5]).
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