Yokohama Mathematical Journal Vol. 29, 1981

RIEMANNIAN MANIFOLDS WITH COMPACT BOUNDARY

By

RYOSUKE ICHIDA

(Received August 4, 1981)

§0. Introduction

The main purpose of this paper is to prove the following theorem.

Theorem. Let $\overline{M} = M \cup \partial M$ be an n+1-dimensional ($n \ge 1$) connected C^{∞} Riemannian manifold with compact C^{∞} boundary ∂M . Suppose that M is of non-negative Ricci curvature and the mean curvature (with respect to the inner normal direction) of ∂M is non-negative. Then ∂M has at most two connected components. Moreover, if ∂M has just two connected components, then \overline{M} is isometric to a Riemannian product manifold $\Gamma \times [0, a]$ (a > 0) where Γ is an n-dimensional compact connected C^{∞} Riemannian manifold of non-negative Ricci curvature without boundary.

In order to prove this theorem, in $\S1$, we study properties of solutions of some non-linear differential equation. We show that the minimum principle holds for solutions of a non-linear differential equation which is closely related to geometrical problems. In $\S2$, we give an application (Theorem 2.1) of the minimum principle showed in $\S1$. Theorem 2.1 will be used to prove the theorem stated above. The proof of the main theorem is given in $\S3$.

§1. Minimum principle

Let D be a bounded domain in *n*-dimensional $(n \ge 1)$ Euclidean space \mathbb{R}^n . We denote the set of real-valued functions of class C^k on D by $C^k(D)$ where k is a non-negative integer. In the following, for a $u \in C^2(D)$ we use the following notations:

$$u_i = \partial u / \partial x_i$$
, $\nabla u = (u_1, \dots, u_n)$ and $u_{ij} = \partial^2 u / \partial x_i \partial x_j$

where x_1, \dots, x_n are the canonical coordinate functions in \mathbb{R}^n . Let $\| \|$ be the standard Euclidean norm of \mathbb{R}^n .

Let us consider a non-linear differential equation of second order on D:

(1.1)
$$L(u) = \sum_{i,j=1}^{n} A_{ij}(x, u, \nabla u) u_{ij} - B(x, u, \nabla u) \equiv 0$$

where A_{ij} and B are real-valued continuous functions on $D \times [a, b] \times R^n$, a < b, and

 $A_{ij}=A_{ji}$ $(1 \le i, j \le n)$. In the case n=1, of course, (1.1) is an ordinary differential equation of second order. We denote by (x, t, p) a point of $D \times [a, b] \times R^n$.

We assume that the equation (1.1) is elliptic, that is, for every non vanishing real vector $X = (X_1, \dots, X_n) \in \mathbb{R}^n$

(1.2)
$$\sum_{i,j=1}^{n} A_{ij}(x, t, p) X_i X_j > 0$$

holds on $D \times [a, b] \times \mathbb{R}^n$.

It is called that $u \in C^2(D)$, $a \leq u \leq b$, is a supersolution of equation (1.1) if $L(u) \leq 0$ holds.

Theorem 1.1. For equation (1.1), assume that B is of class C^1 with respect to the variables p_i $(1 \le i \le n)$ and that

 $(1.3) B(x, t, 0) \leq 0 on D \times [a, b] \times \{0\}.$

If $u \in C^2(D)$, $a \leq u \leq b$, is a supersolution of equation (1.1), then u can not take the minimum value in D unless u is constant.

Proof. Suppose for contradiction that u takes the minimum value m in D and that u is not constant. We set $E = \{x \in D; u(x) = m\}$. E can not be open in D. Then we can choose a $x_0 \in D - E$ and the closed metric ball \overline{D}_0 of radius r_0 and center x_0 in \mathbb{R}^n such that

$$(1.4) \qquad \qquad \overline{D}_0 \cap E = \{y_0\}, \quad \overline{D}_0 \subset D.$$

Let \overline{D}_1 be the closed metric ball in \mathbb{R}^n of radius r_1 and center y_0 such that $0 < r_1 < r_0$ and that $\overline{D}_1 \subset D$. Then we have

$$(1.5) r_2 \leq ||x-x_0|| \leq r_3 , \quad x \in \overline{D}_1$$

where $r_2 = r_0 - r_1$, $r_3 = r_0 + r_1$. There exists a constant δ (0< δ <1) satisfying the condition

$$(1.6) \qquad u > m + \delta \quad \text{on} \quad \overline{D}_0 \cap \partial \overline{D}_1$$

where $\partial \overline{D}_1 = \{x \in \mathbb{R}^n; \|x - y_0\| = r_1\}$. Since equation (1.1) satisfies the condition (1.2), there exists positive constants λ_1 and λ_2 such that

(1.7)
$$\lambda_1 \|X\|^2 \leq \sum_{i,j=1}^n A_{ij}(x, u(x), p(x)) X_i X_j \leq \lambda_2 \|X\|^2, \quad x \in \overline{D}_1$$

where $X=(X_1, \dots, X_n) \in \mathbb{R}^n$ and we put $\nabla u(x) = p(x) = (p, \dots, p_n)$. (In the following we use this notation.) Since B is of class C^1 with respect to the variables p_i $(1 \le i \le n)$, on \overline{D}_1 we have

 $|B(x, u(x), p(x)) - B(x, u(x), 0)| \leq c ||p(x)||$

where

(1.8)
$$c = \sup_{\overline{D}} \sum_{i=1}^{n} \int_{0}^{1} \left| \frac{\partial B}{\partial p_{i}}(x, u(x), tp(x)) \right| dt .$$

Then by (1.3) we have

(1.9)
$$B(x, u(x), p(x)) \leq c \| p(x) \|, x \in \overline{D}_1.$$

Let us consider the auxiliary function w on \overline{D}_1 defined by

$$(1.10) w(x) = u(x) - h(x) , \quad x \in \overline{D}_1$$

where

(1.11)
$$h(x) = \exp(-\alpha \|x - x_0\|^2) - \exp(-\alpha r_0^2),$$

 α being a positive constant such that

(1.12)
$$\alpha > \max \{ \log (1/\delta) / r_2^2, (n\lambda_2 + cr_3) / 2\lambda_1 r_2^2 \}$$

Since $||x-x_0|| > r_0$ on $\partial \overline{D}_1 - \overline{D}_0$, h < 0 on $\partial \overline{D}_1 - \overline{D}_0$. Hence, we have

(1.13) w > m on $\partial \overline{D}_1 - \overline{D}_0$.

From (1.5), (1.6) and (1.12), on $\partial \overline{D}_1 \cap \overline{D}_0$ we have

$$(1.14) w > m + \delta - \exp(-\alpha r_2^2) > m.$$

On the other hand, at y_0 we have

$$(1.15) w(y_0) = u(y_0) = m .$$

Thus it follows from (1.13), (1.14) and (1.15) that w takes the minimum value at an interior point y of \overline{D}_1 . From (1.9) and (1.10), at y we have

(1.16)
$$\sum_{i,j=1}^{n} A_{ij}(y, u(y), p(y))(w_{ij}(y) + h_{ij}(y)) \leq c \| p(y) \| .$$

In the following we shall estimate the inequality (1.16). By (1.11) we have

(1.17)
$$h_i(y) = -2\alpha z_i \xi , \qquad h_{ij}(y) = -2\alpha (\delta_{ij} - 2\alpha z_i z_j) \xi$$

where $z=(z_1, \dots, z_n)=y-x_0$ and $\xi=\exp(-\alpha ||y-x_0||^2)$. Since w takes the minimum value at y, we have

(1.18)
$$u_i(y) = h_i(y), \quad 1 \leq i \leq n$$

and

(1.19) $\sum_{i,j=1}^{n} A_{ij}(y, u(y), p(y)) w_{ij}(y) \ge 0.$

From (1.5), (1.7), (1.17) and (1.19), at y we have

(1.20) the left-hand side of
$$(1.16) \ge 2\alpha \xi (2\alpha \lambda_1 ||z||^2 - n\lambda_2)$$

$$\ge 2\alpha \xi (2\alpha \lambda_1 r_2^2 - n\lambda_2).$$

By (1.17) and (1.18), we have $||p(y)|| = 2\alpha \xi ||z|| \ge 0$. Hence, from (1.5), (1.16) and (1.20), we get

$$2lpha\lambda_1r_2^2-n\lambda_2\leq c\|z\|\leq cr_3$$
.

This contradicts (1.12). We complete the proof.

$\S 2$. A geometrical application of Theorem 1.1

Let N be a C^{∞} Riemannian manifold without boundary and let \langle , \rangle be the inner product defined by the Riemannian metric of N. Let e_1, \dots, e_n be an orthonormal basis of the tangent vector space T_pN at a point p of N, $n=\dim N$, and let X be a unit vector at p. The quantity $\operatorname{Ric}(X) = \sum_{i=1}^{n} \langle R(e_i, X)X, e_i \rangle$ is called the Ricci curvature of N with respect to X direction where R denotes the Riemannian curvature tensor of N. We say that N is of non-negative (resp. positive) Ricci curvature if $\operatorname{Ric}(X) \ge 0$ (resp. $\operatorname{Ric}(X) > 0$) for every unit vector X at every point of N. Let M be an imbedded hypersurface in N. It is called that M is totally geodesic if the second fundamental form of M vanishes everywhere.

Now, let D be an open metric ball in *n*-dimensional $(n \ge 1)$ Euclidean space \mathbb{R}^n . Let (x_1, \dots, x_n) be the canonical coordinate system in \mathbb{R}^n . For a $\varepsilon > 0$, let us consider a Riemannian manifold $N = (D \times (-\varepsilon, \varepsilon), ds^2)$ whose line element is given by $ds^2 = \sum_{i,j=1}^n g_{ij}(x, t) dx_i dx_j + dt^2$ where $g_{ij} \in \mathbb{C}^{\infty}(D \times (-\varepsilon, \varepsilon))$ and the matrix (g_{ij}) is symmetric and positive definite everywhere. Let V be the Riemannian connection of N. For a t, $|t| < \varepsilon$, we denote the mean curvature (with respect to $\partial/\partial t$) of the level hypersurface $S_t = \{(x, t); x \in D\}$ in N by H_t . In the case n = 1, by the mean curvature we mean the geodesic curvature.

Lemma 2.1. Suppose that N is of non-negative Ricci curvature. Then $H_t \leq H_{t'}$ holds for any t < t'. If $H_t = H_{t'}$ for t < t', then for each r ($t \leq r \leq t'$) S_r is totally geodesic.

Proof. Let $\{e_1, \dots, e_n, \partial/\partial t\}$ be an orthonormal frame on N such that $V_{\partial/\partial t}e_i=0$. We put $h_{ij}=\langle V_{e_i}e_j, \partial/\partial t \rangle$. Since $H_t=\frac{1}{n}\sum_{i=1}^n \langle V_{e_i}e_i, \partial/\partial t \rangle$, we have

$$\partial H_t/\partial t = \frac{1}{n} \{ \operatorname{Ric} (\partial/\partial t) + \sum_{i,j=1}^n (h_{ij})^2 \} .$$

The lemma follows directly from the above formula.

Now, for a $u \in C^2(D)$, $|u| < \varepsilon$, we consider the hypersurface $S(u) = \{(x, u(x)); x \in D\}$ in N. We put $X_i = \partial/\partial x_i + u_i \partial/\partial t$, $\tilde{g}_{ij} = g_{ij} + u_i u_j$, $1 \leq i, j \leq n$. We can give a unit normal vector field $\xi = \sum_{i=1}^n \xi^i \partial/\partial x_i + \xi^{n+1} \partial/\partial t$ on S(u) as follows:

$$\xi^{i} = -u^{i}/(1 + \|\nabla u\|^{2})^{1/2}$$
 $(1 \le i \le n)$ and $\xi^{n+1} = 1/(1 + \|\nabla u\|^{2})^{1/2}$

where $\|\nabla u\|^2 = \sum_{i,j=1}^n g^{ij}(x, u(x))u_iu_j$, $u^i = \sum_{j=1}^n g^{ij}(x, u(x))u_j$ and here g^{ij} is the (i, j)component of the inverse matrix of (g_{ij}) . Let Λ be the mean curvature of S(u)with respect to ξ . Λ is given by $\Lambda = \frac{1}{n} \sum_{i,j=1}^n \tilde{g}^{ij} \langle \nabla_{x_i} X_j, \xi \rangle$ where $\tilde{g}^{ij} = g^{ij}(x, u(x)) - u^i u^j/(1 + \|\nabla u\|^2)$. Rewriting it we get

$$(2.1) \qquad \sum_{i,j=1}^{n} \{ (1+\|\nabla u\|^2) g^{ij}(x, u(x)) - u^i u^j \} u_{ij} \\ = n \Lambda(x) (1+\|\nabla u\|^2)^{3/2} - n H(x, u(x)) (1+\|\nabla u\|^2) + \frac{1}{2} \sum_{i,j=1}^{n} \partial g_{ij} / \partial t(x, u(x)) u^i u^j \\ + \sum_{i,j,k=1}^{n} \{ (1+\|\nabla u\|^2) g^{ij}(x, u(x)) - u^i u^j \} \Gamma_{ij}^k(x, u(x)) u_k \end{cases}$$

where $H(x, u(x)) = -\frac{1}{2n} \sum_{i,j=1}^{n} g^{ij}(x, u(x)) \partial g_{ij} / \partial t(x, u(x))$ and Γ_{ij}^{k} denotes the Christoffel's symbol.

In (2.1), if we regard Λ as a given real-valued continuous function on D, then (2.1) is a non-linear differential equation of second order on D. We see that the equation (2.1) satisfies the condition (1.2). We put

$$B(x, t, p) = n\Lambda(x)(1 + \|p\|^2)^{3/2} - nH(x, t)(1 + \|p\|^2) + \frac{1}{2} \sum_{i,j=1}^n \partial g_{ij} / \partial t(x, t) p^i p^j + \sum_{i,j,k=1}^n \{(1 + \|p\|^2) g^{ij}(x, t) - p^i p^j\} \Gamma_{ij}^k p_k$$

where $p = (p, \dots, p_n) \in \mathbb{R}^n$, $||p||^2 = \sum_{\substack{i,j=1 \ i,j=1}}^n g^{ij}(x,t)p_ip_j$ and $p^i = \sum_{\substack{j=1 \ j=1}}^n g^{ij}(x,t)p_j$. Then it is clear that B is of class C^1 on $D \times (-\varepsilon, \varepsilon) \times \mathbb{R}^n$. If N is of non-negative Ricci curvature and $\Lambda \leq H_0$ holds on D, then by Lemma 2.1 we have $B(x, t, 0) = n\Lambda(x) - nH_t(x) \leq 0$ on $D \times [0, \varepsilon) \times \{0\}$. Applying Theorem 1.1 to the equation (2.1), we have the following.

Theorem 2.1. Suppose that N is of non-negative Ricci curvature. Let Λ be a given real-valued continuous function on D such that $\Lambda \leq H_0$ on D. Then any solution u of the equation (2.1) such that $0 \leq u < \varepsilon$ can not take the minimum value in D unless u is constant.

§3. Proof of the main theorem

Let $\overline{M}=M\cup\partial M$ be an n+1-dimensional $(n\geq 1)$ connected C^{∞} Riemannian manifold with compact C^{∞} boundary ∂M . Let ρ be the distance function on \overline{M} which is defined by the Riemannian metric of \overline{M} . Compactness of ∂M implies that \overline{M} is complete as a metric space. For each point p of M there is a geodesic from p to ∂M whose length is equal to $\rho(p, \partial M)$. A geodesic $c: [a, b] \rightarrow \overline{M}$ is called minimal if the length of c is equal to $\rho(c(a), c(b))$. Let p be a point of M and let r be a positive such that $r < \rho(p, \partial M)$. We put $B_r(p) = \{q \in M; \rho(p, q) < r\}$, $\overline{B}_r(p) = \{q \in \overline{M}; \rho(p, q) \leq r\}$ and $\partial B_r(p) = \overline{B}_r(p) - B_r(p)$. We can choose a positive $r (2r < \rho(p, \partial M))$ such that for any distinct points q and q' of $\overline{B}_r(p)$ there is a unique minimal geodesic from q to q' whose interior is contained in $B_r(p)$ ([2], pp. 103-105). Such an open metric ball is called strongly convex.

Now, since ∂M is compact, it can be expressed by $\partial M = \bigcup_{i=1}^{k} \Gamma_i$ where each Γ_i is an *n*-dimensional compact connected Riemannian manifold without boundary. For a $\delta > 0$ we put $\perp_{\delta}^{+}(\Gamma_i) = \{\xi \in T\overline{M}; \xi \text{ is an inner normal vector to } \Gamma_i \text{ and } \|\xi\| < \delta\},$ $\perp_{\delta}^{+}(U_i) = \{\xi \in \perp_{\delta}^{+}(\Gamma_i); \xi \text{ is an inner normal vector to } U_i\}$ where $T\overline{M}$ denotes the tangent vector bundle of \overline{M} and $\| \|$ stands for the norm defined by the Riemannian metric of \overline{M} and U_i is an open subset of Γ_i , $1 \leq i \leq k$. When $\exp: \perp_{\delta}^{+}(\Gamma_i) \to \overline{M}$ (resp. $\exp: \perp_{\delta}^{+}(U_i) \to \overline{M}$) is an imbedding of C^{∞} for a $\delta > 0$, we put $\Gamma_i(\delta) = \{\exp_p \delta \eta_i(p); p \in \Gamma_i\}$ (resp. $U_i(\delta) = \{\exp_p \delta \eta_i(p); p \in U_i\}$ where exp stands for the exponential map and $\eta_i(p)$ is the inner normal vector to Γ_i at $p \in \Gamma_i$.

Under the situation described above, we shall prove the following.

Lemma 3.1. Let $\overline{M}=M\cup\partial M$ be as above. Suppose $\rho(\Gamma_1, \Gamma_2)=\min \{\rho(\Gamma_i, \Gamma_j); 1\leq i < j\leq k\}$. Let p_1 and p_2 be points of Γ_1 and Γ_2 such that $\rho(p_1, p_2)=\rho(\Gamma_1, \Gamma_2)$, respectively. Then there is a unique minimal geodesic c: $[0, a] \rightarrow \overline{M}$, $a=\rho(\Gamma_1, \Gamma_2)$, with unit speed such that $c(0)=p_1$, $c(a)=p_2$, $c((0, a))\subset M$ and $\dot{c}(0)$ (resp. $\dot{c}(a)$) is orthogonal to Γ_1 (resp. Γ_2) respectively, where $\dot{c}(t)$ denotes the velocity vector of c.

Proof. Since Γ_1 is compact, we can take $a\varepsilon (0 < 2\varepsilon < a)$ such that $\exp: \perp_{z\varepsilon}^+(\Gamma_1) \rightarrow \overline{M}$ is an imbedding of C^{∞} and $\Gamma_1(\varepsilon) = \{p \in M; \rho(p, \Gamma_1) = \varepsilon\}$. There is a point p_3 of $\Gamma_1(\varepsilon)$ such that $\rho(p_1, p_2) = \rho(p_1, p_3) + \rho(p_3, p_2)$. Then, using Gauss' lemma, we see $\exp_{p_1} \varepsilon \xi = p_3$ where ξ is the inner unit normal vector to Γ_1 at p_1 . Let $t_0 = \sup \{t \in [0, a]; \exp_{p_1} s\xi \in M \ (0 < s \le t) \text{ and } \rho(\exp_{p_1} t\xi, p_2) = a - t\}$. It is clear $\varepsilon \le t_0$. We shall show $t_0 = a$. Suppose $t_0 < a$. By completeness of \overline{M} the geodesic $\exp_{p_1} t\xi$ $(0 \le t < t_0)$ can be extended to the geodesic $c_1(t) = \exp_{p_1} t\xi \ (0 \le t \le t_0)$. Since $a = \rho(\Gamma_1, \Gamma_2) \le \rho(\Gamma_i, \Gamma_f)$ $(1 \le i < j \le k), c_1(t_0) \in M$. We take a $\delta (0 < 2\delta < \rho(c_1(t_0), \partial M))$ such

that $B_{\delta}(c_1(t_0))$ is strongly convex. Let p be a point of $\partial B_{\delta}(c_1(t_0))$ such that $\rho(c_1(t_0), p_2) = \rho(c_1(t_0), p) + \rho(p, p_2)$, and let $c_2(t) = \exp_{c_1(t_0)} tX$ $(0 \le t \le \delta)$ be a unique minimal geodesic from $c_1(t_0)$ to p where X is a unit tangent vector at $c_1(t_0)$. Since $\rho(c_1(t_0), p_2) = a - t_0$, we have $\rho(p_1, p) \ge t_0 + \delta$. Hence, $\rho(p_1, p) = t_0 + \delta$ because t_0 is equal to the length of the geodesic c_1 and δ is equal to the length of the geodesic c_2 . This implies $\dot{c}_1(t_0) = X$. Thus we can extend the geodesic c_1 to the geodesic $\exp_{p_1} t\xi \in M$ $(0 < t \le t_0 + \delta)$ and $\rho(\exp_{p_1}(t_0 + \delta)\xi, p_2) = a - (t_0 + \delta)$. This contradicts the definition of t_0 . Hence we have $t_0 = a$. Thus there is a minimal geodesic $c: [0, a] \to \overline{M}$ with unit speed such that $c(0) = p_1$, $c(a) = p_2$ and $c((0, a)) \subset M$. Since Γ_1 and Γ_2 are hypersurfaces in \overline{M} and c is a shortest geodesic from Γ_1 to Γ_2 , $\dot{c}(0)$ (resp. $\dot{c}(a)$) is orthogonal to Γ_1 (resp. Γ_2), respectively. The uniqueness is then clear. We complete the proof.

Proof of the main theorem. Since ∂M is compact, it can be expressed by $\partial M = \bigcup_{i=1}^{n} \Gamma_i$ where each Γ_i is an *n*-dimensional compact connected Riemannian manifold without boundary. Suppose $k \ge 2$, and let $a = \min \{\rho(\Gamma_i, \Gamma_j); 1 \le i < j \le k\}$. By exchanging the indecies, we assume $a = \rho(\Gamma_1, \Gamma_2)$. Then we shall prove that $\partial M = \Gamma_1 \cup \Gamma_2$ and Γ_1 , Γ_2 are totally geodesic hypersurfaces in \overline{M} and that \overline{M} is isometric to the Riemannian product manifold $\Gamma_1 \times [0, a]$. We put $C = \{q \in \Gamma_2; d \in \mathcal{F}_2\}$ $\rho(q, \Gamma_1) = a$. It is clear that C is a non-empty closed subset of Γ_2 . We shall show that C is open in Γ_2 . Let p_2 be an arbitrary point of C. We choose a $p_1 \in \Gamma_1$ such that $\rho(p_1, p_2) = a$. By Lemma 3.1, there is a unique minimal geodesic c: $[0, a] \rightarrow \overline{M}$ with unit speed such that $c(0) = p_1$, $c(a) = p_2$, $c((0, a)) \subset M$ and $\dot{c}(0)$ (resp. $\dot{c}(a)$ is orthogonal to Γ_1 (resp. Γ_2), respectively. Since Γ_2 is compact, we can choose a δ (0<2 δ <a) so that exp: $\perp_{2\delta}^+(\Gamma_2) \rightarrow \overline{M}$ is an imbedding of C^{∞} and $\Gamma_2(\delta) =$ $\{q \in M; \rho(q, \Gamma_2) = \delta\}$. Then $\Gamma_2(\delta)$ is a compact connected hypersurface of C^{∞} in M and $\dot{c}(a-\delta)$ is the outer unit normal vector to $\Gamma_2(\delta)$ at $c(a-\delta)$. Since c is a shortest geodesic from Γ_1 to Γ_2 , c(t), 0 < t < a, is not focal point of Γ_1 along c. Therefore we can take a local coordinate system $(U_1, (x_1, \dots, x_n))$ about p_1 in Γ_1 and $a_{\varepsilon} (a - \delta < \varepsilon < a)$ such that exp: $\perp_{\varepsilon}^+ (U_1) \rightarrow \overline{M}$ is an imbedding of C^{∞} and By using Gauss' lemma the line element on $\exp\left(\perp_{i}^{+}(U_{1})\right)\cap\Gamma_{i}=\phi, \ 2\leq i\leq k.$ exp $(\perp_{\mathfrak{s}}^{+}(U_1))$ can be expressed by $ds^2 = \sum_{i,j=1}^{n} g_{ij}(x,t) dx_i dx_j + dt^2, (x,t) \in U_1 \times [0, \varepsilon]$. Since $c(a-\delta) \in \Gamma_2(\delta)$ and $\rho(\Gamma_2(\delta), \Gamma_1) \ge a-\delta$, by the implicit function theorem, there exists an open neighborhood V_1 of p_1 in Γ_1 , $V_1 \subset U_1$, and a $u \in C^{\infty}(V_1)$ satisfying the conditions: (1) V₁ is diffeomorphic to an open metric ball in R^n ; (2) $a - \delta \leq u < \varepsilon$ on V_1 and $u(p_1)=a-\delta$; (3) $\Gamma_2(\delta)$ can be locally expressed by a hypersurface W= $\{\exp_x u(x)\eta_1(x); x \in V_1\}$ about $c(a-\delta)$ where $\eta_1(x)$ is the inner unit normal vector to

 Γ_1 at $x \in V_1$. Let W_2 be the open neighborhood of p_2 in Γ_2 such that $W_2(\delta) = W$. Now, let Λ be the mean curvature of $\Gamma_2(\delta)$ with respect to the outer normal direction. From the argument in $\S 2$ we see that u is a solution of the equation (2.1) having the minimum value $a-\delta$ at an interior point p_1 of V_1 . We denote the mean curvature of $V_1(t)$ with respect to $\partial/\partial t$ by H_t where $V_1(0) = V_1$ and $0 \leq t$ $t \leq \varepsilon$. Since M is of non-negative Ricci curvature and the mean curvature (with respect to the inner normal direction) of ∂M is non-negative, by Lemma 2.1 $H_t \ge 0$ $(0 \leq t \leq \epsilon)$ and $\Lambda \leq 0$. Applying Theorem 2.1 to the present situation, we have $u \equiv a - \delta$ on V_1 . This implies $W_2(\delta) = W = V_1(a - \delta)$. Since Λ is the mean curvature of $\Gamma_2(\delta)$ with respect to the outer normal direction, then we have $\Lambda = H_{a-\delta}$ on $W_2(\delta) = V_1(a-\delta)$. This yields $\Lambda = H_{a-\delta} \equiv 0$ because they have an opposite sign each other. Then, by Lemma 2.1, $V_1(t)$ $(0 \le t \le a - \delta)$ and $W_2(r)$ $(0 \le r \le \delta)$ are all totally geodesic hypersurfaces in M where $W_2(0) = W_2$. Thus we see that exp: $\perp_{a}^{+}(V_1) \rightarrow \overline{M}$ is an imbedding of C^{∞} , $W_2 = V_1(a)$ and $\exp(\perp_a^+(V_1)) - (V_1 \cup V_1(a)) \subset M$. Hence we have $\rho(W_2, \Gamma_1) = a$, which implies that C is open in Γ_2 . By connectedness of Γ_2 we have $C=\Gamma_2$. Thus we have proved that $\Gamma_2 \subset \{q \in \overline{M}; \rho(q, \Gamma_1)=a\}$. By a similar argument as above, we have $\Gamma_1 \subset \{p \in M; \rho(p, \Gamma_2) = a\}$. From the above argument, we have the following.

Lemma. For each point p_1 (resp. p_2) of Γ_1 (resp. Γ_2) there exists an open neighborhood V_1 of p_1 (resp. V_2 of p_2) in Γ_1 (resp. Γ_2) such that (1) exp: $\perp_a^+(V_i) \rightarrow \overline{M}$ is an imbedding of C^{∞} , i=1, 2; (2) $V_1(a) \subset \Gamma_2$, $V_2(a) \subset \Gamma_1$; (3) $\exp(\perp_a^+(V_i)) - (V_i \cup V_i(a)) \subset M$, i=1, 2; (4) for each $p \in V_i \exp_p t \eta_i(p)$ ($0 \leq t \leq a$) is a minimal geodesic where $\eta_i(p)$ is the inner unit normal vector to Γ_i at $p \in V_i$, i=1, 2; (5) $V_i(t)$ ($0 \leq t \leq a$) are all totally geodesic hypersurfaces in \overline{M} where $V_i(0) = V_i$, i=1, 2.

By virtue of this lemma and Lemma 3.1, we see that $\exp: \perp_a^+(\Gamma_i) \to \overline{M}$ is an imbedding of C^{∞} (i=1,2), $\Gamma_1(a)=\Gamma_2$, $\Gamma_2(a)=\Gamma_1$ and $\exp(\perp_a^+(\Gamma_i))-(\Gamma_1\cup\Gamma_2)\subset M$, i=1,2. By the connectedness of \overline{M} , $\exp(\perp_a^+(\Gamma_i))=\overline{M}$, i=1,2. Hence we have $\partial M=\Gamma_1\cup\Gamma_2$. From the above lemma, for each t $(0\leq t\leq a)$ the level hypersurface $\Gamma_1(t)$ is totally geodesic where $\Gamma_1(0)=\Gamma_1$. Now let $\Phi:\Gamma_1\times[0,a]\to\overline{M}$ be a map defined by $\Phi(p,t)=\exp_p t\eta_1(p)$ where $\eta_1(p)$ is the inner unit normal vector to Γ_1 at p. Then Φ is an isometry from the Riemannian product manifold $\Gamma_1\times[0,a]$ onto \overline{M} . We complete the proof.

As a corollary of the main theorem we have the following.

Corollary. Let $\overline{M}=M\cup\partial M$ be an n+1-dimensional $(n\geq 1)$ connected C^{∞} Riemannian manifold with compact C^{∞} boundary ∂M . Suppose that M is of non-

negative (resp. positive) Ricci curvature and the mean curvature (with respect to the inner normal direction) of ∂M is positive (resp. non-negative). Then ∂M is connected.

Theorem 2.1 has interesting geometrical applications. For example, let M be an *n*-dimensional $(n \ge 2)$ connected complete real analytic Riemannian manifold of non-negative Ricci curvature without boundary. Suppose that M contains isometrically imbedded compact connected real analytic minimal hypersurfaces which are disjoint. Then M is isometric to one of some four types of Riemannian manifolds, in the case n=2 such Riemannian manifolds are flat torus, cylider, Klein bottle and Möbius band. The proof of this result will be given in the author's paper [4].

Remark. Recently Mr. Atsushi Kasue informed the author that he had independently proved our main theorem by a different method ([5]).

References

- [1] R. Bishop and R. Crittenden: Geometry of manifolds, Academic Press, New York, 1964.
- [2] J. Cheeger and D.G. Ebin: Comparison theorems in Riemannian geometry, North-Holland Mathematical Library, 1975.
- [3] R. Courant and D. Hilbert: Methods of Mthematical Physics, Vol. II, Interscience, 1962.
- [4] R. Ichida: On Riemannian manifolds of non-negative Ricci curvature containing compact minimal hypersurfaces, to appear.
- [5] A. Kasue: On Riemannian manifolds with boundary, to appear.

Department of Mathematics Yokohama City University 22-2 Seto, Kanazawa-ku Yokohama, 236 Japan