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1. Introduction

Consider a Dirichlet series f(s)——Z}a exp (si,), (s=o+it, 2,=0, 2, <z,.+1—>oo
with #n), which we shall assume to be absolutely convergent everywhere in the
complex plane C and is bounded in any left strip and hence it defines an entire
function. The logarithmic mean of f(s) is defined as

—m L7 :
L(o)= ;gg {27‘ S_T log If(o—l-zt)ldt} X

For any >0, we define [2, p. 231] the generalized logarithmic mean of f{(s)
as
—6— o (T
(L.1) Li*(o)=lim { S S 2 log | f(x—l—it)ldwdt} .
2T -7
Since log Ly*(s) is an increasing convex function of loges [2, p. 232], we may
represent it in terms of an integral given by

1.2) log Li*(o)=log LK+ |’ E8dz, oz,
Jog
where U(x) is a positive real valued indefinitely increasing function of «.
In this paper we are mainly interested in studying certain growth relations
of U(¢) and the generalized logarithmic mean function L;*(s) relative to each

other.

2. Main Results
Theorem 1. For m>0, let
L= Sw log La*(d)d I= S U(o) AU

m+1

Then I, and I, converge or diverge together.
Proof. From (1.2), we have
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Sq @dm:log Ls*(o)—log Ls*(a,) .
do .

Hence, for any #=o¢,,

@.1) S“ do_ S de.:r {log Ly*(o)—log Li*(av)} d‘jl
o o % 9. . ™
__log Ly*(u)—log La*(o'o) S Ul 4,
_..mu‘m m+1
Also,
u o u K X
@2) S —o‘fnfl S —-——-U;“’) dz= S logaﬁil(") +l°g1;; ("°)( ulm ’01,”) .
L0 L) a9 0
2.1) and [2.2) give,
S“ log Ls*(o) do +103 La*(do)( 1 ) log Ly*(u)—log La*(ao) S U(o) is
o omt1 m U™ g™ : —mu™ m g 071
or, _
2.3) ¢ log Lf‘:(w) da __log Ly*(a,) +log Li*(o) _ S U(:i) d
xm oo™ am gl

9%

Let us now suppose that I, is convergent, then, for any ¢>0 and for sufficiently

large o,
4 %k,
s>§2 logxfil(‘”)d >log L" D2,
So,
log Ls*(a) -0 as g—oo
o™ ’ )

Hence, from [(2.3), we find that I, is also convergenf.

Now, if I, is convergent, then, from [2.3), we get

(2.4) m S logmﬁim) dz +10g Li¥o)

o0
for some £>0. But
S" log L,*(a;)d >log I;;,*(GO) 1 1)>0

% xm+1
so, both terms on the left hand side of [(2.4) are posmve ‘Hence 1, is also con-

vergent. Thus I, converges if, and only if, 12 converges Appeahng to Modus
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Tollendo Tollen’s [1, p. 32] the divergence part of this theorem follows from its
convergence part.

Theorem 2. Let

. SuplogUl@) P (o pe
imit ~ Fo) @ (=0=P=e.

where F(o) is a logarithmico exponéntial Sfunction of o, such that, as e—, F(ks)~
F(o) (k is a constant >0) and loglog c=0(F(s)). Then

. . 0F'(c)log Ly*(o) _1_<_1_< oF’(0) log L*(o)
(2.5) 111‘:2’ Lnf Ulo) =p=p= “I},LSWUP Ulo) .

In order to prove this theorem we need the following lemma:

Lemma 1. Let
2.6) » ¢(x)=A+S” g—(zt—)—dt,
No .
where 9(x) is a positive non-decreasing function of x for x=x, and A is a constant
>0. If

sup log9(z) _M (- nepr<
Hm ot Fa) N O=N=M=ceo.

Then

. 9(x) . 9@
(2.7) 111:1; Lnf x——————-—-¢ @) F (w)éNéM = llI:‘l_.SmuP 2 @) F @)

Proof. We have

dx)=A+ Sz &tt)dtég(m) log - const.

0

So,
. log ¢(x) 1. {log g(x) loglogw+cost.} =M
ISP Py = 2P U Fw T R '
Now,
semz|" D arzg@ 1052 .
Therefore,

. log #(2%) ;. {log g(x) F(x) loglogZ}’= :
e SuP = pom) = 2P TRe) 2w | F@a)
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Hence
. log é(x) _
hril_’swup Flz) =M
Similarly,
lim inf %:—-N.
Now, from [2.6), we get, for z=>zx,,
¢'(@) _ g9(x)
MNx) xh(x)
Integrating in the Lebesgue sense between x, and z, we find
[ 9@
(2.8) log gzi(:z::)—sm0 20(0) dt-}-const.
Let,

sup__ g(®) _C _poc<
im of shmF@) D’ O=PsC=e.

We first suppose that 0<D, C<co. Then, for any ¢>0 and sufficiently large z,

(D—e)F'(2) <& < (Cto)F/(x) .
xP(x)

Integrating in the Lebesgue sense, we get

(D¥e)(1—0(1))<%m<(c+s)(1—0(1)) ,
(x)

or,
2.9) D=N=M<C,

which also holds, when D=0 or C=co. If D=oco, thenso is C and
lim (g(x)/xd(x)F'(x))=co. So, taking an arbitrary large real number in place of
B:s and proceeding as above, we obtain M=N=oco. Similarly, if C=0, it can
be shown that M=N=0. Hence, for 0=SD=C=<co, (2.9) implies [2.7).

Proof of theorem 2. Replacing ¢(s) by log Ly*(s) and g(s) by U(e) in we
get
Theorem 3. Let

lim 9P boulo®o) _H o p e
cminf | Lg kS oer=
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Then

o LLMONBLA)) - - (L)
2.1
@10) lim it = O o)) = Uy 10)
1 (LA Li*a)) - - - (LL*a))

1_.
<114
=H=h= “5‘_30“? Uo)lio)lao) -+ Upr0)

where l,oc denotes k-th iterate of log .
The proof of this theorem is based on the following lemma:

Lemma 2. Let

2.11) G(x)=A+S” gg—t)dt_,

Zo

where ¥(x) is a positive and non-decreasing function of x for x=x,. If

lim SWPLC@® T o gcT<co .
z—oinf [ S -

Then
. G@LG@)hLG®)) - -+ (1, ,G(x))
.12 1 f 21
@12 e )N lw) -~ Upm)
1 _1_. G L,G@)1C(®)) - - - (U,-1G(=))
<<= .
S =g = msup = o o) - - (,.2)

Proof. Let

i SUP C@ULGE@NUG@) -+ U iG@)_€ o cicocon

o0 inf T(x)(lx)(loyx) + - - (I,-12) d’ T ==

and suppose that d>0. Then, for any ¢>0 and z=x, we have
G(x)(L,G(®)(1:G(x)) -+ + (I,-1G(®)) >(d—e)T (w)(l1x)(lotp) - - - (lg-12) .
Differentiating [(2.11), we get

Therefore,

2.13) ___G'(») T(w)

G(z)(L,G@NUG(%)) - - (lp-lG(w))< (d— T (@)x(ly2)(le) * + + (Jp-12)

Integrating (2.13) in th¢ Lebesgue sense, between x, and z, we obtain

z G'(t) dt lx
2 COLCONLC®) - (G@) " “d—e’

lpG(x)=§

165
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or,
1,G(x) 1
I <d——e )
So,
1
; <1l
(2.14) d= T

which also holds when d=0. If d=oo, the above argument with an arbitrary
large real number instead of d—e gives 7=0. Hence, for 0<d=<oco, (2.14) gives
the left hand side of (2.12). Similarly, the right hand side follows.

Proof of theorem 3. Replacing G(s) and ¥(s) by log L;*(¢) and U(s), respec-
tively, we get the required result.

Theorem 4. If F(o) is a logdrithmico eﬁcponential Sunction of o, such that,
F(ko)=~F (o) and log Ls*(c)~F(s). Then,

. log Ly*(o)
m = =

Proof. For any ¢>0 and ¢=¢,,

: — ))2> £120) > 10g Ly20)=log Ly¥(o) + 52" YD 52108 Lx(o)+ Ulo) Tog 2,
—_ —¢€ o .
and
F(e) _ F(o)
dt e +s)2<—1 e <log Ly*(o) .
So,
{(1—¢)2—(1+¢) % F(0)> U(o) log 2.

Thus,

.. Ule) _

}vl_.rg F(o) =0.

Since, F(s)=~log Ls*(s). Hence

. log Ly*(a) _
b = e =

Thus the proof of [Theorem 4 follows.
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