FACTOR STATE EXTENSION ON NUCLEAR C^{*} ALGEBRAS

By
Sze-kai Tsui
(Received March 19, 1981. Revised July 9, 1981)

Abstract

Let \mathscr{B} be a C^{*}-subalgebra of a C^{*}-algebra \mathscr{A}. Every factor state φ on \mathscr{F} with $\overline{\pi_{\varphi}(\mathscr{B})^{w}}$, the weak-operator closure of the GNS representation $\pi_{\varphi}(\mathscr{B})$ induced by φ, injective extends to a factor state on \mathscr{A}.

Let \mathscr{A} be a unital C^{*}-algebra and \mathscr{B} a C^{*}-subalgebra of \mathscr{A} with the identity element. In this note we show that every factor state on \mathscr{B} extends to a factor state on \mathscr{A} if \mathscr{B} is nuclear. The theorem is based on a theorem (Theorem 1) proposed by S. Sakai in Wabash conference 1973.

Several attempts have been undertaken on the factor state extension problem (see [5], [6] for example). The author would like to thank Professor John Bunce for kindly bringing Sakai's lecture in Wabash conference to his attention. Furthermore, using a result in [1] we show every factor state φ on \mathscr{B} with $\overline{\pi_{\varphi}(\mathscr{F})^{w}}$, the weak-operator closure of $\pi_{\varphi}(\mathscr{B})$, injective extends to a factor state on \mathscr{A}, where π_{φ} is the GNS representation induced by φ. If there exists a projection of norm one from \mathscr{A} onto \mathscr{B}, then it follows from Theorem 1 that every factor state on \mathscr{B} extends to a factor state on \mathscr{A}.

The author would also like to thank Professor S. Sakai for letting the author include his result in this paper.

Theorem 1. Let φ be a factor state on \mathscr{B} and $\left\{\pi_{\varphi} \mathscr{H}_{\varphi}\right\}$ be the GNS representation induced by φ with $\varphi(b)=\left\langle\pi_{\varphi}(b) f_{\varphi}, f_{\varphi}\right\rangle$ for all b in \mathscr{B}. Suppose that there exists a positive linear map Q of \mathscr{A} into $\overline{\pi_{\varphi}(\mathscr{B})^{w}}(\equiv \mathscr{B})$, the weak-operator closure of $\pi_{\varphi}(\mathscr{B})$, satisfying the following:

$$
\begin{align*}
Q(b) & =\pi_{\varphi}(b) \quad(b \in \mathscr{B}) \\
Q\left(b_{1} x b_{2}\right) & =Q\left(b_{1}\right) Q(x) Q\left(b_{2}\right) \quad\left(b_{1}, b_{2} \in \mathscr{B}\right) \quad(x \in \mathscr{A}) . \tag{1}
\end{align*}
$$

Then φ extends to a factor state on \mathscr{A}.
Proof. Let Q be a positive linear map satisfying (1) and the linear functional, $x \mapsto\left\langle Q(x) f_{\varphi}, f_{\varphi}\right\rangle$ denoted by φ_{Q}. Consider $\mathscr{E}=\left\{Q^{\prime} \mid Q^{\prime}\right.$: positive linear map of \mathscr{A} into

[^0]\mathscr{R} satisfying (1) $\}$ and $\mathscr{S}=\left\{\varphi_{\mathscr{Q}^{\prime}} \mid Q^{\prime} \in \mathscr{E}\right\}$. \mathscr{E} is nonempty by the assumption of the theorem, and is σ-compact, convex in $\mathscr{B}(\mathscr{A}, \mathscr{R})$ in the topology of simple weak* convergence, where $\mathscr{F}(\mathscr{A}, \mathscr{R})$ is the set of all bounded linear maps from \mathscr{A} into \mathscr{R}. \mathscr{S} is weak* compact and convex in the dual space of \mathscr{A}, and has extreme points. Let ψ be an extreme point of \mathscr{S}. We show $\psi\left(\equiv \varphi_{Q_{0}}\right)$ is a factor state on \mathscr{A}.

Let $\left\{\pi_{Q_{0}}, \mathscr{O}_{Q_{0}}\right\}$ be the GNS representation due to $\varphi_{Q_{0}}$ with $\varphi_{Q_{0}}(x)=\left\langle\pi_{Q_{0}}(x) f_{Q_{0}}, f_{Q_{0}}\right\rangle$ for all x in \mathscr{A}. We show that the center of the weak-operator closure of $\pi_{Q_{0}}(\mathscr{A})$ consists of scalars only.

Since $\left.\varphi_{Q_{0}}\right|_{\mathscr{F}}=\left.\varphi\right|_{\mathscr{F}}, \mathscr{E}_{\varphi}$ can be embedded into $\mathscr{H}_{Q_{0}}$. Suppressing the embedding relationship, we consider $\mathscr{\mathscr { C }}_{\varphi}$ as a closed subspace of $\mathscr{C}_{Q_{0}}$ and denote the orthogonal projection of $\mathscr{C}_{Q_{0}}$ onto \mathscr{H}_{φ} by E.

Consider a linear map Q^{0} of \mathscr{A} into \mathscr{R} defined by $Q^{0}(x)=E \pi_{Q_{0}}(x) E$ for x in \mathscr{A}. We note that $E \pi_{Q_{0}}(b) E=\pi_{\Omega_{0}}(b) E=\pi_{\varphi}(b)$ for all b in \mathscr{B}, and Q^{0} is a positive linear map of $\overline{\pi_{Q_{0}}(\mathscr{A})^{w}}$ onto \mathscr{R}. In fact, $Q^{0}=Q_{0}$. For x in \mathscr{A} and y, z in \mathscr{B} we have

$$
\begin{aligned}
\left\langle\left(E \pi_{e_{0}}(x) E\right) \pi_{Q_{0}}(y) f_{Q_{0}}, \pi_{Q_{0}}(z) f_{Q_{0}}\right\rangle & =\varphi_{Q_{0}}\left(z^{*} x y\right) \\
& =\left\langle Q_{0}\left(z^{*} x y\right) f_{\varphi}, f_{\varphi}\right\rangle \\
& =\left\langle Q_{0}(x) Q_{0}(y) f_{\varphi}, Q_{0}(z) f_{\varphi}\right\rangle \\
& =\left\langle Q_{0}(x) \pi_{\varphi}(y) f_{\varphi}, \pi_{\varphi}(y) f_{\varphi}\right\rangle \\
& =\left\langle Q_{0}(x) \pi_{Q_{0}}(y) f_{Q_{0}}, \pi_{Q_{0}}(y) f_{Q_{0}}\right\rangle .
\end{aligned}
$$

Hence, $E \pi_{Q_{0}}(x) E=Q_{0}(x)$ for all x in \mathscr{A}. Suppose P is a central projection in $\overline{\pi_{\Omega_{0}}(\mathscr{A})^{w}}$, the weak-operator closure of $\pi_{\Omega_{0}}(\mathscr{A})$. Since, for b in \mathscr{B},

$$
(E P E)\left(E \pi_{Q_{0}}(b) E\right)=E P_{\pi_{Q_{0}}}(b) E=E \pi_{Q_{0}}(b) P E=\left(E \pi_{\Omega_{0}}(b) E\right)(E P E),
$$

$E P E$ is in the center of \mathscr{R}. Thus $E P E=\lambda I_{\mathscr{A}}$ for $0 \leqq \lambda \leqq 1$.
The positive linear functional η defined on \mathscr{A} by $\eta(x)=\left\langle\operatorname{\pi }_{\Omega_{0}}(x) f_{Q_{0}}, f_{Q_{0}}\right\rangle$ satisfies $\eta \leqq \varphi_{Q_{0}}$, and $\eta(1)=\left\langle P f_{Q_{0}}, f_{Q_{0}}\right\rangle=\left\langle E P E f_{Q_{0}}, f_{Q_{0}}\right\rangle=\lambda$. Let $\theta=\varphi_{Q_{0}}-\eta$. Then $\theta(x)=$ $\left\langle(I-P) \pi_{Q_{0}}(x) f_{Q_{0}}, f_{Q_{0}}\right\rangle$ for all x in \mathscr{A}. If $\lambda=0$ or $\lambda=1$, then $\varphi_{Q_{0}}=\theta$ or $\varphi_{Q_{0}}=\eta$. Thus $P=0$ or $P=I$.

Suppose λ is neither 0 nor 1 . Define $Q_{1}(x)=(1 / \lambda) E P_{\pi_{0}}(x) E$, for all x in \mathscr{A}. Q_{1} is a positive linear map of \mathscr{A} into \mathscr{R}, and for b in \mathscr{B}, we have

$$
Q_{1}(b)=\frac{1}{\lambda} E P_{\pi_{Q_{0}}}(b) E=E \pi_{e_{0}}(b) E=Q_{0}(b) .
$$

For x in \mathscr{A} and b in \mathscr{B}, we have

$$
\begin{aligned}
Q_{1}(x b) & =\frac{1}{\lambda} E P \pi_{Q_{0}}(x) \pi_{Q_{0}}(b) E \\
& =\frac{1}{\lambda}\left(E P \pi_{Q_{0}}(x) E\right)\left(E \pi_{Q_{0}}(b) E\right) \\
& =Q_{1}(x) \frac{1}{\lambda}\left(E P E \pi_{Q_{0}}(b) E\right) \\
& =Q_{1}(x) Q_{1}(b) .
\end{aligned}
$$

Hence, Q_{1} satisfies condition (1), and $\varphi_{\mathbf{Q}_{1}}=(1 / \lambda) \eta$. Similarly, $(1 / 1-\lambda) \theta=\varphi_{Q_{2}}$, where Q_{2} is in \mathscr{E}. Since $\varphi_{Q_{0}}$ is extreme in \mathscr{S} and $\varphi_{Q_{0}}=\lambda \varphi_{Q_{1}}+(1-\lambda) \varphi_{Q_{2}}$, it follows that $\varphi_{Q_{0}}=\varphi_{Q_{1}}=\varphi_{Q_{2}}=(1 / \lambda) \eta$. Therefore, $P=\lambda I$ and $\lambda=1$ or $\lambda=0$, which is a contradiction to the assumption that λ is neither 0 nor 1 .
Q.E.D.

Theorem 2. Let \mathscr{B} be a nuclear C^{*}-subalgebra of \mathscr{A}. Then every factor state of \mathscr{B} extends to a factor state of \mathscr{A}.

Proof. Since the second dual $\mathscr{B}^{* *}$ of \mathscr{B} is injective in the second dual $\mathscr{A}^{* *}$ of \mathscr{A}, when $\mathscr{E}^{* *}$ is considered as a subalgebra of $\mathscr{A} * *$. Then there exists a norm one projection P of $\mathscr{A}^{* *}$ onto $\mathscr{B}^{* *}$. Let φ be a factor state of \mathscr{B} and $\left\{\pi_{\varphi}, \mathscr{H}_{\varphi}\right\}$ be the GNS construction induced by φ. π_{φ} extends uniquely to $\pi_{\varphi}{ }^{* *}$ on $\mathscr{B}^{* *}$ with range in $\overline{\pi_{\varphi}(\mathscr{B})^{w}}=\mathscr{R}$.

Let $Q=\left.\pi_{\varphi}^{* *} P\right|_{\mathscr{r}}$. We have
(i) Q is a positive linear map of \mathscr{A} into \mathscr{R};
(ii) $Q(b)=\pi_{\varphi} * * P(b)=\pi_{\varphi} * *(b)=\pi_{\varphi}(b)(b \in \mathscr{O})$
(iii) $Q(a x b)=\pi_{\varphi}^{* *}(P(a) P(x) P(b))$ $=Q(a) Q(x) Q(b)$ $(x \in \mathscr{A}, a, b \in \mathscr{B})$
Therefore, by the previous theorem φ can extend to a factor state on \mathscr{A}. Q.ED.
Actually it would be sufficient to prove the above theorem with the assumption that $\overline{\pi_{\varphi}(\mathscr{F})^{w}}$ is injective. We show this in the following:

Theorem 3. In the same notation as in Theorem 2, if $\overline{\pi_{\varphi}(\mathscr{F})^{w}}(=\mathscr{R})$ is an injective factor, then φ extends to a factor state on \mathscr{A}.

Note. Due to the work of Connes [2], \mathscr{R} is simply a hyperfinite factor, if the Hilbert space it acts on is separable.

Proof. Let ψ be a state on \mathscr{A} extending φ, and $\left\{\pi_{\psi}, \mathscr{H}_{\phi}\right\}$ the GNS construction induced by ψ. Let V be an embedding of \mathscr{H}_{φ} into $\mathscr{\mathscr { C }}_{\phi}$, since ψ extends φ. By suppressing the embedding we consider \mathscr{H}_{ψ}, as a closed subspace of \mathscr{H}_{ψ}, and
denote the orthogonal projection of \mathscr{H}_{ψ} onto \mathscr{H}_{φ} by E. We note that $\pi_{\varphi}(b) E=$ $E \pi_{\varphi}(b) E=\pi_{\varphi}(b)$ for b in \mathscr{B}. Since the compression map $x \rightarrow E x E$ of $\overline{\pi_{\varphi}(\mathscr{A})^{w}}$ is completely positive, $\overline{E_{\pi_{\varphi}}(\mathscr{A}) E^{w}}$ becomes a C^{*}-algebra when provided with the Banach space operations and ${ }^{*}$-operation, and the new product $(E x E, E y E) \rightarrow E x y E$ [1, Theorem 3.1]. However, $E x E y E=E x y E$ for x, y in $\overline{\pi_{\phi}(\mathscr{F})^{w}}$. It follows that there exists a projection P of norm one of $\overline{E_{\pi_{\varphi}}(\mathscr{A})^{w}} E$ onto $\overline{\pi_{\varphi}(\mathscr{F})^{w}}$ with $P\left(E \pi_{\phi}(b) E\right)=$ $\pi_{\varphi}(b)$ for all b in \mathscr{B}. Therefore, by Theorem 1φ extends to a factor state on \mathscr{A}.
Q.E.D.

Remark 4. Suppose that there exists a projection of norm one from a unital C^{*}-algebra \mathscr{A} onto its C^{*}-subalgebra \mathscr{B}. Then it is an easy consequence of Theorem 1 that every factor state on \mathscr{B} extends to a factor state of \mathscr{A}. It would be interesting to investigate the factor state extension problem from a C^{*}-subalgebra \mathscr{B} to the full C^{*}-algebra \mathscr{A} which is UHF in Glimm's sense [3].

Addendum

Four months after the completion of this paper, in an American Mathematical Society's Summer Institute on Operator Algebras and Applications at Kingston, Ontario, Canada, John Bunce announced a result similar to Theorem 3, and it is slightly more general than Theorem 3 and proved by a somewhat different method. (For details please see the forthcoming Conference Proceedings of AMS Summer Institute of Operator Algebras and Applications, 1980).

References

[1] M.D. Choi and E. Effros: Injectivity and operator spaces, J. Functional Analysis, 24 (1974), 156-209.
[2] A. Connes: Classification of injective factors, Ann. Math., 104 (1976), 73-115.
[3] J. Glimm: On a certain class of operator algebras, Trans. Amer. Math. Soc., 95 (1960), 216-244.
[4] J. Tomiyama: On the projections of norm one in W^{*}-algebras, Proc. Japan Acad., 33 (1957), 608-612.
[5] S. K. Tsui: Central sequences associated with a state, Proc. Amer. Math. Soc., to appear.
[6] S. Wright: On factor state, preprint.

[^0]: AMS (MOS) subject classifications (1980): 46L30, 46L35.

