IRREDUCIBLE 3-MANIFOLDS WITH NON-TRIVIAL $\boldsymbol{\pi}_{2}$

By
Seiya Negami

(Received May 23, 1981)

§ 1. Introduction

Let Π be the set of compact connected irreducible 3-manifolds with non-trivial π_{2}. Using the sphere theorem, one can prove that under the Poincare conjecture, an orientable 3-manifold M^{3} is irreducible if and only if $\pi_{2}\left(M^{8}\right)$ is trivial. So any 3 -manifold in Π is non-orientable. From the projective plane theorem, it follows that any 3 -manifold M^{3} in Π admits a 2 -sided embedding of a projective plane, and the converse is also true; Feustel [2] showed that if there is an embedding $h: P^{2} \rightarrow M^{3}$ such that $h_{*}: \pi_{2}\left(P^{2}\right) \rightarrow \pi_{2}\left(M^{8}\right)$ is trivial, then M^{8} is homeomorphic to $P^{3} \# \Sigma^{3}$, where P^{3} and Σ^{3} are a 3-dimensional projective space and a homotopy 3 sphere, respectively.

Let Π_{c} and Π_{δ} be the subsets of Π consisting of closed 3-manifolds and boundaryirreducible 3 -manifolds with non-empty boundary, respectively. A few 3 -manifolds in Π_{c} or Π_{b} have been known. For example, $P^{2} \times S^{1}$ belongs to Π_{c}, and $P^{2} \times I$ to Π_{b}. It is however easy to construct infinitely many elements of the complement Π_{a} of $\Pi_{b} \cup \Pi_{c}$; attach 1-handles to $P^{2} \times I$.

In [8], Tao proved that under the Poincaré conjecture, the orientable double covering space of any prime closed 3 -manifold is also prime, with respect to connected sums \#, if and only if $P^{2} \times S^{1}$ is the only one connected closed irreducible 3 -manifold with non-trivial π_{2}. Recently Ochiai [6] has shown that if a closed 3manifold M^{3} which has a Heegaard splitting of genus two admits a 2 -sided embedding of a projective plane, then M^{3} is homeomorphic to $P^{2} \times S^{1}$. Naturally one may expect that Π_{c} would be the singleton $\left\{P^{2} \times S^{1}\right\}$. But we shall show that Π_{c} includes infinitely many elements which can be distinguished by several well-defined invariants:

Main Theorem. There are infinitely many closed connected irreducible 3manifolds with non-trivial π_{2}.

The existence is due to knot and link theory and especially the fact that the boundary of a knot space of a non-trivial knot is an incompressible torus. To
prove the infiniteness, we shall define a connected graph $G\left(M^{3}\right)$, for an element M^{3} of Π, which describes a structure of M^{3} induced by a specific system of projective planes in M^{3}.

We shall work in the piecewise linear category through this paper, and use mostly the terminology and the notation in [5].

I would like to express my hearty thanks Prof. T. Homma for helpful conversations.

§ 2. Complete systems of projective planes

Let M^{3} be a 3 -manifold and F_{0}, F_{1} closed 2-manifolds or surfaces embedded in Int $\left(M^{3}\right)$. Then F_{0} and F_{1} are said to be parallel if there is an embedding $h: F \times I \rightarrow M^{3}$ such that $h(F \times\{0\})=F_{0}$ and $h(F \times\{1\})=F_{1}$. A complete system of projective planes in M^{8} is defined to be a system $\left\{P_{1}{ }^{2}, \cdots, P_{q}{ }^{2}\right\}$ of mutually disjoint 2-sided projective planes in $\operatorname{Int}\left(M^{3}\right)$ satisfying the following conditions 1 and 2:

1. Every $P_{i}{ }^{2}$ is not parallel to each other.
2. If P_{q+1}^{2} is a 2 -sided projective plane in M^{3} disjoint from $P_{1}{ }^{2} \cup \cdots \cup P_{q}{ }^{2}$, then P_{q+1}^{2} is parallel to some $P_{i}{ }^{2}(i=1, \cdots, q)$.
For any compact irreducible 3 -manifold M^{3}, we define $q\left(M^{3}\right)$ by the number of projective planes contained in a complete system $\left\{P_{1}{ }^{2}, \cdots, P_{q}{ }^{2}\right\}$ in M^{8}, and $p\left(M^{8}\right)$ by the number of components of $M^{3}-P_{1}{ }^{2} \cup \cdots \cup P_{q}{ }^{2}$. Haken's finiteness theorem [3] states that for any compact 3-manifold M^{8}, there is an integer $n\left(M^{3}\right)$ such that M^{8} can not admit more than $n\left(M^{3}\right)$ pairwise disjoint 2 -sided incompressible closed surfaces which are not parallel to each other. So $p\left(M^{3}\right)$ and $q\left(M^{8}\right)$ are finite integers.

In this section, we shall show uniqueness of a complete system of projective planes. From this it follows that the integers $p\left(M^{8}\right)$ and $q\left(M^{8}\right)$ do not depend on the choice of a complete system of projective planes, that is, $p\left(M^{3}\right)$ and $q\left(M^{3}\right)$ are well-defined invariants. So we shall say that a compact connected irreducible 3-manifold M^{3} is of type (p, q), when $p=p\left(M^{3}\right)$ and $q=q\left(M^{3}\right)$. Then M^{3} is not an element of Π if and only if M^{3} is of type (1,0).

Using the following lemma, one can prove that $P^{2} \times S^{1}$ is of type $(1,1)$ and that $P^{2} \times I$ is of type $(2,1)$:

Lemma 1.1. Any projective plane in $\operatorname{Int}\left(P^{2} \times I\right)$ is parallel to $P^{2} \times\{0\}$.
Proof. Let Q^{2} be a projective plane in $\operatorname{Int}\left(P^{2} \times I\right)$, necessarily 2 -sided, and g : $S^{2} \times I \rightarrow P^{2} \times I$ a natural double covering with a covering translation $\rho: S^{2} \times I \rightarrow$
$S^{2} \times I$ such that $\rho\left(S^{2} \times\{t\}\right)=S^{2} \times\{t\}$ for $t \in I$. Let A be a 1 -sided annulus properly embedded in $P^{2} \times I$ which splits $P^{2} \times I$ into a 3-ball; for example, take $l \times I$ as A, where l is a non-trivial simple loop in P^{2}.

By the annulus theorem, 2-spheres $g^{-1}\left(Q^{2}\right)$ and $S^{2} \times\{0\}$ bound a submanifold E of $S^{2} \times I$ homeomorphic to $S^{2} \times I$. We wish to define an embedding $h: S^{2} \times I \rightarrow S^{2} \times I$ so that $h\left(S^{2} \times I\right)=E$ and $h \cdot \rho=\rho \cdot h$ in order to show that $g(E)$ is homeomorphic to $P^{2} \times I$. It is not so difficult to do so in the case that $g^{-1}\left(Q^{2} \cap A\right)$ has precisely one component, as illustrated in Figure 1. Then we shall observe that there is an ambient isotopy of $P^{2} \times I$ which carries Q^{2} into a projective plane $Q_{1}{ }^{2}$ such that $g^{-1}\left(Q_{1}{ }^{2} \cap A\right)$ is a single circle.

Let Q^{2} be in general position with respect to A. Then we have two type of components of $A \cap Q^{2}$; one is a circle parallel to each component of ∂A and the other bounds a 2 -disk in A. If there is a component of $A \cap Q^{2}$ of the second type, choose an innermost one l_{2} in A which bounds a 2 -disk D_{2} in A. Since Q^{2} is incompressible in $P^{2} \times I, l_{2}$ bounds a 2-disk D_{1} in Q^{2} so that $D_{1} \cup D_{2}$ is a 2-sphere. Since $P^{2} \times I$ is irreducible, $D_{1} \cup D_{2}$ bounds a 3-ball B^{3} in $P^{2} \times I$. Therefore there is an ambient isotopy of $P^{2} \times I$ which first carries D_{1} into D_{2} through B^{3} and which next pushes D_{2} so that l_{2} and possibly some other components of $A \cap Q^{2}$ vanish. So we have a composition of such ambient isotopies $H_{t}: P^{2} \times I \rightarrow P^{2} \times I(t \in I)$ such that $A \cap H_{1}\left(Q^{2}\right)$ contains no component of the second type.

Note that $A \cap H_{1}\left(Q^{2}\right) \neq \phi$; otherwise, a 3-ball in $P^{2} \times I-A$ could admit the 2-

Figure 1.
sided embedding of a projective plane $H_{1}\left(Q^{2}\right)$. And note that each component of $A \cap H_{1}\left(Q^{2}\right)$ is an orientation-reversing loop in $P^{2} \times I$ and hence it bounds no 2-disk in $H_{1}\left(Q^{2}\right)$. Because two non-trivial simple loops in a projective plane always intersect each other, $A \cap H_{1}\left(Q^{2}\right)$ and $g^{-1}\left(A \cap H_{1}\left(Q_{2}\right)\right)$ must be single circles. So H_{t} is the required ambient isotopy with $Q_{1}{ }^{2}=H_{1}\left(Q^{2}\right)$. This completes the proof.

Lemma 1.2. Let $\left\{S_{1}, \cdots, S_{n}\right\}$ be a system of mutually disjoint 2 -spheres or 2 sided projective planes and $\left\{F_{1}, \cdots, F_{m}\right\}$ a system of mutually disjoint 2 -sided incompressible surfaces properly embedded in a 3-manifold M^{3}. Suppose that every component of $M^{3}-F_{1} \cup \cdots \cup F_{m}$ is irreducible. Then there is an ambient isotopy of M^{3} which carries $\left\{S_{1}, \cdots, S_{n}\right\}$ into a system disjoint from $\left\{F_{1}, \cdots, F_{m}\right\}$.

Proof. We observe that a Möbius band and an annulus (or another Möbius band) can not be embedded properly and 2 -sidedly in a solid Klein bottle so that they intersect each other transversely along their center lines. So any component l of $S_{i} \cap F_{j}$ bounds a 2-disk D_{1} in S_{i}. If l is innermost in S_{i}, then l bounds a 2disk D_{2} in F_{j} and $D_{1} \cup D_{2}$ is a 2-sphere; for F_{j} is incompressible in M^{8}. Since $M^{3}-F_{1} \cup \cdots \cup F_{m}$ is irreducible, we can push $D_{1} \cup D_{2}$ slightly into $M^{3}-F_{1} \cup \cdots \cup F_{m}$ so that $D_{1} \cup D_{2}$ bounds a 3 -ball in M^{3}. Therefore we have an ambient isotopy of M^{3}, like H_{t} in the proof of Lemma 1.1, which decreases the number of components of $\left(S_{1} \cup \cdots \cup S_{n}\right) \cap\left(F_{1} \cup \cdots \cup F_{m}\right)$. This completes the proof.

Theorem 1. For any compact irreducible 3-manifold, there is a unique finite, possibly empty, complete system of projective planes, up to ambient isotopy.

Proof. Finiteness of a complete system of projective planes follows from Haken's finiteness theorem, as above-mentioned. So we shall show only uniqueness.

Let $\left\{P_{1}{ }^{2}, \cdots, P_{n}{ }^{2}\right\}$ and $\left\{Q_{1}{ }^{2}, \cdots, Q_{m}{ }^{2}\right\}(n \leqq m)$ be two complete systems of projective planes in a compact irreducible 3-manifold M^{3}. Using Lemma 1.2, we may assume that $\left(P_{1}{ }^{2} \cup \cdots \cup P_{n}{ }^{2}\right) \cap\left(Q_{1}{ }^{2} \cup \cdots \cup Q_{m}{ }^{2}\right)=\phi$. By completeness of $\left\{P_{1}{ }^{2}, \cdots, P_{n}{ }^{2}\right\}$, each $Q_{i}{ }^{2}$ is parallel to some $P_{\tau(i)}^{2}$, that is, $Q_{i}{ }^{2} \cup P_{\tau(i)}{ }^{2}$ bounds a submanifold E_{i} of M^{8} homeomorphic to $P^{2} \times I$. Using Lemma 1.1, we observe that if $E_{i} \cap E_{j} \neq \phi$ $(i \neq j)$, then $Q_{i}{ }^{2}$ and $Q_{j}{ }^{2}$ are parallel, which is contrary to completeness of $\left\{Q_{1}{ }^{2}, \cdots\right.$, $\left.Q_{m}{ }^{2}\right\}$. Thus $E_{i} \cap E_{j}=\phi(i \neq j)$, so there is an ambient isotopy which carries $Q_{i}{ }^{2}$ into $P_{\tau(i)}^{2}$ through E_{i}. Necessarily $n=m$ and τ is a bijection. This completes the proof.

Corollary 1.1. We have two well-defined invariants $p\left(M^{3}\right)$ and $q\left(M^{8}\right)$ for a compact irreducible 3-manifold M^{3}.

§ 3. Construction of elements of Π

In this section, we shall construct infinitely many elements of Π from several $P^{2} \times S^{1}$'s. Let $\tau, \rho: R^{3} \rightarrow R^{3}$ be homeomorphisms defined by $\tau(x)=(1 / 2) x$ and $\rho(x)=$ $-x$, respectively, and $g: R^{3}-\{0\} \rightarrow P^{2} \times S^{1}$ the universal covering the group of whose covering translations is generated by τ and ρ. We can take $E_{+}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \boldsymbol{R}^{\mathbf{3}}\right.$: $\left.1 \leqq\|x\| \leqq 2, x_{s} \geqq 0\right\}$ as a fundamental domain homeomorphic to a 3-ball.

Setting $E_{-}=\rho\left(E_{+}\right)$and $S_{t}{ }^{2}=\left\{x \in \boldsymbol{R}^{3}:\|x\|=t\right\}$, consider a non-splittable link $k=$ $k_{1} \cup \cdots \cup k_{n}$ (or a non-trivial knot if $n=1$) within $\operatorname{Int}\left(E_{+} \cup E_{-}\right)$such that for each component $k, \rho\left(k_{i}\right)=k_{i}$. For example, the square knot with $n-1$ trivial knots linking, as shown in Figure 2, is such a link or knot; see the proof of Lemma 2.2. Since $g\left(k_{i}\right)$ is an orientation-reversing loop in $P^{2} \times S^{1}$, a regular neighberhood $N\left(g\left(k_{i}\right), P^{2} \times S^{1}\right)$ of $g\left(k_{i}\right)$ in $P^{2} \times S^{1}$ is a solid Klein bottle. So each component $K_{i}{ }^{2}$ of the boundary of the 3-manifold $P(k)=P^{2} \times S^{1}-\operatorname{Int}\left(N\left(g(k), P^{2} \times S^{1}\right)\right.$) is a Klein bottle.

Lemma 2.1. $P(k)$ above is an irreducible 3-manifold of type (1, 1). Moreover it is boundary-irreducible, that is, $K_{i}{ }^{2}(i=1, \cdots, n)$ is incompressible in $P(k)$.

Proof. Let S^{2} be a 2 -sphere in $\operatorname{Int}(P(k))$. Since $P^{2} \times S^{1}$ is irreducible, S^{3} bounds a 3-ball B^{s} in $P^{2} \times S^{1}$. Since B^{3} can not contain orientation-reversing loops $g\left(k_{1}\right), \cdots, g\left(k_{n}\right), B^{3} \subset P(k)$, so $P(k)$ is irreducible.

Let Q^{2} be a projective plane in $\operatorname{Int}(P(k))$ disjoint from $g\left(S_{1}{ }^{2}\right)$. By Lemma 1.1, Q^{2} is parallel to the projective plane $g\left(S_{1}{ }^{2}\right)$ in $P^{2} \times S^{1}$ and there are two submanifold

Figure 2.
E_{1} and E_{2} of $P^{2} \times S^{1}$ homeomorphic to $P^{2} \times I$ such that $P^{2} \times S^{1}=E_{1} \cup E_{2}$ and $E_{1} \cap E_{2}=$ $\partial E_{1}=\partial E_{2}=Q^{2} \cup g\left(S_{1}{ }^{2}\right)$. Suppose that $E_{1} \supset g\left(k_{1} \cup \cdots \cup k_{l}\right)$ and $E_{2} \supset g\left(k_{l+1} \cup \cdots \cup k_{n}\right)$. Then the 2 -sphere $g^{-1}\left(Q^{2}\right) \cap\left(E_{+} \cup E_{-}\right)$splits k into $k_{1} \cup \cdots \cup k_{l}$ and $k_{l+1} \cup \cdots \cup k_{n}$, contrary to non-splittability of k. Thus one of E_{1} and E_{2} includes $g(k)$ and the other is contained in $P(k)$, so Q^{2} is parallel to $g\left(S_{1}{ }^{2}\right)$ in $P(k)$. This implies that $\left\{g\left(S_{1}{ }^{2}\right)\right\}$ is a complete system. By Theorem 1, $q(P(k))=1$ and $p(P(k))=1$ since $P(k)-g\left(S_{1}{ }^{2}\right)$ is connected.

Boundary-irreducibility of $P(k)$ depends on non-triviality or non-splittability of k. If $K_{i}{ }^{2}$ is compressible in $P(k)$, then there is a 2 -disk D^{2} in $P(k)$ such that $D^{2} \cap K_{i}{ }^{2}=\partial D^{2}$. Since D^{2} is contractible, there is a lifting $g^{-1}\left(D^{2}\right) \cap\left(E_{+} \cup E_{-}\right)$of D^{2}. This implies that k_{i} is a trivial knot splittable from the other components of k, contrary to the assumption of k. Therefore $K_{i}{ }^{2}$ is incompressible in $P(k)$.

The proof is complete.
Lemma 2.2. There are infinitely many closed connected irreducible 3-manifolds of type $(1, q)$ different from $P^{2} \times S^{1}$, for any positive integer q.

Proof. Let $k=k_{1} \cup \cdots \cup k_{n}$ be the link or knot in Figure 2. In particular, k_{1} is the square knot, and $\pi_{1}\left(\boldsymbol{R}^{3}-k_{1}\right)$ has the presentation $(x, y, z ; x y x=y x y, x z x=$ $z x z)$. Each $k_{i}(i=2, \cdots, n)$ represents $y z^{-1}$ in $\pi_{1}\left(R^{3}-k_{1}\right)$. We have the homomorphism Φ from $\pi_{1}\left(\boldsymbol{R}^{8}-k_{1}\right)$ onto the group of permutations of the symbols $\{1,2,3\}$ defined by $\Phi(x)=\Phi(y)=(12)$ and $\Phi(z)=(23)$. Since $\Phi\left(y z^{-1}\right)=(321), y z^{-1}$ is not the identity element of $\pi_{1}\left(\boldsymbol{R}^{3}-k_{1}\right)$, and hence k is not splittable. Thus $P(k)$ exists.

Let M_{1} be a copy of $P\left(k_{1} \cup \cdots \cup k_{q+2 r-1}\right)$ and M_{2}, \cdots, M_{q} copies of $P\left(k_{1}\right) . \quad M_{1}$ has boundary components $K_{1}{ }^{2}, \cdots, K_{q+2 r-1}^{2}$. Attach M_{2}, \cdots, M_{q} to M_{1} by homeomorphisms from Klein bottles $\partial M_{2}, \cdots, \partial M_{q}$ to $K_{1}{ }^{2}, \cdots, K_{q-1}^{2}$, respectively, and identify $K_{q+2 i-2}^{2}$ with $K_{q+2 i-1}^{2}(i=1, \cdots, r)$ so that the resulting 3 -manifold $M(q, r)$ is closed. The lemma follows from the following claims 1 to 4 :

Claim 1. $M(q, r)$ is not homeomorphic to $P^{2} \times S^{1}: M(q, r)$ admits 2-sided Klein bottles $K_{1}{ }^{2}, \cdots, K_{q-1}^{2} ; K_{q}{ }^{2}=K_{q+1}^{2}, \cdots, K_{q+2 r-2}^{2}=K_{q+2 r+1}^{2}$. By Lemma 2.1, these Klein bottles are incompressible in $M(q, r)$, so $\pi_{1}(M(q, r))$ has a non-abelian subgroup isomorphic to $\pi_{1}\left(K_{i}{ }^{2}\right)$. Since $\pi_{1}\left(P^{2} \times S^{1}\right) \cong Z+Z_{2}$ is abelian, $M(q, r)$ can not be homeomorphic to $P^{2} \times S^{1}$.

Claim 2. $M(q, r)$ is irreducible: By Lemma 1.2, any 2-sphere S^{2} can be moved by an ambient isotopy so that afterward $S^{2} \cap\left(K_{1}{ }^{2} \cup \cdots \cup K_{q+2 r-1}^{2}\right)=\phi$. Since $P(k)$ is irreducible, S^{2} bounds a 3-ball in $M(q, r)$, so $M(q, r)$ is irreducible.

Claim 3. $M(q, r)$ is of type $(1, q)$: Let $P_{1}{ }^{2}, \cdots, P_{q}{ }^{2}$ be copies of $g\left(S_{1}{ }^{2}\right)$ lying
in M_{1}, \cdots, M_{q} respectively. Since $M(q, r)-P_{1}{ }^{2} \cup \cdots \cup P_{q}{ }^{2}$ is connected, $P_{i}{ }^{2}$ is not parallel to each other. Let P_{q+1}^{2} be another projective plane in $M(q, r)$ disjoint from $P_{1}{ }^{2} \cup \cdots \cup P_{q}{ }^{2}$. By Lemma 1.2, a certain ambient isotopy carries $\left\{P_{1}{ }^{2}, \cdots\right.$, $\left.P_{q}{ }^{2}, P_{q+1}^{2}\right\}$ into a system disjoint from $\left\{K_{1}{ }^{2}, \cdots, K_{q-1}^{2} ; K_{q}{ }^{2}=K_{q+1}^{2}, \cdots, K_{q+2 r-2}^{2}=K_{q+2 r-1}^{2}\right\}$. Since $q(P(k))=1, P_{q+1}^{2}$ becomes parallel to some $P_{i}{ }^{2}(i=1, \cdots, q)$. This means that $\left\{P_{1}{ }^{2}, \cdots, P_{q}{ }^{2}\right\}$ is a complete system of projective planes. By uniqueness of such a system, we determine $q(M(q, r))=q$ and $p(M(q, r))=1$.

Claim 4. If $r_{2}-r_{1}$ is sufficiently large, then $M\left(q, r_{1}\right)$ and $M\left(q, r_{2}\right)$ are not homeomorphic: $\left\{K_{q}{ }^{2}=K_{q+1}^{2}, \cdots, K_{q+2 r-2}^{2}=K_{q+2 r-1}^{2}\right\}$ is a system of r pairwise disjoint 2-sided incompressible closed surfaces in $M(q, r)$ which are not parallel to each other, so Haken's integer $n(M(q, r))$ is greater than or equal to r. Thus if $r_{2}>$ $n\left(M\left(q, r_{1}\right)\right)$, then $n\left(M\left(q, r_{2}\right)\right)>n\left(M\left(q, r_{1}\right)\right)$, and hence $M\left(q, r_{2}\right)$ is not homeomorphic to $M\left(q, r_{1}\right)$.

The proof is complete.
For an element M^{s} of Π, we define, as follows, a connected graph $G\left(M^{3}\right)$ with p vertices v_{1}, \cdots, v_{p} and q edges e_{1}, \cdots, e_{q}, where $p=p\left(M^{3}\right)$ and $q=q\left(M^{3}\right)$: Let $\left\{P_{1}{ }^{2}, \cdots, P_{q}{ }^{2}\right\}$ be a complete system of projective planes in M^{3}, and identify $P_{i}{ }^{2} \times I$ with a small regular neighberhood $N\left(P_{i}{ }^{2}, M^{3}\right)$ of $P_{i}{ }^{2}$ in M^{3} via a natural homeomorphism. Then $M^{3}-\operatorname{Int}\left(P_{1}{ }^{2} \times I \cup \cdots \cup P_{q}{ }^{2} \times I\right)$ has p components V_{1}, \cdots, V_{p} whose boundaries consist of $P_{i}{ }^{2} \times\{0\}$ and $P_{i}{ }^{2} \times\{1\}(i=1, \cdots, q)$. Join v_{i} and v_{j} with e_{k} if $P_{k}{ }^{2} \times\{0\} \subset V_{i}$ and $P_{k}^{2} \times\{1\} \subset V_{j}$. For example, $G\left(P^{2} \times S^{1}\right)$ is a single vertex v_{1} with a self-loop e_{1}, and $G\left(P^{2} \times I\right)$ has two vertices v_{1}, v_{2} and one edge e_{1} joining them. If one regards $G\left(M^{3}\right)$ as a topological space, then there is an embedding $h: G\left(M^{3}\right) \rightarrow M^{3}$ such that $h\left(v_{i}\right)$ is a point in Int $\left(V_{i}\right)$ and $h\left(e_{k}\right)$ is an arc or loop in M^{3} intersecting $P_{k}{ }^{2}$ transversely in one point. By Theorem 1, it is clear that if $M_{1}{ }^{3}$ and $M_{2}{ }^{3}$ are homeomorphic, then $G\left(M_{1}{ }^{3}\right)$ and $G\left(M_{2}{ }^{3}\right)$ are isomorphic as graphs.

The degree $\operatorname{deg}(v)$ of a vertex v in a graph G is the number of edges of G incident with v, each self-loop counting as two edges. A connected graph G is said to be eulerian if each vertex of G has even degree,

Lemma 2.3. If M^{3} is an element of Π_{c}, then $G\left(M^{3}\right)$ is eulerian.
Proof. Now $\operatorname{deg}\left(v_{i}\right)$ in $G\left(M^{3}\right)$ is equal to the number of components of ∂V_{i}. Furthermore $\operatorname{deg}\left(v_{i}\right)=\chi\left(\partial V_{i}\right)$, where $\chi(A)$ is the Euler characteristic of A. For V_{i} has only boundary components homeomorphic to P^{2} and $\chi\left(P^{2}\right)=1$. Since $\chi\left(M^{3}\right)=$ $(1 / 2) \chi\left(\partial M^{3}\right)$ for a compact 3 -manifold M^{3}, in general, deg $\left(v_{i}\right)$ must be an even integer.

Theorem 2. For any eulerian graph G, there are infintely many elements M^{s} of Π_{c} such that $G\left(M^{s}\right)$ is isomorphic to G.

Proof. Let v_{1}, \cdots, v_{p} be vertices and e_{1}, \cdots, e_{q} edges of G. Choose a closed connected irreducible 3 -manifold M_{i} of type ($1, q_{i}$) corresponding to v_{i}, where $2 q_{i}=$ $\operatorname{deg}\left(v_{i}\right)(i=1, \cdots, p)$. Let $\left\{P_{i 1}^{2}, \cdots, P_{i q_{i}}^{2}\right\}$ be a complete system of projective planes in M_{i}. Then a 3 -manifold $V_{i}=M_{i}-\operatorname{Int}\left(N\left(P_{i 1}^{2} \cup \cdots \cup P_{i i_{i}}^{2}, M_{i}\right)\right)$ has $2 q_{i}$ boundary components which are all homeomorphic to a projective plane and $q_{1}+\cdots+q_{p}=q$. Let $Q_{1}{ }^{2}, \cdots, Q_{2 q}^{2}$ be the components of $\partial\left(V_{1} \cup \cdots \cup V_{p}\right)$ numbered so that if e_{k} joins v_{i} and v_{j}, then $Q_{2 k-1}^{2} \subset V_{i}$ and $Q_{2 k}^{2} \subset V_{j}$. Let M^{3} be the closed 3-manifold obtained from $V_{1} \cup \cdots \cup V_{p}$ by identifying $Q_{2 k-1}^{2}$ with $Q_{2 k}^{2}$ for $k=1, \cdots, q$. Using Lemma 1.2 and Theorem 1, we can prove that M^{3} is an irreducible 3-manifold of type (p, q) and that $G\left(M^{s}\right)$ is isomorphic to G. By Lemma 2, 2, various choice of M_{1}, \cdots, M_{p} gives infinitely many required 3-manifolds. This completes the proof.

Corollary 2.1. Let p and q be positive integers. There is an element of type (p, q) in Π_{c} if and only if $p \leqq q$.

Proof. Note that if a connected graph G has p vertices and q edges, then $p \leqq q+1$ and that $p=q+1$ if and only if G is a tree; see [4]. Since a tree is not eulerian, necessity is clear. If $p \leqq q$, then we have an eulerian graph $G(p, q)$ with vertices v_{1}, \cdots, v_{p} and edges e_{1}, \cdots, e_{q} such that e_{i} joins v_{i} and $v_{i+1}(i=1, \cdots, p-1)$, e_{p} joins v_{p} and v_{1}, and e_{j} is a self-loop attaching to one of $v_{1}, \cdots, v_{p}(j=p+1, \cdots, q)$,

Figure 3.
as illustrated in Figure 3. By Theorem 2, there is a closed connected irreducible 3 -manifold M^{3} of type (p, q) associated with $G(p, q)$, and sufficiency follows.

Corollary 2.2. Let p and q be positive integers. There is an element of type (p, q) in Π_{b} if and only if $p \leqq q+1$.

Proof. Necessity is clear. When $p \leqq q$, construct a closed irreducible 3manifold M^{3} of type (p, q) associated with $G(p, q)$ above in the way of the proof of Theorem 2. If we use $M\left(q_{i}, r\right)(r>0)$ as M_{i}, then M^{3} contains a 2-sided incompressible Klein bottle K^{2} within V_{i} which does not separate V_{i} and which is disjoint from a complete system $\left\{Q_{2}{ }^{2}, Q_{4}{ }^{2}, \cdots, Q_{2 q}^{2}\right\}$ of projective planes in M^{3}. Cut M^{3} along K^{2}. Then the resulting 3 -manifold $M_{b}{ }^{3}$ belongs to Π_{b} and $\left\{Q_{2}{ }^{2}, \cdots, Q_{2 q}^{2}\right\}$ can be regarded as a complete system in $M_{b}{ }^{3}$, so $M_{b}{ }^{3}$ is of type (p, q).

When $2<p=q+1$, construct a closed irreducible 3-manifold M^{3} of type ($p-2$, $p-2)$ not homeomorphic to $P^{2} \times S^{1}$, associated with the cycle $G(p-2, p-2)$ of length $p-2$, and cut M^{3} along a 2 -sided projective plane in M^{3}. The resulting 3 -manifold belongs to Π_{0} and is of type $(p, p-1)$. For $(p, q)=(2,1)$, we have $P^{2} \times I$.

The proof is complete.
Corollary 2.3. For any connected graph G, there is an element M^{3} in Π_{a} such that $G\left(M^{3}\right)$ is isomorphic to G. Therefore there is an element of type (p, q) in Π_{a} if and only if $p \leqq q+1$, for positive integers p and q.

Proof. It is sufficient to construct a bounded irreducible 3-manifold $V(d)$ such that $\partial V(d)$ contains precisely d projective planes and a compressible closed surface and that each projective plane in $\operatorname{Int}(V(d))$ is parallel to a boundary component, for any integer $d \geqq 2$. Copy $V(d)$ for each vertex of G which has degree d, and paste them.

Let $\left\{P_{1}{ }^{2}, \cdots, P_{q}{ }^{2}\right\}$ be a complete system of projective planes in $M(q, r)(q, r>0)$ and K^{2} a 2 -sided incompressible Klein bottle in $M(q, r)$ disjoint from the complete system such that $M(q, r)-P_{1}{ }^{2} \cup \cdots \cup P_{q}{ }^{2} \cup K^{2}$ is connected. The 3-manifold $W(q)=$ $M(q, r)-\operatorname{Int}\left(N\left(P_{1}{ }^{2} \cup \cdots \cup P_{q}{ }^{2} \cup K^{2}, M(q, r)\right)\right)$ has $2 q$ projective planes and two incompressible Klein bottles K_{+}^{2}, K_{-}^{2} as boundary components. To make a compressible boundary component, attach a 1-handle $D^{2} \times I$ to $W(q)$ so that $D^{2} \times \partial I$ lies in $K_{+}{ }^{2} \cup K_{-}{ }^{2}$. For an even integer $d=2 q$, we can take the resulting 3 -manifold as $V(d)$. When $d=2 q+1$, we have to make not only a compressible boundary component but also one more projective plane. Let $D_{1}{ }^{2}$ and $D_{2}{ }^{2}$ be 2 -disks in $K_{+}{ }^{2}$ and $P^{2} \times\{0\}$, respectively. Attach $P^{2} \times I$ to $W(q)$ via a homeomorphism from $D_{2}{ }^{2}$
to $D_{1}{ }^{2}$, then $V(d)$ will be obtained. This completes the proof.
The question whether there is a bounded 3 -manifold in Π_{b} associated with an arbitrary connected graph or not naturally arises. Unfortunately I don't have the answer. If one would like to give the affirmative solution, he ought to construct a boundary-irreducible 3-manifold whose boundary contains an odd number of projective planes. Construction of such 3 -manifolds is easy if we take no account of their boundary-irreducibility, but it is so difficult to check whether they are boundary-irreducible or not.

§ 4. Invariants related to $G\left(M^{3}\right)$

Our theory admits all of invariants in graph theory, since the graph $G\left(M^{3}\right)$ is a stronger invariant. For example, $\delta\left(M^{8}\right)$ is defined to be the minimum degree among the vertices of $G\left(M^{3}\right)$ for $M^{3} \in \Pi$. Then $\delta\left(M^{3}\right)=1$ if and only if ∂M^{3} contains a projective plane.

We have an invariant which is connected with the homology group of M^{3}. We define $r\left(M^{3}\right)$ by the 1-dimensional Betti number $\beta_{1}\left(G\left(M^{3}\right)\right)=\operatorname{rank} H_{1}\left(G\left(M^{3}\right)\right)$ of the topological space $G\left(M^{3}\right)$. If M^{3} is of type (p, q), then $r\left(M^{8}\right)=q-p+1$, concretely, and $r\left(M^{8}\right)$ is the number of edges contained in the cotree of a spanning tree of the graph $G\left(M^{3}\right)$, graph-theoretically. From a geometric point of view, $r\left(M^{3}\right)$ can be said to be the maximum number of pairwise disjoint projective planes in Int (M^{8}) whose removal can not disconnect M^{3}.

Denote the submodule of $H_{2}\left(M^{3}, \partial M^{8} ; Z_{2}\right)$ generated by all of embeddings of of a projective plane, by $H_{2}{ }^{p}\left(M^{3}, \partial M^{3} ; Z_{2}\right)$.

Theorem 3.1. For an element M^{3} of Π, $\operatorname{dim} H_{2}{ }^{p}\left(M^{8}, \partial M^{8} ; Z_{2}\right)=r\left(M^{3}\right) \leqq \beta_{1}\left(M^{3}\right)$.
Proof. Let v_{1}, \cdots, v_{p} be vertices and e_{1}, \cdots, e_{q} edges being arcs or loops of the topological space $G\left(M^{3}\right)$. Let $P_{k}{ }^{2} \times I(k=1, \cdots, q)$ be a regular neighberhood of $P_{k}{ }^{2}$ in M^{3} which belongs to a complete system of projective planes in M^{3}, corresponding to e_{k}, and $V_{i}(i=1, \cdots, p)$ a component of $M^{3}-\operatorname{Int}\left(P_{1}{ }^{2} \times I \cup \cdots \cup\right.$ $P_{q}{ }^{2} \times I$) corresponding to v_{i}. Then there is a continuous map $f: M^{3} \rightarrow G\left(M^{8}\right)$ such that $f\left(V_{i}\right)=v_{i}$ and $f\left(P_{k}{ }^{2} \times I\right)=e_{k}$. Since $f_{*}: H_{1}\left(M^{3}\right) \rightarrow H_{1}\left(G\left(M^{3}\right)\right)$ is surjective, $\beta_{1}\left(M^{3}\right) \geqq$ $\beta_{1}\left(G\left(M^{3}\right)\right)=r\left(M^{8}\right)$, so the right-hand inequality holds.

Let $\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$ be a basis of $H_{2}{ }^{p}\left(M^{3}, \partial M^{8} ; Z_{2}\right)$, where $r=\operatorname{dim} H_{2}{ }^{p}\left(M^{3}, \partial M^{8} ; Z_{2}\right)$. Since any 2 -sphere is homologically zero in M^{8}, there are r pairwise disjoint 2sided projective planes $Q_{1}{ }^{2}, \cdots, Q_{r}{ }^{2}$ such that $\left[Q_{i}{ }^{2}\right]=\alpha_{i}$. Necessarily $Q_{1}{ }^{2}, \cdots, Q_{r}{ }^{2}$ are not parallel to each other, and $M^{3}-Q_{1}{ }^{2} \cup \cdots \cup Q_{r}{ }^{2}$ is connected. By Theorem

1 , an ambient isotopy carries $Q_{1}{ }^{2}, \cdots, Q_{r}{ }^{2}$ into $P_{1}{ }^{2}, \cdots, P_{r}{ }^{2}$, after modification of the subscripts.

If the graph obtained from $G\left(M^{3}\right)$ by deleting e_{1}, \cdots, e_{r} is not a tree, then there is another projective plane, say P_{r+1}^{2}, such that $M^{8}-P_{1}{ }^{2} \cup \cdots \cup P_{r}{ }^{2} \cup P_{r+1}^{2}$ is connected, so $P_{1}{ }^{2}, \cdots, P_{r}{ }^{2}, P_{r+1}^{2}$ are Z_{2}-homologically independent. This contradicts the choice of r. Therefore e_{1}, \cdots, e_{r} make up a cotree of $G\left(M^{3}\right)$ and $r=q-p+1=$ $r\left(M^{3}\right)$, so the left-hand equality holds.

Most of non-orientable compact 3 -manifolds M^{3} have infinite $H_{1}\left(M^{3}\right)$ and exceptions contain projective planes as boundary components. Hempel constructed such exceptions whose boundaries contain $2 n$ projective planes and one closed orientable surface (Example 6.10 in [5]). His examples blong to Π_{b}, which he did not mention. Even if one wish to construct a 3-manifold M^{3} such that $H_{1}\left(M^{8}\right)$ is infinite and each component of ∂M^{3} is a projective plane, we can meet his requirement. Cut an element $M_{1}{ }^{3}$ with $r\left(M_{1}{ }^{8}\right)=r+n$ of Π_{c} along n mutually disjoint projective planes corresponding to some edges of a cotree in $G\left(M_{1}{ }^{3}\right)$. Then the resulting 3 -manifold M^{3} belongs to Π_{b}, and $\beta_{1}\left(M^{3}\right) \geqq r\left(M^{3}\right)=r$.

Since we have irreducible closed 3 -manifolds with non-trivial π_{2} different from $P^{2} \times S^{1}$, it follows from Tao's result stated in Introduction that there are those prime closed 3 -manifolds whose orientable double covering spaces are not prime. In fact, each element M^{3} of Π_{c} except $P^{2} \times S^{1}$ is such a 3 -manifold. Let $g: \widetilde{M} \rightarrow M^{3}$ be the orientable double covering. For any projective plane Q^{2} in $M^{3}, g^{-1}\left(Q^{2}\right)$ is a non-separating 2 -sphere in \tilde{M}. Thus \tilde{M} has $S^{2} \times S^{1}$ as a prime facter. In particular, the orientable double covering spaces of our examples are homeomorphic to connected sums of several $S^{2} \times S^{1}$'s and unions of knot or link spaces with their boundaries identified. Therefore if \tilde{M} is prime, then \tilde{M} is homeomorphic to $S^{2} \times S^{1}$, and hence M^{3} is homeomorphic to $P^{2} \times S^{1}$, which one can prove using Theorem 1 in [8]. So $P^{2} \times S^{1}$ can be said to be the unique 3 -manifold in Π_{c} whose orientable double covering space is prime. Moreover we have a characterization of $P^{2} \times S^{1}$ in terms of our theory, as follows:

Theorem 3.2. Let M^{3} be an element of Π_{c}. Then the followings (1) to (3) are equivalent:
(1) M^{3} is homeomorphic to $P^{2} \times S^{1}$.
(2) There is a double covering space \tilde{M} of M^{3} such that \tilde{M} belongs to Π_{c} and $q(\tilde{M})=q\left(M^{3}\right)$.
(3) For every compact covering space \tilde{M} of M^{3} belonging to $\Pi_{c}, q(\tilde{M})=q\left(M^{3}\right)$.

Proof. A compact covering space of $P^{2} \times S^{1}$ is homeomorphic to either $P^{2} \times S^{1}$ or a 2 -sphere bundle over S^{1}. Since the latter is not an element of Π_{c}, (1) implies (3) immediately.

Let $P^{2} \times I$ be a regular neighberhood of a projective plane P^{2} in M^{3}, and $\left(M_{i}, P_{i 0}^{2}, P_{i 1}^{2}\right)(i=1,2)$ two copies of ($\left.M^{3}-\operatorname{Int}\left(P^{2} \times I\right), P^{2} \times\{0\}, P^{2} \times\{1\}\right)$. Then the 3-manifold \tilde{M} obtained from $M_{1} \cup M_{2}$ by identifying P_{10}^{2} with P_{21}^{2} and P_{11}^{2} with P_{20}^{2} is a double covering space of M^{3}. Suppose (3), then $q(\tilde{M})=q\left(M^{3}\right)$, so (3) implies (2).

Let $g: \tilde{M} \rightarrow M^{3}$ be a double covering with the covering translation $\tau: \tilde{M} \rightarrow \tilde{M}$ of order two. Suppose that \tilde{M} is irreducible and that $q(\tilde{M})=q\left(M^{8}\right)$. Let $\left\{P_{1}{ }^{2}, \cdots\right.$, $\left.P_{q}{ }^{2}\right\}$ be a complete system of projective planes in M^{3}, where $q=q\left(M^{3}\right)$. By irreducibility of $\tilde{M}, g^{-1}\left(P_{1}{ }^{2} \cup \cdots \cup P_{q}{ }^{2}\right)$ consists of $2 q$ projective planes $Q_{1}{ }^{2}, \cdots, Q_{2 q}{ }^{2}$. Since $q(\tilde{M})=q\left(M^{3}\right)$, some pair are parallel and bound a submanifold E of \tilde{M} homeomorphic to $P^{2} \times I$, say $Q_{1}{ }^{2}$ and $Q_{2}{ }^{2}$. We may assume that $E \cap Q_{i}{ }^{2}=\phi$ ($i=$ $3, \cdots, 2 q)$, by Lemma 1.1 and that $\tau(\operatorname{Int} E)) \cap \operatorname{Int}(E)=\phi$, by the fact that a single projective plane can not bound a compact 3-manifold. If $g\left(Q_{1}{ }^{2}\right) \neq g\left(Q_{2}{ }^{2}\right)$, then $g \mid E$ is an embedding and $g\left(Q_{1}{ }^{2}\right)$ and $g\left(Q_{2}{ }^{2}\right)$ are parallel. This contraditcs the fact that $g\left(Q_{1}{ }^{2}\right)$ and $g\left(Q_{2}{ }^{2}\right)$ are menbers of the complete system of projective planes in M^{3}. Therefore $g\left(Q_{1}{ }^{2}\right)=g\left(Q_{2}{ }^{2}\right)$ and $M^{3}=g(E)$ is homeomorphic to $P^{2} \times S^{1}$, so (2) implies (1).

This completes the proof.

References

[1] D. B. A. Epstein: Projective planes in 3-manifolds, Proc. London Mat. Soc. (3) 11 (1961), 469-484.
[2] C.D. Feustel: \mathscr{N}^{3} admitting a certain embedding of P^{2} is a pseudo P^{3}, Proc. Amer. Math. Soc. 26 (1970), 215-216.
[3] W. Haken: Some results on surfaces in 3-manifolds, Studies in Modern Topology, Math. Assoc. Amer., distributed by Prentice Hall (1968), 34-98.
[4] F. Harary: Graph Theory, Addison Wesely, Reading Mass., 1969.
[5] J. Hempel: 3-manifolds, Ann. of Math. Studies 86, Prineton University Press, Princeton, New Jersey, 1976.
[6] M. Ochiai: 2-Sided embeddings of projective planes into 3-manifolds, to appear.
[7] D. Rolfsen: Knots and Links, Math. Lecture Series 7, Publish or Perish, Inc., 1976.
[8] Y. Tao: On fixed point free involutions of $S^{1} \times S^{2}$, Osaka Math. J. 14 (1962), 145-152.
[9] F. Waldhausen: On irreducible 3 -manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56-88.

