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\S 1. Introduction

Let $\Pi$ be the set of compact connected irreducible 3-manifolds with non-trivial
$\pi_{2}$ . Using the sphere $threm$ , one can prove that under the Poincar\’e conjecture,
an orientable 3-manifold $M^{3}$ is irreducible if and only if $\pi_{2}(M^{\epsilon})$ is trivial. So any
3-manifold in $\Pi$ is non-orientable. From the projective plane theorem, it follows
that any 3-manifold $M^{3}$ in $\Pi$ admits a 2-sided embedding of a projective plane,
and the converse is also true; Feustel [2] showed that if there is an embedding
$h:P\rightarrow M^{3}$ such that $h_{*}:\pi_{2}(P)\rightarrow\pi_{2}(M^{3})$ is trivial, then $M^{\epsilon}$ is $hommorphic$ to
$P^{a}\#\Sigma 3$ where $P^{3}$ and $\Sigma 3$ are a 3-dimensional projective space and a homotopy 3-
sphere, raepectively.

Let $\Pi_{\epsilon}$ and $\Pi_{b}$ be the subsets of $\Pi$ consisting of closed $3\cdot manifolds$ and boundary-
irreducible $3\cdot manifolds$ with non-empty boundary, respectively. A few 3-manifolds
in $\Pi_{\epsilon}$ or $\Pi_{b}$ have been known. For example, $P^{2}\times S^{1}$ belongs to $\Pi_{\epsilon}$ , and $P\times I$ to
$\Pi_{b}$ . It is however easy to construct infinitely many elements of the complement
$\Pi_{a}$ of $\Pi_{b}\cup\Pi_{\epsilon}$ ; attach l-handles to $P\times I$.

In [8], Tao proved that under the Poincar\’e conjecture, the orientable double
covering space of any prime closed 3-manifold is also prime, with respeCt to con-
nected sums $\#$, if and only if $P\times S^{1}$ is the only one connected closed irreducible
3-manifold with non-trivial $\pi_{2}$ . Recently Ochiai [6] has shown that if a closed 3-
manifold $M^{3}$ which has a Heegaard splitting of genus two admits a 2-sided em-
bedding of a projective plane, then $M^{8}$ is homeomorphic to $P\times S^{1}$ . Naturally one
may $\exp\propto t$ that $\Pi_{\epsilon}$ would be the singleton $\{P\times S^{1}\}$ . But we shall show that $\Pi_{\epsilon}$

includes infinitely many elements which can be distinguished by several well-defined
invariants:

Main Theorem. There are infinitely many closed connected irreducible 3-
manifolds with non-trivial $\pi_{2}$ .

The existence is due to knot and link theory and oeoecially the fact that the
boundary of a knot space of a non-trivial knot is an incompraesible torus. To
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prove the infiniteness, we shall define a connected graph $G(M^{3})$ , for an element
$M^{8}$ of $\Pi$ , which describes a structure of $M^{3}$ induced by a specific system of
projective planes in $M^{3}$ .

We shall work in the piecewise linear category through this Paoer, and use
mostly the terminology and the notation in [5].

I would like to express my hearty thanks Prof. T. Homma for helpful
conversations.

\S 2. Complete systems of Projective planes

Let $M^{3}$ be a 3-manifold and $F_{0},$ $F_{1}$ closed 2-manifolds or surfaces embedded
in Int $(M$’ $)$ . Then $F_{0}$ and $F_{1}$ are said to be Parallel if there is an emkdding
$h:F\times I\rightarrow M^{3}$ such that $h(F\chi\{0\})=F_{0}$ and $h(F\times\{1\})=F_{1}$ . A comPlete system of
projective planes in $M^{8}$ is defined to be a system $\{P_{\iota^{2}}, \cdots, P_{q^{2}}\}$ of mutually disjoint
2-sided projective planes in Int $(M^{3})$ satisfying the following conditions 1 and 2:

1. Every $P_{:}^{2}$ is not parallel to each other.
2. If $P_{q+1}$ is a 2-sided projective plane in $M^{3}$ disjoint from $P_{1}^{2}\cup\cdots\cup P_{q^{2}}$ , then

$P_{q+1}$ is parallel to some $P_{\ell}^{2}(i=1, \cdots, q)$ .
For any compact irreducible 3-manifold $M^{3}$ , we define $q(M$ ’ $)$ by the number

of projective planes contained in a complete system $\{P_{1^{2}}, \cdots, P_{q^{2}}\}$ in $M^{8}$ , and $p(M$’ $)$

by the number of components of $M^{8}-P_{\iota^{2}}\cup\cdots\cup P_{q^{2}}$ . Haken’s finiteness theorem
[3] states that for any compact 3-manifold $M^{8}$ , there is an integer $n(M$’ $)$ such
that $M^{8}$ can not admit more than $n(M^{3})$ pairwise disjoint 2-sided incompressible
closed surfaces which are not parallel to each other. So $p(M^{\epsilon})$ and $q(M$’ $)$ are
finite integers.

In this section, we shall show uniqueness of a complete system of projective
plan\’e. From this it follows that the integers $p(M)$ and $q(M^{8})$ do not depend on
the choice of a complete system of projective planes, that is, $P(M^{S})$ and $q(M^{3})$

are well-defined invariants. So we shall say that a compact connected irreducible
3-manifold $M^{8}$ is of $tyPe(p, q)$ , when $p=p(M$’ $)$ and $q=q(M$ ’ $)$ . Then $M^{8}$ is not
an element of $\Pi$ if and only if $M^{3}$ is of type $(1, 0)$ .

Using the following lemma, one can prove that $P\times S^{1}$ is of type $(1, 1)$ and
that $P\times I$ is of type $(2, 1)$ :

Lemma 1.1. Any projective Plane in Int $(P\times I)$ is Parallel to $P^{2}\times\{0\}$ .
Proof. Let $Q^{2}$ be a projective plane in Int $(P^{2}\times I)$ , necessanily 2-sided, and

$g;S^{2}\times I\rightarrow P\times I$ a natural double covering with a covering translation $\rho:S^{2}\times I\rightarrow$
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$S^{2}\times I$ such that $\rho(S^{2}\times\{t\})=S^{2}\times\{t\}$ for $t\in I$. Let $A$ be a l-sided annulus properly
embedded in $P\times I$ which splits $P\times I$ into a 3-ball; for example, take $l\times I$ as $A$ ,

where $l$ is a non-trivial simple $1p$ in $P$ .
By the annulus $threm$ , 2-spheres $g^{-1}(Q^{2})$ and $S^{2}\times\{0\}$ bound a submanifold $E$

of $S^{2}\times Ihommorphic$ to $S^{2}\times I$. We wish to define an embedding $h:S^{2}\times I\rightarrow S^{2}\times I$

so that $h(S^{2}\times I)=E$ and $h\cdot\rho=\rho\cdot h$ in order to show that $g(E)$ is homeomorphic
to $P\times I$. It is not so difficult to do so in the case that $g^{-1}(Q^{2}\cap A)$ has precisely
one component, as illustrated in Figure 1. Then we shall observe that there is an
ambient isotopy of $P\times I$ which carries $Q^{2}$ into a projective plane $Q_{1}$ such that
$g^{-1}(Q_{1}^{2}\cap A)$ is a single circle.

Let $Q^{2}$ be in general poeition with respect to $A$ . Then we have two type of
components of $A\cap Q^{2}$ ; one is a circle parallel to each component of $\partial A$ and the
other bounds a 2-disk in $A$ . If there is a component of $A\cap Q^{2}$ of the second type,
choose an innermost one $l_{2}$ in $A$ which bounds a 2-disk $D_{2}$ in $A$ . Since $Q^{2}$ is
incompressible in $P\times I,$ $l_{2}$ bounds a 2-disk $D_{1}$ in $Q^{2}$ so that $D_{1}UD$, is a 2-sphere.
Since $P\times I$ is irreducible, $D_{1}\cup D_{2}$ bounds a 3-ball $B^{s}$ in $P\times I$. Therefore there
is an ambient isotopy of $P\times I$ which first carries $D_{1}$ into $D_{2}$ through $B$ and which
next pushes $D_{2}$ so that $l_{2}$ and poesibly some other components of $A\cap Q^{2}$ vanish.
So we have a composition of such ambient isotopies $H_{\ell}:P^{2}\times I\rightarrow P\times I(t\in I)$ such
that $A\cap H_{1}(Q^{2})$ contains no component of the second type.

Note that $ A\cap H_{1}(Q^{2})\neq\phi$ ; otherwise, a 3-ball in $P^{2}\times I-A$ could admit the 2-

Figure 1.
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sided embedding of a projective plane $H_{1}(Q^{2})$ . And note that each component of
$A\cap H_{1}(Q^{2})$ is an orientation-reversing $1p$ in $P^{2}\times I$ and hence it bounds no 2-disk
in $H_{1}(Q^{2})$ . Because two non-trivial simple loops in a projective plane always

intersect each other, $A\cap H_{1}(Q^{2})$ and $g^{-1}(A\cap H_{1}(Q_{2}))$ must be single circles. So $H_{t}$

is the required ambient isotopy with $Q_{1^{2}}=H_{1}(Q^{2})$ . This completes the $prf$ .

Lemma 1.2. Let $\{S_{1}, \cdots, S_{n}\}$ be a system of mutually disjoint 2-spheres or 2-
sided projective planes and $\{F_{1}, \cdots, F_{m}\}$ a system of mutually disjoint 2-sided in-
compressible surfaces Properly embedded in a $3- manif_{0}uM^{3}$ . SuPpose that every
compment of $M^{3}-F_{1}\cup\cdots\cup F_{m}$ is irreducible. Then there is an ambient isotopy

of $M^{3}$ which carries $\{S_{1}, \cdots, S_{n}\}$ into a system disjoint from $\{F_{1}, \cdots, F_{m}\}$ .
Proof. We observe that a M\"obius band and an annulus (or another M\"obius

band) can not be embedded properly and 2-sidedly in a solid Klein bottle so that
they intersect each other transversely along their center lines. So any $m\Re nent$

$l$ of $S_{i}\cap F_{j}$ bounds a 2-disk $D_{1}$ in $S_{i}$ . If $l$ is innermost in $S_{\ell}$ , then $l$ bounds a 2-
disk $D_{2}$ in $F_{j}$ and $D_{1}\cup D_{2}$ is a 2-sphere; for $F_{f}$ is incompressible in $M$ . Since
$M^{3}-F_{1}\cup\cdots UF_{m}$ is irreducible, we can push $D_{1}UD_{2}$ slightly into $M^{3}-F_{1}\cup\cdots\cup F_{m}$

so that $D_{1}UD_{2}$ bounds a 3-ball in $M^{3}$ . Therefore we have an ambient isotopy of
$M^{8}$ , like $H_{l}$ in the proof of Lemma 1.1, which decreases the number of components

of $(S_{1}U\cdots\cup S_{n})\cap(F_{1}\cup\cdots\cup F_{m})$ . This completes the $prf$ .
Theorem 1. For any compact irreducible 3-manifold, there is a unique finite,

possibly empty, comPlete system of projective Planes, $uP$ to ambient isotoPy.

Proof. Finiteness of a complete system of Projective planes follows from
Haken’s finiteness theorem, as above-mentioned. So we shall show only uniqueness.

Let $\{P_{\iota^{2}}, \cdots, P_{n}^{2}\}$ and $\{Q_{1^{2}}, \cdots, Q_{m}^{2}\}(n\leqq m)$ be two complete systems of projec-
tive planes in a compact irreducible 3-manifold $M^{8}$ . Using Lemma 1.2, we may
assume that $(P_{1}^{2}U\cdots\cup P_{n}^{2})\cap(Q_{1^{2}}\cup\cdots\cup Q_{m}^{2})=\phi$ . By completeness of $\{P_{1^{2}}, \cdots, P_{n^{2}}\}$ ,

each $Q_{i}^{2}$ is parallel to some $P_{\tau(:)}$ , that is, $Q_{t}^{2}\cup P_{\tau(\ell)}$ bounds a submanifold $E_{\ell}$ of
$M^{8}hommorphic$ to $P\times I$. Using Lemma 1.1, we observe that if $ E_{\mathfrak{i}}\cap E_{j}\neq\phi$

$(i\neq j)$ , then $Q_{\ell}^{2}$ and $Q_{J^{2}}$ are parallel, which is contrary to completeness of $\{Q_{\iota^{2}},$ $\cdots$ ,
$Q_{m}^{2}\}$ . Thus $E_{t}\cap E_{j}=\phi(i\neq j)$ , so there is an ambient isotopy which carries $Q_{\ell^{2}}$ into
$P_{\tau(i)}$ through $E_{i}$ . Necessarily $n=m$ and $\tau$ is a bijection. This completes the
proof.

Corollary 1.1. We have two well-defined invariants $p(M^{3})$ and $q(M^{B})$ for a
comPact irreducible 3-manifold $M^{3}$ .
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\S 3. Construction of elements of $\Pi$

In this section, we shall construct infinitely many elements of $\Pi$ from several
$P\times S^{1}’ s$ . Let $\tau,$

$\rho:R^{3}\rightarrow R^{3}$ be homeomorphisms defined by $\tau(x)=(1/2)x$ and $\rho(x)=$

$-x,$ raeoectively, and $g:R^{3}-\{O\}\rightarrow P\times S^{1}$ the universal covering the group of whose
covering translations is generated by $\tau$ and $p$ . We can take $E_{+}=\{x=(x_{1}, x_{2}, x_{3})eR^{8}$ :
$1\leqq\Vert x||\leqq 2,$ $x_{8}\geqq 0$} as a fundamental domain $hommorphic$ to a 3-ball.

Setting $E_{-}=\rho(E_{+})$ and $S_{t}^{2}=\{x\in R^{3}:\Vert x\Vert=t\}$ , consider a non-splittable link $k=$

$k_{1}U\cdots\cup k_{n}$ (or a non-trivial knot if $n=1$ ) within Int $(E_{+}UE_{-})$ such that for each
component $k,$ $\rho(k_{i})=k_{l}$ . For example, the square knot with $n-1$ trivial knots
linking, as shown in Figure 2, is such a link or knot; see the $prf$ of Lemma
2.2. Since $g(h)$ is an orientation-reversing $1p$ in $P\times S^{1}$ , a regular $neigh\Re rhd$

$N(g(k_{:}), P\times S^{1})$ of $g(k_{i})$ in $P\times S^{1}$ is a solid Klein bottle. So each component $K_{\ell}^{2}$

of the boundary of the 3-manifold $P(k)=P\times S^{1}-$ Int $(N(g(k), P\times S^{1}))$ is a Klein
bottle.

Lemma 2.1. $P(k)$ above is an irreducible 3-manifold of type $(1, 1)$ . Moreover
it is boundary-irreducible, that is, $K^{2}(i=1, \cdots, n)$ is incompressible in $P(k)$ .

Proof. Let $S^{2}$ be a 2-sphere in Int $(P(k))$ . Since $P\times S^{1}$ is irreducible, $S^{\epsilon}$

bounds a 3-ball $B^{\theta}$ in $P\times S^{1}$ . Since $B^{3}$ can not contain orientation-reversing loops
$g(k_{1}),$ $\cdots,$ $g(k,),$ $B^{3}\subset P(k)$ , so $P(k)$ is irreducible.

Let $Q^{2}$ be a projective plane in Int $(P(k))$ disjoint from $g(S_{1}^{2})$ . By Lemma 1.1,
$Q^{2}$ is parallel to the projective plane $g(S_{1}^{2})$ in $P^{2}\times S^{1}$ and there are two submanifold

Figure 2.
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$E_{1}$ and $E_{2}$ of $P^{2}\times S^{1}$ homeomorphic to $P^{2}\times I$ such that $P^{2}\times S^{1}=E_{1}\cup E_{2}$ and $E_{1}\cap E_{2}=$

$\partial E_{1}=\partial E_{2}=Q^{2}\cup g(S_{1^{2}})$ . Suppose that $E_{1}\supset g(k_{1}\cup\cdots\cup k_{\ell})$ and $E_{2}\supset g(k_{\ell+1}\cup\cdots\cup k_{n})$ .
Then the 2-sphere $g^{-1}(Q^{2})\cap(E_{+}\cup E_{-})$ splits $k$ into $k_{1}\cup\cdots\cup k_{l}$ and $k_{\ell+1}\cup\cdots Uk_{n}$ ,

contrary to non.splittability of $k$ . Thus one of $E_{1}$ and $E_{2}$ includes $g(k)$ and the
other is contained in $P(k)$ , so $Q^{2}$ is parallel to $g(S_{1^{2}})$ in $P(k)$ . This implies that
$\{g(S_{1}^{2})\}$ is a complete system. By Theorem 1, $q(P(k))=1$ and $p(P(k))=1$ since
$P(k)-g(S_{1}^{2})$ is connected.

Boundary-irreducibility of $P(k)$ depends on non-triviality or non-splittability of
$k$ . If $K_{\ell}^{2}$ is compressible in $P(k)$ , then there is a 2-disk $D^{2}$ in $P(k)$ such that
$D^{2}\cap K_{i}^{2}=\partial D^{2}$ . Since $D^{2}$ is contractible, there is a lifting $g^{-1}(D^{2})\cap(E_{+}\cup E_{-})$ of $D^{2}$ .
This implies that $k_{:}$ is a trivial knot splittable from the other components of $k$,
contrary to the assumption of $k$ . Therefore $K_{:}^{2}$ is incompressible in $P(k)$ .

The proof is complete.

Lemma 2.2. There are infinitely many closed connected irreducible 3-manifolds
of type(1, q) different from $P^{2}\times S^{1}$ , for any Positive integer $q$ .

Proof. Let $k=k_{1}U\cdots\cup k_{n}$ be the link or knot in Figure 2. In particular,
$k_{1}$ is the square knot, and $\pi_{1}(R^{3}-k_{1})$ has the presentation ( $x,$ $y,$ $z$ ; $xyx=yxy,$ $xzx=$

$zxz)$ . Each $k_{l}(i=2, \cdots, n)$ represents $yz^{-1}$ in $\pi_{1}(R^{3}-k_{1})$ . We have the homomor-
phism $\Phi$ from $\pi_{1}(R^{8}-k_{1})$ onto the group of permutations of the symbols {1, 2, 3}
defined by $\Phi(x)=\Phi(y)=(12)$ and $\Phi(z)=(23)$ . Since $\Phi(yz^{-1})=(321),$ $yz^{-1}$ is not the
identity element of $\pi_{1}(R^{3}-k_{1})$ , and hence $k$ is not splittable. Thus $P(k)$ exists.

Let $M_{1}$ be a copy of $P(k_{1}\cup\cdots\cup k_{q+2r-1})$ and $M_{2},$
$\cdots,$ $M_{q}$ copies of $P(k_{1})$ . $M_{1}$

has boundary components $K_{1}^{2},$
$\cdots,$ $K_{q+2r-1}^{2}$ . Attach $M_{2},$ $\cdots,$ $M_{q}$ to $M_{1}$ by homeomor-

phisms from Klein bottles $\partial M_{2},$
$\cdots,$

$\partial M_{q}$ to $K_{1}^{2},$
$\cdots,$

$K_{q-1}^{2}$ , respectively, and identify
$K_{q+2i-2}^{2}$ with $K_{q+2i-1}^{2}(i=1, \cdots, r)$ so that the resulting 3-manifold $M(q, r)$ is closed.
The lemma follows from the following claims 1 to 4:

Claim 1. $M(q, r)$ is not homeomorphic to $P^{2}\times S^{1}:M(q, r)$ admits 2-sided Klein
bottles $K_{1}^{2},$

$\cdots,$ $K_{q-1}^{2};K_{q}^{2}=K_{q+1}^{2},$ $\cdots,$ $K_{q+2r-2}^{2}=K_{q+2r+1}^{2}$ . By Lemma 2.1, these Klein
bottles are incompressible in $M(q, r)$ , so $\pi_{1}(M(q, r))$ has a non-abelian subgroup
isomorphic to $\pi_{1}(K_{i}^{2})$ . Since $\pi_{1}(P\times S^{1})\cong Z+Z_{2}$ is abelian, $M(q, r)$ can not be
homeomorphic to $P\times S^{1}$ .

Claim 2. $M(q, r)$ is irreducible: By Lemma 1.2, any 2-sphere $S^{2}$ can be
moved by an ambient isotopy so that afterward $ S^{2}\cap(K_{1}^{2}\cup\cdots\cup K_{q+2r-1}^{2})=\phi$ . Since
$P(k)$ is irreducible, $S^{2}$ bounds a 3-ball in $M(q, r)$ , so $M(q, r)$ is irreducible.

Claim 3. $M(q, r)$ is of type $(1, q)$ : Let $P_{1^{2}},$
$\cdots,$

$P_{q^{2}}$ be copies of $g(S_{1}^{2})$ lying
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in $M_{1},$
$\cdots,$ $M_{q}$ respectively. Since $M(q, r)-P_{1^{2}}\cup\cdots\cup P_{q^{2}}$ is connected, $P_{l}^{2}$ is not

parallel to each other. Let $P_{q+1}$ be another projective plane in $M(q, r)$ disjoint
from $P_{1}^{2}\cup\cdots\cup P_{q^{2}}$ . By Lemma 1.2, a certain ambient isotopy carries $\{P_{1}^{2},$ $\cdots$ ,
$P_{q^{2}},$ $P_{q+1}$ } into a system disjoint from $\{K_{1}^{2}, \cdots, K_{q-1}^{2};K_{q^{2}}=K_{q+1}^{2}, \cdots, K_{q+2r-2}^{2}=K_{q+2r-1}^{2}\}$ .
Since $q(P(k))=1,$ $P_{q+1}^{2}$ becomes parallel to some $P_{i}^{2}(i=1, \cdots, q)$ . This means that
$\{P_{1^{2}}, \cdots, P_{q^{2}}\}$ is a complete system of projective planes. By uniqueness of such a
system, we determine $q(M(q, r))=q$ and $p(M(q, r))=1$ .

Claim 4. If $r_{2}-r_{1}$ is sufficiently large, then $M(q, r_{1})$ and $M(q, r_{2})$ are not
homeomorphic: $\{K_{q^{2}}=K_{q+1}^{2}, \cdots, K_{q+2r-2}^{2}=K_{q+2r-1}^{2}\}$ is a system of $r$ pairwise disjoint
2-sided incompressible closed surfaces in $M(q, r)$ which are not parallel to each
other, so Haken’s integer $n(M(q, r))$ is greater than or equal to $r$. Thus if $r_{2}>$

$n(M(q, r_{1}))$ , then $n(M(q, r_{2}))>n(M(q, r_{1}))$ , and hence $M(q, r_{2})$ is not homeomorphic
to $M(q, r_{1})$ .

The proof is complete.

For an element $M^{s}$ of $\Pi$ , we define, as follows, a connected graph $G(M^{3})$

with $p$ vertices $v_{1},$ $\cdots,$ $v_{p}$ and $q$ edges $e_{1},$ $\cdots,$ $e_{q}$ , where $p=p(M^{8})$ and $q=q(M^{3})$ :
Let $\{P_{1^{2}}, \cdots, P_{q}^{2}\}$ be a complete system of projective planes in $M^{3}$ , and identify
$P_{l}^{2}\times I$ with a small regular neighberhood $N(P_{i}^{2}, M^{3})$ of $P_{i}^{2}$ in $M^{3}$ via a natural
homeomorphism. Then $M^{3}-Int(P_{1}^{2}\times IU\cdots\cup P_{q^{2}}\times I)$ has $p$ components $V_{1},$

$\cdots,$ $V_{p}$

whose boundaries consist of $P_{i}^{2}\times\{0\}$ and $P_{i}^{2}\times\{1\}(i=1, \cdots, q)$ . Join $v_{\ell}$ and $v_{j}$ with
$e_{k}$ if $P_{k}^{2}\times\{0\}\subset V_{i}$ and $P_{k}^{2}\times\{1\}\subset V_{j}$ . For example, $G(P^{2}\times S^{1})$ is a single vertex $v_{1}$

with a self-loop $e_{1}$ , and $G(P^{2}\times I)$ has two vertices $v_{1},$ $v_{2}$ and one edge $e_{1}$ joining
them. If one regards $G(M^{3})$ as a topological space, then there is an embedding
$h:G(M^{3})\rightarrow M^{3}$ such that $h(v_{\ell})$ is a point in Int $(V_{\ell})$ and $h(e_{k})$ is an arc or loop in
$M^{3}$ intersecting $P_{k}^{2}$ transversely in one point. By Theorem 1, it is clear that if
$M_{1}^{3}$ and $M_{2}^{3}$ are homeomorphic, then $G(M_{1}^{3})$ and $G(M_{2}^{3})$ are isomorphic as graphs.

The degree deg (v) of a vertex $v$ in a graph $G$ is the number of edges of $G$

incident with $v$ , each self-loop counting as two edges. $A$ connected graph $G$ is
said to be eulerian if each vertex of $G$ has even degree,

Lemma 2.3. If $M^{3}$ is an element of $\Pi_{e}$ , then $G(M^{3})$ is eulerian.

Proof. Now deg $(v_{i})$ in $G(M^{3})$ is equal to the number of components of $\partial V_{\ell}$ .
Furthermore deg $(v_{i})=\chi(\partial V_{1})$ , where $\chi(A)$ is the Euler characteristic of $A$ . For $V_{i}$

has only boundary components homeomorphic to $P^{2}$ and $\chi(P)=1$ . Since $\chi(M^{3})=$

$(1/2)\chi(\partial M^{3})$ for a compact 3-manifold $M^{3}$ , in general, deg $(v_{i})$ must be an even
integer.
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Theorem 2. For any eulerian graph $G$ , there are infintely many elements $M^{s}$

of $\Pi_{e}$ such that $G(M^{s})$ is isomorphic to $G$ .
Proof. Let $v_{1},$ $\cdots,$ $v_{p}$ be vertices and $e_{1},$ $\cdots,$ $e_{q}$ edges of G. $Chse$ a closed

connected irreducible 3-manifold $M_{i}$ of type $(1, q_{:})$ corresponding to $v_{l}$ , where $u_{:}=$

deg $(v_{\ell})(i=1, \cdots,p)$ . Let $\{P_{l1}^{2}, \cdots, P_{\ell qi}\}$ be a complete system of projective planes
in $M_{i}$ . Then a 3-manifold $V_{i}=M_{i}-Int(N(P_{\ell 1}^{2}\cup\cdots\cup P_{iqi}^{2}, M_{\ell}))$ has $2q_{i}$ boundary
components which are all homeomorphic to a projective plane and $q_{1}+\cdots+q_{p}=q$ .
Let $Q_{1^{2}},$

$\cdots,$
$Q_{2q}^{2}$ be the $mponents$ of $\partial(V_{1}U\cdots UV_{p})$ numbered so that if $e_{k}$ joins

$v_{\ell}$ and $v_{j}$ , then $Q_{2k-1}^{2}\subset V_{i}$ and $Q_{2k}^{2}\subset V_{j}$ . Let $M^{3}$ be the closed 3-manifold obtained
from $V_{1}U\cdots\cup V_{p}$ by identifying $Q_{2k-1}^{2}$ with $Q_{2k}^{2}$ for $k=1,$ $\cdots,$ $q$ . Using Lemma
1.2 and Theorem 1, we can prove that $M^{3}$ is an irreducible 3-manifold of type
$(p, q)$ and that $G(M^{s})$ is isomorphic to $G$ . By Lemma 2.2, various choice of
$M_{1},$ $\cdots,$ $M_{p}$ gives infinitely many required 3-manifolds. This completes the $prf$ .

Corollary 2.1. Let $p$ and $q$ be positive integers. There is an element of type
$(p, q)$ in $\Pi_{\epsilon}$ if and only if $p\leqq q$ .

Proof. Note that if a connected graph $G$ has $p$ vertices and $q$ edges, then
$p\leqq q+1$ and that $p=q+1$ if and only if $G$ is a tree; see [4]. Since a tree is not
eulerian, necessity is clear. If $p\leqq q$ , then we have an eulerian graph $G(p, q)$ with
vertices $v_{1},$ $\cdots,$ $v_{p}$ and edges $e_{1},$ $\cdots,$ $e_{q}$ such that $e_{i}$ joins $v$ and $v_{:+1}(i=1, \cdots, p-1)$ ,
$e_{p}$ joins $v_{p}$ and $v_{1}$ , and $e_{j}$ is a self-loop attaching to one of $v_{1},$ $\cdots$ . $v_{p}(j=p+1, \cdots, q)$ ,

Figure 3.



IRREDUCIBLE 3-MANIFOLDS WITH NON-TRIVIAL $\pi_{2}$ 141

as illustrated in Figure 3. By Theorem 2, there is a closed connected irreducible
3-manifold $M^{3}$ of type $(p, q)ass\propto iated$ with $G(p, q)$ , and sufficiency follows.

Corollary 2.2. Let $P$ and $q$ be positive integers. There is an element of tyPe
$(p, q)$ in $\Pi_{b}$ if and only if $p\leqq q+1$ .

Proof. Necessity is clear. When $p\leqq q,$ $nstruct$ a closed irreducible 3-
manifold $M^{3}$ of type $(p, q)$ associated with $G(p, q)$ above in the way of the $prf$

of Theorem 2. If we use $M(q_{i}, r)(r>0)$ as $M_{\ell}$ , then $M^{\epsilon}$ contains a 2-sided in-
$\omega mpraesible$ Klein bottle $K^{2}$ within $V_{i}$ which does not separate $V_{\ell}$ and which is
disjoint from a complete system $\{Q_{2^{2}}, Q_{4^{2}}, \cdots, Q_{2q}^{2}\}$ of projective planes in $M^{3}$ . Cut
$M^{3}$ along $K^{2}$ . Then the resulting 3-manifold $M_{b^{3}}$ belongs to $\Pi_{b}$ and $\{Q_{2^{2}}, \cdots, Q_{2q}^{2}\}$

can be regarded as a complete system in $M_{l^{8}}$, so $M_{b}^{3}$ is of type $(p, q)$ .
When $2<p=q+1$ , construct a closed irreducible 3-manifold $M^{8}$ of type $(p-2$ ,

$p-2)$ not homeomorphic to $P\times S^{1}$ , associated with the cycle $G(p-2, p-2)$ of
length $P-2$ , and cut $M^{3}$ along a 2-sided projective plane in $M^{3}$ . The resulting
3-manifold belongs to $\Pi_{b}$ and is of type $(P, P-1)$ . For $(p, q)=(2,1)$ , we have
$P\times L$

The $prf$ is complete.

Corollary 2.3. For any connected graph $G$ , there is an element $M^{3}$ in $\Pi_{a}$

such that $G(M^{3})$ is isomorphic to G. Therefore there is an element of tyPe $(p, q)$

in $\Pi_{a}$ if and only if $p\leqq q+1$ , for positive integers $p$ and $q$.
Proof. It is sufficient to construct a bounded irreducible 3-manifold $ V(\phi$ such

that $\partial V(d)$ contains precisely $d$ projective planes and a compressible closed surface
and that each projective plane in Int $(V(d))$ is parallel to a boundary component,
for any integer $d\geqq 2$ . Copy $V(d)$ for each vertex of $G$ which has degree $d$, and
Paste them.

Let $\{P_{1^{2}}, \cdots, P_{q}^{2}\}$ be a complete system of projective plan\’e in $M(q, r)(q, r>0)$

and $K^{2}$ a 2-sided incompressible Klein bottle in $M(q, r)$ disjoint from the $mplete$

system such that $M(q, r)-P_{1}^{2}\cup\cdots\cup P_{q}^{2}\cup K^{2}$ is connected. The 3-manifold $W(q)=$

$M(q, r)-Int(N(P_{1}^{2}\cup\cdots\cup P_{q^{2}}\cup K^{2}, M(q, r)))$ has $2q$ projective planes and two in $\cdot$

compressible Klein bottles $K_{+}^{2},$ $K_{-}^{2}$ as boundary components. To make a com-
preaeible boundary component, attach a l-handle $D^{2}\times I$ to $W(q)$ so that $D^{2}\times\partial I$ lies
in $K_{+}^{2}\cup K_{-}^{2}$ . For an even integer $d=2q$ , we can take the resulting 3-manifold
as $V(d)$ . When $d=2q+1$ , we have to make not only a compressible boundary
component but also one more projective plane. Let $D_{\iota^{2}}$ and $D_{2}^{2}$ be 2-disks in $K_{+}^{2}$

and $P\times\{0\}$ , respectively. Attach $P\times I$ to $W(q)$ via a homeomorphism from $D_{2}^{2}$
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to $D_{1^{2}}$ , then $V(d)$ will be obtained. This completes the proof.

The question whether there is a bounded 3-manifold in $\Pi_{b}$ associated with an
arbitrary connected graph or not naturally arises. Unfortunately $I$ don’t have the
answer. If one would like to give the affirmative solution, he ought to construct
a boundary-irreducible 3-manifold whose boundary contains an odd number of
projective planes. Construction of such 3-manifolds is easy if we take no account
of their boundary-irreducibility, but it is so difficult to check whether they are
boundary-irreducible or not.

\S 4. Invariants related to $G(M^{3})$

Our theory admits all of invariants in graph theory, since the graph $G(M^{s})$

is a stronger invariant. For example, $\delta(M^{3})$ is defined to be the minimum degree
among the vertices of $G(M^{8})$ for $ M\in\Pi$ . Then $\delta(M)=1$ if and only if $\partial M^{3}$

contains a projective plane.
We have an invariant which is connected with the homology group of $M^{3}$ .

We define $r(M^{3})$ by the l-dimensional Betti number $\beta_{1}(G(M^{3}))=rankH_{1}(G(M^{8}))$ of
the topological space $G(M^{3})$ . If $M^{3}$ is of type $(p, q)$ , then $r(M^{8})=q-P+1$ , con-
cretely, and $r(M^{8})$ is the number of edges contained in the cotree of a spanning
tree of the graph $G(M^{8})$ , graph-theoretically. From a geometric point of view,
$r(M^{\$})$ can be said to be the maximum number of pairwise disjoint projective
planes in Int $(M$’ $)$ whose removal can not disconnect $M^{3}$ .

Denote the submodule of $H_{2}(M^{8}, \partial M’; Z_{2})$ generated by all of embeddings of
of a projective plane, by $H_{2}^{p}(M, \partial M^{3};Z_{2})$ .

Theorem 3.1. For an element $M^{3}$ of $\Pi$ , dim $H_{2}^{p}(M^{8}, \partial M^{3};Z_{2})=r(M^{8})\leqq\beta_{1}(M^{s})$ .
Proof. Let $v_{1},$ $\cdots,$ $v_{p}$ be vertices and $e_{1},$ $\cdots,$ $e_{q}$ edges being arcs or loops of

the topological space $G(M^{3})$ . Let $P_{k^{2}}\times I(k=1, \cdots, q)$ be a regular neighberhood
of $P_{k}^{2}$ in $M^{3}$ which belongs to a complete system of projective planes in $M^{8}$ ,

corresponding to $e_{k}$ , and $V_{i}(i=1, \cdots, p)$ a component of $M^{8}$–Int $(P_{\iota^{2}}\times I\cup\cdots\cup$

$P_{q^{2}}\times I)$ corresponding to $v_{\ell}$ . Then there is a continuous map $f:M^{3}\rightarrow G(M)$ such
that $f(V_{\ell})=v_{i}$ and $f(P_{k}^{2}\times I)=e_{k}$ . Since $f_{*}:H_{1}(M^{8})\rightarrow H_{1}(G(M^{8}))$ is surjective, $\beta_{1}(M)\geqq$

$\beta_{1}(G(M’))=r(M^{3})$ , so the right-hand inequality holds.

Let $\{\alpha_{1}, \cdots, \alpha_{r}\}$ be a basis of $H_{2}^{p}(M^{8}, \partial M^{8};Z_{2})$ , where $r=\dim H_{2}^{p}(M^{\epsilon}, \partial M’; Z_{2})$ .
Since any $2\cdot sphere$ is homologically zero in $M^{8}$ , there are $r$ pairwise disjoint 2-
sided projective planes $Q_{1^{2}},$

$\cdots,$
$Q_{r}^{2}$ such that $[Q_{t^{2}}]=\alpha_{i}$ . Necessarily $Q_{1^{2}},$

$\cdots,$
$Q_{r}^{2}$

are not parallel to each other, and $M^{3}-Q_{1^{2}}\cup\cdots\cup Q_{r}^{2}$ is connected. By Theorem
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1, an ambient isotopy carries $Q_{1^{2}},$
$\cdots,$

$Q_{r}^{2}$ into $P_{1^{2}},$
$\cdots,$

$P_{r}^{2}$ , after modffication of
the subscripts.

If the graph obtained from $G(M^{3})$ by deleting $e_{1},$ $\cdots,$ $e_{r}$ is not a tree, then
there is another projective plane, say $P_{r+1}$ , such that $M^{8}-P_{1^{2}}\cup\cdots\cup P_{r}^{2}\cup P_{r+1}$ is
connected, so $P_{1}^{2},$

$\cdots,$
$P_{r}^{2},$ $P_{r+1}$ are $Z_{2}$-homologically independent. This contradicts

the choioe of $r$. Therefore $e_{1},$ $\cdots,$ $e_{r}$ make up a cotree of $G(M^{8})$ and $r=q-P+1=$
$r(M^{3})$ , so the left-hand equality holds.

Most of non-orientable compact 3-manifolds $M^{3}$ have infinite $H_{1}(M$ ’ $)$ and
exceptions contain projective planes as boundary components. Hempel constructed
such $eTceptions$ whose boundaries contain $2n$ projective planes and one closed
orientable surface (Example 6.10 in [5]). His examples blong to $\Pi_{b}$ , which he did
not mention. Even if one wish to construct a 3-manifold $M^{s}$ such that $H_{1}(M$ ’ $)$

is infinite and each component of $\partial M^{8}$ is a projective plane, we can meet his
requirement. Cut an element $M_{1}^{3}$ with $r(M_{1})=r+n$ of $\Pi_{\iota}$ along $n$ mutually
disjoint projective planes corresponding to some edges of a cotree in $G(M_{1^{8}})$ .
Then the resulting 3-manifold $M$ belongs to $\Pi_{b}$ , and $\beta_{1}(M^{8})\geqq r(M^{3})=r$.

Since we have irreducible closed 3-manifolds with non-trivial $\pi_{2}$ different from
$P\times S^{1}$ , it follows from Tao’s result stated in Introduction that there are those
prime closed 3-manifolds whose orientable double covering spaces are not prime.
In fact, each element $M^{3}$ of $\Pi_{c}$ except $P\times S^{1}$ is such a 3-manifold. Let $g;\tilde{M}\rightarrow M^{8}$

be the orientable double covering. For any projective plane $Q^{2}$ in $M^{3},$ $g^{-1}(Q^{2})$ is
a non-separating 2-sphere in $\tilde{M}$. Thus $\tilde{M}$ has $S^{2}\times S^{1}$ as a prime facter. In par-
ticular, the orientable double covering spaces of our examples are homeomorphic
to connected sums of several $S^{2}\times S^{1}’ s$ and unions of knot or link spaces with their
boundaries identified. Therefore if $\tilde{M}$ is prime, then $\tilde{M}$ is homeomorphic to $S^{2}\times S^{1}$ ,
and hence $M^{3}$ is homeomorphic to $P^{2}\times S^{1}$ , which one can prove using Theorem 1
in [8]. So $P\times S^{1}$ can be said to be the unique 3-manifold in $\Pi_{\epsilon}$ whose orientable
double covering space is prime. Moreover we have a characterization of $P^{2}\times S^{\iota}$

in terms of our theory, as follows:

Theorem 3.2. Let $M^{3}$ be an element of $\Pi_{e}$ . Then the followings (1) to (3)

are equivalent:
(1) $M^{3}$ is homeomorphic to $P\times S^{1}$ .
(2) There is a double covering space $\tilde{M}$ of $M^{3}$ such that $\tilde{M}$ belongs to $\Pi_{\epsilon}$ and

$q(\tilde{M})=q(M$’ $)$ .
(3) For every compact covering space $\tilde{M}$ of $M^{3}$ belonging to $\Pi_{\epsilon},$ $q(\tilde{M})=q(M)$ .
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Proof. A compact covering space of $P^{2}\times S^{1}$ is $hommorphic$ to either $P^{2}\times S^{1}$

or a 2-sphere bundle over $S^{1}$ . Since the latter is not an element of $\Pi_{e},$ (1) implies

(3) immediately.
Let $P\times I$ be a regular $neighkrhd$ of a projective plane $P$ in $M^{3}$ , and

$(M, P_{i0}, P_{\ell 1})(i=1,2)$ two copies of $(M^{s}-Int(P\times I), P\times\{0\}, P\times\{1\})$ . Then the

3-manifold $\tilde{M}$ obtained from $M_{1}\cup M_{2}$ by identifying $P_{10}$ with $P_{21}^{2}$ and $P_{\iota}$ with $P_{20}$

is a double covering space of $M^{3}$ . Suppose (3), then $q(\tilde{M})=q(M^{3})$ , so (3) implies

(2).

Let $g;\tilde{M}\rightarrow M^{3}$ be a double covering with the covering translation $\tau;\tilde{M}\rightarrow\tilde{M}$

of order two. Suppose that $\tilde{M}$ is irreducible and that $q(\tilde{M})=q(M^{8})$ . Let $\{P_{\iota^{2}},$ $\cdots$ ,

$P_{q}^{2}\}$ be a complete system of projective planes in $M^{3}$ , where $q=q(M$’ $)$ . By ir-

reducibility of $\tilde{M},$ $g^{-1}(P_{1}^{2}\cup\cdots\cup P_{q^{2}})$ consists of $2q$ projective planes $Q_{\iota^{2}},$
$\cdots,$

$Q_{2q}^{2}$ .
Since $q(\tilde{M})=q(M,)$ , some pair are parallel and bound a submanifold $E$ of $\tilde{M}$

homeomorphic to $P\times I$, say $Q_{1^{2}}$ and $Q_{2^{2}}$ . We may assume that $E\cap Q_{:}^{2}=\phi(i=$

$3,$ $\cdots,$ $2q$), by Lemma 1.1 and that $\tau(IntE))\cap Int(E)=\phi$ , by the fact that a single

projective plane can not bound a compact 3-manifold. If $g(Q_{1^{2}})\neq g(Q_{2}^{2})$ , then $g|E$

is an embedding and $g(Q_{1^{2}})$ and $g(Q_{2}^{2})$ are parallel. This contraditcs the fact that
$g(Q_{\iota^{2}})$ and $g(Q_{2}^{2})$ are menbers of the complete system of projective planes in $M^{3}$ .
Therefore $g(Q_{1^{2}})=g(Q_{2^{2}})$ and $M^{3}=g(E)$ is homeomorphic to $P\times S^{1}$ , so (2) implies (1).

This completes the $prf$ .
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