YOKOHAMA MATHEMATICAL JOURNAL VOL. 29, 1981

IRREDUCIBLE 3-MANIFOLDS WITH NON-TRIVIAL π_2

By

Seiya Negami

(Received May 23, 1981)

§1. Introduction

Let Π be the set of compact connected irreducible 3-manifolds with non-trivial π_2 . Using the sphere theorem, one can prove that under the Poincaré conjecture, an orientable 3-manifold M^3 is irreducible if and only if $\pi_2(M^3)$ is trivial. So any 3-manifold in Π is non-orientable. From the projective plane theorem, it follows that any 3-manifold M^3 in Π admits a 2-sided embedding of a projective plane, and the converse is also true; Feustel [2] showed that if there is an embedding $h: P^2 \rightarrow M^3$ such that $h_*: \pi_2(P^2) \rightarrow \pi_2(M^3)$ is trivial, then M^3 is homeomorphic to $P^3 \# \Sigma^3$, where P^3 and Σ^3 are a 3-dimensional projective space and a homotopy 3-sphere, respectively.

Let Π_e and Π_b be the subsets of Π consisting of closed 3-manifolds and boundaryirreducible 3-manifolds with non-empty boundary, respectively. A few 3-manifolds in Π_e or Π_b have been known. For example, $P^2 \times S^1$ belongs to Π_e , and $P^2 \times I$ to Π_b . It is however easy to construct infinitely many elements of the complement Π_a of $\Pi_b \cup \Pi_e$; attach 1-handles to $P^2 \times I$.

In [8], Tao proved that under the Poincaré conjecture, the orientable double covering space of any prime closed 3-manifold is also prime, with respect to connected sums #, if and only if $P^2 \times S^1$ is the only one connected closed irreducible 3-manifold with non-trivial π_2 . Recently Ochiai [6] has shown that if a closed 3-manifold M^3 which has a Heegaard splitting of genus two admits a 2-sided embedding of a projective plane, then M^3 is homeomorphic to $P^2 \times S^1$. Naturally one may expect that Π_c would be the singleton $\{P^2 \times S^1\}$. But we shall show that Π_c includes infinitely many elements which can be distinguished by several well-defined invariants:

Main Theorem. There are infinitely many closed connected irreducible 3manifolds with non-trivial π_2 .

The existence is due to knot and link theory and especially the fact that the boundary of a knot space of a non-trivial knot is an incompressible torus. To

prove the infiniteness, we shall define a connected graph $G(M^3)$, for an element M^3 of Π , which describes a structure of M^3 induced by a specific system of projective planes in M^3 .

We shall work in the piecewise linear category through this paper, and use mostly the terminology and the notation in [5].

I would like to express my hearty thanks Prof. T. Homma for helpful conversations.

§ 2. Complete systems of projective planes

Let M^s be a 3-manifold and F_0 , F_1 closed 2-manifolds or surfaces embedded in Int (M^s) . Then F_0 and F_1 are said to be *parallel* if there is an embedding $h: F \times I \rightarrow M^s$ such that $h(F \times \{0\}) = F_0$ and $h(F \times \{1\}) = F_1$. A complete system of projective planes in M^s is defined to be a system $\{P_1^2, \dots, P_q^2\}$ of mutually disjoint 2-sided projective planes in Int (M^s) satisfying the following conditions 1 and 2:

- 1. Every P_i^2 is not parallel to each other.
- 2. If P_{q+1}^2 is a 2-sided projective plane in M^3 disjoint from $P_1^2 \cup \cdots \cup P_q^2$, then P_{q+1}^2 is parallel to some P_i^2 $(i=1, \dots, q)$.

For any compact irreducible 3-manifold M^s , we define $q(M^s)$ by the number of projective planes contained in a complete system $\{P_1^2, \dots, P_q^2\}$ in M^s , and $p(M^s)$ by the number of components of $M^s - P_1^2 \cup \dots \cup P_q^2$. Haken's finiteness theorem [3] states that for any compact 3-manifold M^s , there is an integer $n(M^s)$ such that M^s can not admit more than $n(M^s)$ pairwise disjoint 2-sided incompressible closed surfaces which are not parallel to each other. So $p(M^s)$ and $q(M^s)$ are finite integers.

In this section, we shall show uniqueness of a complete system of projective planes. From this it follows that the integers $p(M^s)$ and $q(M^s)$ do not depend on the choice of a complete system of projective planes, that is, $p(M^s)$ and $q(M^s)$ are well-defined invariants. So we shall say that a compact connected irreducible 3-manifold M^s is of type (p,q), when $p=p(M^s)$ and $q=q(M^s)$. Then M^s is not an element of Π if and only if M^s is of type (1,0).

Using the following lemma, one can prove that $P^2 \times S^1$ is of type (1, 1) and that $P^2 \times I$ is of type (2, 1):

Lemma 1.1. Any projective plane in Int $(P^2 \times I)$ is parallel to $P^2 \times \{0\}$.

Proof. Let Q^2 be a projective plane in Int $(P^2 \times I)$, necessarily 2-sided, and $g: S^2 \times I \rightarrow P^2 \times I$ a natural double covering with a covering translation $\rho: S^2 \times I \rightarrow I$

 $S^2 \times I$ such that $\rho(S^2 \times \{t\}) = S^2 \times \{t\}$ for $t \in I$. Let A be a 1-sided annulus properly embedded in $P^2 \times I$ which splits $P^2 \times I$ into a 3-ball; for example, take $l \times I$ as A, where l is a non-trivial simple loop in P^2 .

By the annulus theorem, 2-spheres $g^{-1}(Q^2)$ and $S^2 \times \{0\}$ bound a submanifold Eof $S^2 \times I$ homeomorphic to $S^2 \times I$. We wish to define an embedding $h: S^2 \times I \rightarrow S^2 \times I$ so that $h(S^2 \times I) = E$ and $h \cdot \rho = \rho \cdot h$ in order to show that g(E) is homeomorphic to $P^2 \times I$. It is not so difficult to do so in the case that $g^{-1}(Q^2 \cap A)$ has precisely one component, as illustrated in Figure 1. Then we shall observe that there is an ambient isotopy of $P^2 \times I$ which carries Q^2 into a projective plane Q_1^2 such that $g^{-1}(Q_1^2 \cap A)$ is a single circle.

Let Q^2 be in general position with respect to A. Then we have two type of components of $A \cap Q^2$; one is a circle parallel to each component of ∂A and the other bounds a 2-disk in A. If there is a component of $A \cap Q^2$ of the second type, choose an innermost one l_2 in A which bounds a 2-disk D_2 in A. Since Q^2 is incompressible in $P^2 \times I$, l_2 bounds a 2-disk D_1 in Q^2 so that $D_1 \cup D_2$ is a 2-sphere. Since $P^2 \times I$ is irreducible, $D_1 \cup D_2$ bounds a 3-ball B^3 in $P^2 \times I$. Therefore there is an ambient isotopy of $P^2 \times I$ which first carries D_1 into D_2 through B^3 and which next pushes D_2 so that l_2 and possibly some other components of $A \cap Q^2$ vanish. So we have a composition of such ambient isotopies $H_i: P^2 \times I \rightarrow P^2 \times I$ ($t \in I$) such that $A \cap H_1(Q^2)$ contains no component of the second type.

Note that $A \cap H_1(Q^2) \neq \phi$; otherwise, a 3-ball in $P^2 \times I - A$ could admit the 2-

Figure 1.

sided embedding of a projective plane $H_1(Q^2)$. And note that each component of $A \cap H_1(Q^2)$ is an orientation-reversing loop in $P^2 \times I$ and hence it bounds no 2-disk in $H_1(Q^2)$. Because two non-trivial simple loops in a projective plane always intersect each other, $A \cap H_1(Q^2)$ and $g^{-1}(A \cap H_1(Q_2))$ must be single circles. So H_t is the required ambient isotopy with $Q_1^2 = H_1(Q^2)$. This completes the proof.

Lemma 1.2. Let $\{S_1, \dots, S_n\}$ be a system of mutually disjoint 2-spheres or 2sided projective planes and $\{F_1, \dots, F_m\}$ a system of mutually disjoint 2-sided incompressible surfaces properly embedded in a 3-manifold M^s . Suppose that every component of $M^s - F_1 \cup \dots \cup F_m$ is irreducible. Then there is an ambient isotopy of M^s which carries $\{S_1, \dots, S_n\}$ into a system disjoint from $\{F_1, \dots, F_m\}$.

Proof. We observe that a Möbius band and an annulus (or another Möbius band) can not be embedded properly and 2-sidedly in a solid Klein bottle so that they intersect each other transversely along their center lines. So any component l of $S_i \cap F_j$ bounds a 2-disk D_1 in S_i . If l is innermost in S_i , then l bounds a 2-disk D_2 in F_j and $D_1 \cup D_2$ is a 2-sphere; for F_j is incompressible in M^8 . Since $M^3 - F_1 \cup \cdots \cup F_m$ is irreducible, we can push $D_1 \cup D_2$ slightly into $M^3 - F_1 \cup \cdots \cup F_m$ so that $D_1 \cup D_2$ bounds a 3-ball in M^8 . Therefore we have an ambient isotopy of M^8 , like H_i in the proof of Lemma 1.1, which decreases the number of components of $(S_1 \cup \cdots \cup S_n) \cap (F_1 \cup \cdots \cup F_m)$. This completes the proof.

Theorem 1. For any compact irreducible 3-manifold, there is a unique finite, possibly empty, complete system of projective planes, up to ambient isotopy.

Proof. Finiteness of a complete system of projective planes follows from Haken's finiteness theorem, as above-mentioned. So we shall show only uniqueness.

Let $\{P_1^2, \dots, P_n^2\}$ and $\{Q_1^2, \dots, Q_m^2\}$ $(n \leq m)$ be two complete systems of projective planes in a compact irreducible 3-manifold M^3 . Using Lemma 1.2, we may assume that $(P_1^2 \cup \cdots \cup P_n^2) \cap (Q_1^2 \cup \cdots \cup Q_m^2) = \phi$. By completeness of $\{P_1^2, \dots, P_n^2\}$, each Q_i^2 is parallel to some $P_{\tau(i)}^2$, that is, $Q_i^2 \cup P_{\tau(i)}^2$ bounds a submanifold E_i of M^3 homeomorphic to $P^2 \times I$. Using Lemma 1.1, we observe that if $E_i \cap E_j \neq \phi$ $(i \neq j)$, then Q_i^2 and Q_j^2 are parallel, which is contrary to completeness of $\{Q_1^2, \dots, Q_m^2\}$. Thus $E_i \cap E_j = \phi$ $(i \neq j)$, so there is an ambient isotopy which carries Q_i^2 into $P_{\tau(i)}^2$ through E_i . Necessarily n=m and τ is a bijection. This completes the proof.

Corollary 1.1. We have two well-defined invariants $p(M^3)$ and $q(M^3)$ for a compact irreducible 3-manifold M^3 .

§ 3. Construction of elements of Π

In this section, we shall construct infinitely many elements of Π from several $P^2 \times S^1$'s. Let τ , ρ : $\mathbb{R}^3 \to \mathbb{R}^3$ be homeomorphisms defined by $\tau(x) = (1/2)x$ and $\rho(x) = -x$, respectively, and $g: \mathbb{R}^3 - \{0\} \to P^2 \times S^1$ the universal covering the group of whose covering translations is generated by τ and ρ . We can take $E_+ = \{x = (x_1, x_2, x_3) \in \mathbb{R}^3: 1 \le ||x|| \le 2, x_3 \ge 0\}$ as a fundamental domain homeomorphic to a 3-ball.

Setting $E_{-}=\rho(E_{+})$ and $S_{i}^{2}=\{x \in \mathbb{R}^{3}: ||x||=t\}$, consider a non-splittable link $k=k_{1}\cup\cdots\cup k_{n}$ (or a non-trivial knot if n=1) within $\operatorname{Int}(E_{+}\cup E_{-})$ such that for each component k, $\rho(k_{i})=k_{i}$. For example, the square knot with n-1 trivial knots linking, as shown in Figure 2, is such a link or knot; see the proof of Lemma 2.2. Since $g(k_{i})$ is an orientation-reversing loop in $P^{2}\times S^{1}$, a regular neighberhood $N(g(k_{i}), P^{2}\times S^{1})$ of $g(k_{i})$ in $P^{2}\times S^{1}$ is a solid Klein bottle. So each component K_{i}^{2} of the boundary of the 3-manifold $P(k)=P^{2}\times S^{1}-\operatorname{Int}(N(g(k), P^{2}\times S^{1}))$ is a Klein bottle.

Lemma 2.1. P(k) above is an irreducible 3-manifold of type (1, 1). Moreover it is boundary-irreducible, that is, K_i^2 $(i=1, \dots, n)$ is incompressible in P(k).

Proof. Let S^2 be a 2-sphere in Int (P(k)). Since $P^2 \times S^1$ is irreducible, S^3 bounds a 3-ball B^3 in $P^2 \times S^1$. Since B^3 can not contain orientation-reversing loops $g(k_1), \dots, g(k_n), B^3 \subset P(k)$, so P(k) is irreducible.

Let Q^2 be a projective plane in Int (P(k)) disjoint from $g(S_1^2)$. By Lemma 1.1, Q^2 is parallel to the projective plane $g(S_1^2)$ in $P^2 \times S^1$ and there are two submanifold

Figure 2.

 E_1 and E_2 of $P^2 \times S^1$ homeomorphic to $P^2 \times I$ such that $P^2 \times S^1 = E_1 \cup E_2$ and $E_1 \cap E_2 = \partial E_1 = \partial E_2 = Q^2 \cup g(S_1^2)$. Suppose that $E_1 \supset g(k_1 \cup \cdots \cup k_l)$ and $E_2 \supset g(k_{l+1} \cup \cdots \cup k_n)$. Then the 2-sphere $g^{-1}(Q^2) \cap (E_+ \cup E_-)$ splits k into $k_1 \cup \cdots \cup k_l$ and $k_{l+1} \cup \cdots \cup k_n$, contrary to non-splittability of k. Thus one of E_1 and E_2 includes g(k) and the other is contained in P(k), so Q^2 is parallel to $g(S_1^2)$ in P(k). This implies that $\{g(S_1^2)\}$ is a complete system. By Theorem 1, q(P(k))=1 and p(P(k))=1 since $P(k)-g(S_1^2)$ is connected.

Boundary-irreducibility of P(k) depends on non-triviality or non-splittability of k. If K_i^2 is compressible in P(k), then there is a 2-disk D^2 in P(k) such that $D^2 \cap K_i^2 = \partial D^2$. Since D^2 is contractible, there is a lifting $g^{-1}(D^2) \cap (E_+ \cup E_-)$ of D^2 . This implies that k_i is a trivial knot splittable from the other components of k, contrary to the assumption of k. Therefore K_i^2 is incompressible in P(k).

The proof is complete.

Lemma 2.2. There are infinitely many closed connected irreducible 3-manifolds of type (1, q) different from $P^2 \times S^1$, for any positive integer q.

Proof. Let $k=k_1\cup\cdots\cup k_n$ be the link or knot in Figure 2. In particular, k_1 is the square knot, and $\pi_1(\mathbf{R}^3-k_1)$ has the presentation (x, y, z; xyx=yxy, xzx=zxz). Each k_i $(i=2, \dots, n)$ represents yz^{-1} in $\pi_1(\mathbf{R}^3-k_1)$. We have the homomorphism Φ from $\pi_1(\mathbf{R}^3-k_1)$ onto the group of permutations of the symbols $\{1, 2, 3\}$ defined by $\Phi(x)=\Phi(y)=(12)$ and $\Phi(z)=(23)$. Since $\Phi(yz^{-1})=(321)$, yz^{-1} is not the identity element of $\pi_1(\mathbf{R}^3-k_1)$, and hence k is not splittable. Thus P(k) exists.

Let M_1 be a copy of $P(k_1 \cup \cdots \cup k_{q+2r-1})$ and M_2, \cdots, M_q copies of $P(k_1)$. M_1 has boundary components $K_1^2, \cdots, K_{q+2r-1}^2$. Attach M_2, \cdots, M_q to M_1 by homeomorphisms from Klein bottles $\partial M_2, \cdots, \partial M_q$ to K_1^2, \cdots, K_{q-1}^2 , respectively, and identify K_{q+2i-2}^2 with K_{q+2i-1}^2 ($i=1, \cdots, r$) so that the resulting 3-manifold M(q, r) is closed. The lemma follows from the following claims 1 to 4:

Claim 1. M(q, r) is not homeomorphic to $P^2 \times S^1$: M(q, r) admits 2-sided Klein bottles K_1^2, \dots, K_{q-1}^2 ; $K_q^2 = K_{q+1}^2, \dots, K_{q+2r-2}^2 = K_{q+2r+1}^2$. By Lemma 2.1, these Klein bottles are incompressible in M(q, r), so $\pi_1(M(q, r))$ has a non-abelian subgroup isomorphic to $\pi_1(K_i^2)$. Since $\pi_1(P^2 \times S^1) \cong Z + Z_2$ is abelian, M(q, r) can not be homeomorphic to $P^2 \times S^1$.

Claim 2. M(q, r) is irreducible: By Lemma 1.2, any 2-sphere S^2 can be moved by an ambient isotopy so that afterward $S^2 \cap (K_1^2 \cup \cdots \cup K_{q+2r-1}^2) = \phi$. Since P(k) is irreducible, S^2 bounds a 3-ball in M(q, r), so M(q, r) is irreducible.

Claim 3. M(q, r) is of type (1, q): Let P_1^2, \dots, P_q^2 be copies of $g(S_1^2)$ lying

IRREDUCIBLE 3-MANIFOLDS WITH NON-TRIVIAL π_2

in M_1, \dots, M_q respectively. Since $M(q, r) - P_1^2 \cup \dots \cup P_q^2$ is connected, P_i^2 is not parallel to each other. Let P_{q+1}^2 be another projective plane in M(q, r) disjoint from $P_1^2 \cup \dots \cup P_q^2$. By Lemma 1.2, a certain ambient isotopy carries $\{P_1^2, \dots, P_q^2, P_{q+1}^2\}$ into a system disjoint from $\{K_1^2, \dots, K_{q-1}^2; K_q^2 = K_{q+1}^2, \dots, K_{q+2r-2}^2 = K_{q+2r-1}^2\}$. Since q(P(k))=1, P_{q+1}^2 becomes parallel to some P_i^2 $(i=1, \dots, q)$. This means that $\{P_1^2, \dots, P_q^2\}$ is a complete system of projective planes. By uniqueness of such a system, we determine q(M(q, r))=q and p(M(q, r))=1.

Claim 4. If r_2-r_1 is sufficiently large, then $M(q, r_1)$ and $M(q, r_2)$ are not homeomorphic: $\{K_q^2 = K_{q+1}^2, \dots, K_{q+2r-2}^2 = K_{q+2r-1}^2\}$ is a system of r pairwise disjoint 2-sided incompressible closed surfaces in M(q, r) which are not parallel to each other, so Haken's integer n(M(q, r)) is greater than or equal to r. Thus if $r_2 >$ $n(M(q, r_1))$, then $n(M(q, r_2)) > n(M(q, r_1))$, and hence $M(q, r_2)$ is not homeomorphic to $M(q, r_1)$.

The proof is complete.

For an element M^3 of Π , we define, as follows, a connected graph $G(M^3)$ with p vertices v_1, \dots, v_p and q edges e_1, \dots, e_q , where $p = p(M^3)$ and $q = q(M^3)$: Let $\{P_1^2, \dots, P_q^2\}$ be a complete system of projective planes in M^3 , and identify $P_i^2 \times I$ with a small regular neighberhood $N(P_i^2, M^3)$ of P_i^2 in M^3 via a natural homeomorphism. Then M^3 —Int $(P_1^2 \times I \cup \dots \cup P_q^2 \times I)$ has p components V_1, \dots, V_p whose boundaries consist of $P_i^2 \times \{0\}$ and $P_i^2 \times \{1\}$ $(i=1, \dots, q)$. Join v_i and v_j with e_k if $P_k^2 \times \{0\} \subset V_i$ and $P_k^2 \times \{1\} \subset V_j$. For example, $G(P^2 \times S^1)$ is a single vertex v_1 with a self-loop e_1 , and $G(P^2 \times I)$ has two vertices v_1, v_2 and one edge e_1 joining them. If one regards $G(M^3)$ as a topological space, then there is an embedding $h: G(M^3) \to M^3$ such that $h(v_i)$ is a point in Int (V_i) and $h(e_k)$ is an arc or loop in M^3 intersecting P_k^2 transversely in one point. By Theorem 1, it is clear that if M_1^3 and M_2^3 are homeomorphic, then $G(M_1^3)$ and $G(M_2^3)$ are isomorphic as graphs.

The degree deg (v) of a vertex v in a graph G is the number of edges of G incident with v, each self-loop counting as two edges. A connected graph G is said to be *eulerian* if each vertex of G has even degree,

Lemma 2.3. If M^{3} is an element of Π_{c} , then $G(M^{3})$ is eulerian.

Proof. Now deg (v_i) in $G(M^3)$ is equal to the number of components of ∂V_i . Furthermore deg $(v_i) = \chi(\partial V_i)$, where $\chi(A)$ is the Euler characteristic of A. For V_i has only boundary components homeomorphic to P^2 and $\chi(P^2)=1$. Since $\chi(M^3)=(1/2)\chi(\partial M^3)$ for a compact 3-manifold M^3 , in general, deg (v_i) must be an even integer.

Theorem 2. For any eulerian graph G, there are infinitely many elements M^s of Π_c such that $G(M^s)$ is isomorphic to G.

Proof. Let v_1, \dots, v_p be vertices and e_1, \dots, e_q edges of G. Choose a closed connected irreducible 3-manifold M_i of type $(1, q_i)$ corresponding to v_i , where $2q_i = \deg(v_i)$ $(i=1, \dots, p)$. Let $\{P_{i1}^2, \dots, P_{iq_i}^2\}$ be a complete system of projective planes in M_i . Then a 3-manifold $V_i = M_i - \operatorname{Int}(N(P_{i1}^2 \cup \dots \cup P_{iq_i}^2, M_i))$ has $2q_i$ boundary components which are all homeomorphic to a projective plane and $q_1 + \dots + q_p = q$. Let Q_1^2, \dots, Q_{2q}^2 be the components of $\partial(V_1 \cup \dots \cup V_p)$ numbered so that if e_k joins v_i and v_j , then $Q_{2k-1}^2 \subset V_i$ and $Q_{2k}^2 \subset V_j$. Let M^3 be the closed 3-manifold obtained from $V_1 \cup \dots \cup V_p$ by identifying Q_{2k-1}^2 with Q_{2k}^2 for $k=1, \dots, q$. Using Lemma 1.2 and Theorem 1, we can prove that M^3 is an irreducible 3-manifold of type (p, q) and that $G(M^3)$ is isomorphic to G. By Lemma 2.2, various choice of M_1, \dots, M_p gives infinitely many required 3-manifolds. This completes the proof.

Corollary 2.1. Let p and q be positive integers. There is an element of type (p,q) in Π_c if and only if $p \leq q$.

Proof. Note that if a connected graph G has p vertices and q edges, then $p \leq q+1$ and that p=q+1 if and only if G is a tree; see [4]. Since a tree is not eulerian, necessity is clear. If $p \leq q$, then we have an eulerian graph G(p,q) with vertices v_1, \dots, v_p and edges e_1, \dots, e_q such that e_i joins v_i and v_{i+1} $(i=1, \dots, p-1)$, e_p joins v_p and v_1 , and e_j is a self-loop attaching to one of v_1, \dots, v_p $(j=p+1, \dots, q)$,

Figure 3.

as illustrated in Figure 3. By Theorem 2, there is a closed connected irreducible 3-manifold M^3 of type (p,q) associated with G(p,q), and sufficiency follows.

Corollary 2.2. Let p and q be positive integers. There is an element of type (p,q) in Π_b if and only if $p \leq q+1$.

Proof. Necessity is clear. When $p \leq q$, construct a closed irreducible 3manifold M^3 of type (p, q) associated with G(p, q) above in the way of the proof of Theorem 2. If we use $M(q_i, r)$ (r>0) as M_i , then M^3 contains a 2-sided incompressible Klein bottle K^2 within V_i which does not separate V_i and which is disjoint from a complete system $\{Q_{2^2}, Q_{4^2}, \dots, Q_{2q}^2\}$ of projective planes in M^3 . Cut M^3 along K^2 . Then the resulting 3-manifold M_b^3 belongs to Π_b and $\{Q_{2^2}, \dots, Q_{2q}^2\}$ can be regarded as a complete system in M_b^3 , so M_b^3 is of type (p, q).

When $2 , construct a closed irreducible 3-manifold <math>M^{*}$ of type (p-2, p-2) not homeomorphic to $P^{2} \times S^{1}$, associated with the cycle G(p-2, p-2) of length p-2, and cut M^{*} along a 2-sided projective plane in M^{*} . The resulting 3-manifold belongs to Π_{b} and is of type (p, p-1). For (p, q)=(2, 1), we have $P^{2} \times I$.

The proof is complete.

Corollary 2.3. For any connected graph G, there is an element M^{3} in Π_{a} such that $G(M^{3})$ is isomorphic to G. Therefore there is an element of type (p,q) in Π_{a} if and only if $p \leq q+1$, for positive integers p and q.

Proof. It is sufficient to construct a bounded irreducible 3-manifold V(d) such that $\partial V(d)$ contains precisely d projective planes and a compressible closed surface and that each projective plane in Int (V(d)) is parallel to a boundary component, for any integer $d \ge 2$. Copy V(d) for each vertex of G which has degree d, and paste them.

Let $\{P_1^2, \dots, P_q^2\}$ be a complete system of projective planes in M(q, r) (q, r>0)and K^2 a 2-sided incompressible Klein bottle in M(q, r) disjoint from the complete system such that $M(q, r)-P_1^2\cup\cdots\cup P_q^2\cup K^2$ is connected. The 3-manifold W(q)= $M(q, r)-\operatorname{Int}(N(P_1^2\cup\cdots\cup P_q^2\cup K^2, M(q, r)))$ has 2q projective planes and two incompressible Klein bottles K_{+^2} , K_{-^2} as boundary components. To make a compressible boundary component, attach a 1-handle $D^2 \times I$ to W(q) so that $D^2 \times \partial I$ lies in $K_{+^2} \cup K_{-^2}$. For an even integer d=2q, we can take the resulting 3-manifold as V(d). When d=2q+1, we have to make not only a compressible boundary component but also one more projective plane. Let D_1^2 and D_2^2 be 2-disks in $K_{+^2}^2$ and $P^2 \times \{0\}$, respectively. Attach $P^2 \times I$ to W(q) via a homeomorphism from D_2^2

to D_1^2 , then V(d) will be obtained. This completes the proof.

The question whether there is a bounded 3-manifold in Π_b associated with an arbitrary connected graph or not naturally arises. Unfortunately *I* don't have the answer. If one would like to give the affirmative solution, he ought to construct a boundary-irreducible 3-manifold whose boundary contains an odd number of projective planes. Construction of such 3-manifolds is easy if we take no account of their boundary-irreducibility, but it is so difficult to check whether they are boundary-irreducible or not.

§4. Invariants related to $G(M^3)$

Our theory admits all of invariants in graph theory, since the graph $G(M^{s})$ is a stronger invariant. For example, $\delta(M^{s})$ is defined to be the minimum degree among the vertices of $G(M^{s})$ for $M^{s} \in \Pi$. Then $\delta(M^{s})=1$ if and only if ∂M^{s} contains a projective plane.

We have an invariant which is connected with the homology group of M^s . We define $r(M^s)$ by the 1-dimensional Betti number $\beta_1(G(M^s)) = \operatorname{rank} H_1(G(M^s))$ of the topological space $G(M^s)$. If M^s is of type (p, q), then $r(M^s) = q - p + 1$, concretely, and $r(M^s)$ is the number of edges contained in the *cotree* of a spanning tree of the graph $G(M^s)$, graph-theoretically. From a geometric point of view, $r(M^s)$ can be said to be the maximum number of pairwise disjoint projective planes in Int (M^s) whose removal can not disconnect M^s .

Denote the submodule of $H_2(M^s, \partial M^s; Z_2)$ generated by all of embeddings of of a projective plane, by $H_2^{p}(M^s, \partial M^s; Z_2)$.

Theorem 3.1. For an element $M^{\mathfrak{s}}$ of Π , dim $H_2^{\mathfrak{p}}(M^{\mathfrak{s}}, \partial M^{\mathfrak{s}}; \mathbb{Z}_2) = r(M^{\mathfrak{s}}) \leq \beta_1(M^{\mathfrak{s}})$.

Proof. Let v_1, \dots, v_p be vertices and e_1, \dots, e_q edges being arcs or loops of the topological space $G(M^3)$. Let $P_k^2 \times I$ $(k=1, \dots, q)$ be a regular neighborhood of P_k^2 in M^3 which belongs to a complete system of projective planes in M^3 , corresponding to e_k , and V_i $(i=1, \dots, p)$ a component of M^3 -Int $(P_1^2 \times I \cup \dots \cup$ $P_q^2 \times I)$ corresponding to v_i . Then there is a continuous map $f: M^3 \to G(M^3)$ such that $f(V_i) = v_i$ and $f(P_k^2 \times I) = e_k$. Since $f_*: H_1(M^3) \to H_1(G(M^3))$ is surjective, $\beta_1(M^3) \ge$ $\beta_1(G(M^3)) = r(M^3)$, so the right-hand inequality holds.

Let $\{\alpha_1, \dots, \alpha_r\}$ be a basis of $H_2^p(M^3, \partial M^3; Z_2)$, where $r = \dim H_2^p(M^3, \partial M^3; Z_2)$. Since any 2-sphere is homologically zero in M^3 , there are r pairwise disjoint 2sided projective planes Q_1^2, \dots, Q_r^2 such that $[Q_i^2] = \alpha_i$. Necessarily Q_1^2, \dots, Q_r^2 are not parallel to each other, and $M^3 - Q_1^2 \cup \dots \cup Q_r^2$ is connected. By Theorem

1, an ambient isotopy carries Q_1^2, \dots, Q_r^2 into P_1^2, \dots, P_r^2 , after modification of the subscripts.

If the graph obtained from $G(M^3)$ by deleting e_1, \dots, e_r is not a tree, then there is another projective plane, say P_{r+1}^2 , such that $M^3 - P_1^2 \cup \dots \cup P_r^2 \cup P_{r+1}^2$ is connected, so $P_1^2, \dots, P_r^2, P_{r+1}^2$ are Z_2 -homologically independent. This contradicts the choice of r. Therefore e_1, \dots, e_r make up a cotree of $G(M^3)$ and $r=q-p+1=r(M^3)$, so the left-hand equality holds.

Most of non-orientable compact 3-manifolds M^3 have infinite $H_1(M^3)$ and exceptions contain projective planes as boundary components. Hempel constructed such exceptions whose boundaries contain 2n projective planes and one closed orientable surface (Example 6.10 in [5]). His examples blong to Π_b , which he did not mention. Even if one wish to construct a 3-manifold M^3 such that $H_1(M^3)$ is infinite and each component of ∂M^3 is a projective plane, we can meet his requirement. Cut an element M_1^3 with $r(M_1^3)=r+n$ of Π_c along n mutually disjoint projective planes corresponding to some edges of a cotree in $G(M_1^3)$. Then the resulting 3-manifold M^3 belongs to Π_b , and $\beta_1(M^3) \ge r(M^3) = r$.

Since we have irreducible closed 3-manifolds with non-trivial π_2 different from $P^2 \times S^1$, it follows from Tao's result stated in Introduction that there are those prime closed 3-manifolds whose orientable double covering spaces are not prime. In fact, each element M^3 of Π_c except $P^2 \times S^1$ is such a 3-manifold. Let $g: \tilde{M} \rightarrow M^3$ be the orientable double covering. For any projective plane Q^2 in M^3 , $g^{-1}(Q^2)$ is a non-separating 2-sphere in \tilde{M} . Thus \tilde{M} has $S^2 \times S^1$ as a prime facter. In particular, the orientable double covering spaces of our examples are homeomorphic to connected sums of several $S^2 \times S^1$'s and unions of knot or link spaces with their boundaries identified. Therefore if \tilde{M} is prime, then \tilde{M} is homeomorphic to $S^2 \times S^1$, and hence M^3 is homeomorphic to $P^2 \times S^1$, which one can prove using Theorem 1 in [8]. So $P^2 \times S^1$ can be said to be the unique 3-manifold in Π_c whose orientable double covering space is prime. Moreover we have a characterization of $P^2 \times S^1$ in terms of our theory, as follows:

Theorem 3.2. Let M^{s} be an element of Π_{c} . Then the followings (1) to (3) are equivalent:

- (1) M^3 is homeomorphic to $P^2 \times S^1$.
- (2) There is a double covering space \tilde{M} of M^3 such that \tilde{M} belongs to Π_c and $q(\tilde{M})=q(M^3)$.
- (3) For every compact covering space \tilde{M} of $M^{\mathfrak{s}}$ belonging to $\Pi_{\mathfrak{s}}$, $q(\tilde{M})=q(M^{\mathfrak{s}})$.

Proof. A compact covering space of $P^2 \times S^1$ is homeomorphic to either $P^2 \times S^1$ or a 2-sphere bundle over S^1 . Since the latter is not an element of Π_e , (1) implies (3) immediately.

Let $P^2 \times I$ be a regular neighborhood of a projective plane P^2 in M^3 , and $(M_i, P_{i0}^2, P_{i1}^2)$ (i=1, 2) two copies of $(M^3-\text{Int}(P^2 \times I), P^2 \times \{0\}, P^2 \times \{1\})$. Then the 3-manifold \tilde{M} obtained from $M_1 \cup M_2$ by identifying P_{10}^2 with P_{21}^2 and P_{11}^2 with P_{20}^2 is a double covering space of M^3 . Suppose (3), then $q(\tilde{M})=q(M^3)$, so (3) implies (2).

Let $g: \tilde{M} \to M^3$ be a double covering with the covering translation $\tau: \tilde{M} \to \tilde{M}$ of order two. Suppose that \tilde{M} is irreducible and that $q(\tilde{M}) = q(M^3)$. Let $\{P_1^2, \dots, P_q^2\}$ be a complete system of projective planes in M^3 , where $q = q(M^3)$. By irreducibility of \tilde{M} , $g^{-1}(P_1^2 \cup \dots \cup P_q^2)$ consists of 2q projective planes Q_1^2, \dots, Q_{2q}^2 . Since $q(\tilde{M}) = q(M^3)$, some pair are parallel and bound a submanifold E of \tilde{M} homeomorphic to $P^2 \times I$, say Q_1^2 and Q_2^2 . We may assume that $E \cap Q_i^2 = \phi$ ($i = 3, \dots, 2q$), by Lemma 1.1 and that $\tau(\operatorname{Int} E)) \cap \operatorname{Int}(E) = \phi$, by the fact that a single projective plane can not bound a compact 3-manifold. If $g(Q_1^2) \neq g(Q_2^2)$, then g|E is an embedding and $g(Q_1^2)$ and $g(Q_2^2)$ are parallel. This contradites the fact that $g(Q_1^2) = g(Q_2^2)$ and $M^3 = g(E)$ is homeomorphic to $P^2 \times S^1$, so (2) implies (1).

This completes the proof.

References

- D. B. A. Epstein: Projective planes in 3-manifolds, Proc. London Mat. Soc. (3) 11 (1961), 469-484.
- [2] C. D. Feustel: *M³ admitting a certain embedding of P² is a pseudo P³*, Proc. Amer. Math. Soc. 26 (1970), 215-216.
- [3] W. Haken: Some results on surfaces in 3-manifolds, Studies in Modern Topology, Math. Assoc. Amer., distributed by Prentice Hall (1968), 34-98.
- [4] F. Harary: Graph Theory, Addison Wesely, Reading Mass., 1969.
- [5] J. Hempel: 3-manifolds, Ann. of Math. Studies 86, Prineton University Press, Princeton, New Jersey, 1976.
- [6] M. Ochiai: 2-Sided embeddings of projective planes into 3-manifolds, to appear.
- [7] D. Rolfsen: Knots and Links, Math. Lecture Series 7, Publish or Perish, Inc., 1976.
- [8] Y. Tao: On fixed point free involutions of $S^1 \times S^2$, Osaka Math. J. 14 (1962), 145-152.
- [9] F. Waldhausen: On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56-88.

Department of Informational Science Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo, 152 Japan