
YOKOHAMA MATHEMATICAL
JOURNAL VOL. 29, 1981

HOMOMORPHISMS AND MAXIMAL IDEALS IN THE
ALGEBRA OF HOLOMORPHIC FUNCTIONS

By

HIROJI OCHIAI and NIRO YANAGIHARA

(Received September 4, 1980. Revised April 16, 1981)

1. Introduction

We denote by $\Omega$ a domain of holomorphy in the complex Euclidean space $C^{N}$

and by $H(\Omega)$ the algebra of all holomorphic functions in $\Omega$ , equipped with the
topology of unifom convergence on each compact suset of $\Omega$ .

Let $\mathscr{M}$ be the set of all maximal ideals of $H(\Omega)$ . A well known theorem of
Igusa [3] states:

Theorem IG. For a maximal ideal $ M\in\swarrow\swarrow$, the following conditions $(i)-(iv)$

are equivalent:
(i) $M$ corresponds to a point of $\Omega$ .
(ii) $M$ is closed.
(iii) $H(\Omega)/M\cong C$ (the complex number field).
(iv) $M$ is finitely generated.

Non-closed maximal ideals are treated by some authors for the case $N=1$ ,
see e.g. [1]. We considered the case $N\geqq 1$ in [6], and introduced a topology in
$-\swarrow\swarrow so$ that each $f\in H(\Omega)$ can be continuously extended to $-\ovalbox{\tt\small REJECT}$

Let $\rightarrow\swarrow\swarrow\Lambda$ be the set of all closed maximal ideals of $H(\Omega)$ . $Th\ovalbox{\tt\small REJECT} rem$ IG shows
that an analytic structure can be introduced into $\mathscr{M}^{A}$ . Our theme in this paper
is a study of behaviors of $f\in H(\Omega)$ in $-\swarrow\swarrow-\leftarrow\swarrow\swarrow\Delta$

In the below, we suppoee that $N=1$ and the domain $\Omega$ is the unit disk $U=$

$\{|z|<1\}$ , and write $T=\{|z|=1\},$ $P=\{|z|\leqq\infty I$ (the Riemann sphere).

Let $f\in H(\Omega)$ . In \S \S 2-3, we characterize the cluster set $C(f;\alpha)$ [$2$, p. 3] and
the boundary cluster set $C_{B}(f;\alpha)$ [$2$ , p. 81] of $f$ at $\alpha\in T$ by means of a and
derive a fact (see (3.4)) which is an analogue of the theorem of Iversen-Gross [2,
p. 91, $Th\ovalbox{\tt\small REJECT} rem5.2$].

In \S 4, we study some connections between $-\swarrow\swarrow and$ the maximal ideal space
of $H^{\infty}(U)$ (the set of all bounded holomorphic functions in $U$).

In \S 5, we consider analytic structures in $-\swarrow\swarrow-\nearrow\swarrow\Delta$
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Studies for the cases of more general plane domains or of higher dimensions
will be further tasks.

For later use, we summari$ze$ here some results in [6].

(1.1) Let $M$ be a non-closed maximal ideal. We can choose functions $f_{1},$ $\cdots,f_{N}$ ,
$f_{j}\in M$, such that $\{f_{\iota}=\cdots=f_{N}=0\}$ is a point sequence $Z=\{z_{k}\}$ in $\Omega$ , infinite but not
clustering in $\Omega$ . Let $\Psi$ be a collection of subsets $E$ of $Z$ such that $ E\in\Psi$ if there
are functions $g_{1},$

$\cdot,$
$g_{h}$ in $M$ with $\{f_{1}=\cdots=f_{N}=g_{1}= =g_{h}=0\}=E$. Then, $\Psi$ is

a ultrafilter on $Z$. Thus, $M$ defines a pair $(Z, \Psi)$ of a sequence $Z$ and a ultrafilter
$\Psi$ on $Z$.
(1.2) Let $M$ be a non-closed maximal ideal and $(Z, \Psi)$ be the pair defined by $M$.
Let $I$ be the set of all positive integers and $\Phi$ be a collection of subsets $A$ of $I$

such that $ A=\{n_{k}\}\in\Phi$ if there is $ E\in\Psi$ with $E=\{z_{n_{k}}\}$ . Let $C^{I}$ be the set of all
complex sequences. We say $\{a_{i}\}\equiv\{b_{\ell}\}$ if $\{i;a_{l}=b_{\ell}\}\in\Phi$ . Then, $C^{*}=C^{I}/(\equiv)$ is a
(transcendental) extension field of $C$, and $H(\Omega)/M\cong C^{*}$ .
(1.3) Let $S$ be the set of all infinite point sequences in $\Omega$ , not clustering in $\Omega$ .
For a $Z\in S$, let $\mathscr{F}(Z)$ be the set of all ultrafilters on $Z$, such that $\Psi\in\ovalbox{\tt\small REJECT}^{\prime}(Z)$

contains all sets $E$ whose complements $Z-E$ are finite sets. Let $Z_{1},$ $Z_{2}\in S$ and
$\Psi_{1}\in\ovalbox{\tt\small REJECT}(Z_{1}),$ $\Psi_{2}\in \mathscr{F}(Z_{2})$ . We say $(Z_{1}, \Psi_{1})\sim(Z_{2}, \Psi_{2})$ if there is a $Z^{\prime}\in S,$ $Z^{\prime}\subset Z_{1}\cap Z_{2}$ ,
$Z^{\prime}\in\Psi_{1}\cap\Psi_{2}$ , and $Z^{\prime}\cap\Psi_{1}=Z^{\prime}\cap\Psi_{2}$ .
(1.4) If $(Z_{1}, \Psi_{1})$ and $(Z_{2}, \Psi_{2})$ are pairs defined by the same maximal ideal $M$, as
stated in (1.1), then $(Z_{1}, \Psi_{1})\sim(Z_{2}, \Psi_{2})$ in the sense (1.3). Conversely, for a pair
$(Z, \Psi)$ put

$M=\{f\in H(\Omega);Z\cap\{f=0\}\in\Psi\}$ .
Then $M$ is a maximal ideal, and, if $(Z_{1}, \Psi_{1})\sim(Z, \Psi)$ , then $(Z_{1}, \Psi_{1})$ determines the
same maximal ideal $M$.
(1.5) We say an equivalence class $[(Z, \Psi)]$ determines a boundary point $b_{r}$ of $\Omega$ .
Put

$\delta\Omega=\{b_{l}\cdot;Z\in S, \Psi\in\ovalbox{\tt\small REJECT}(Z)\}$ , $\Omega^{*}=\Omega\cup\delta\Omega$ .
Then by (1.4), the maximal ideal space $\nearrow\swarrow ofH(\Omega)$ and $\Omega^{*}$ correspond each other

in a one-to-one way.

(1.6) $\Omega^{*}$ is topologized as follows: For a point $z\in\Omega,$ $neighborh\ovalbox{\tt\small REJECT} ds$ of $z$ are
defined as usual. For a $ b_{Y}\in\delta\Omega$ , a subset $N$ of $\Omega^{*}$ is a neighborhood of $b_{r}$ if

(a) $ N\cap\Omega$ is an open set in $\Omega$ , containing a set $ E\in\Psi$ , and
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(b) $ N\cap\delta\Omega$ consists of boundary points determined by classes of ultrafilters
on point sequences $(\in S)$ contained in $ N\cap\Omega$ .
By this topolo$gy,$ $\Omega^{*}$ is a Hausdorff space, which is countably compact.

(1.7) Each $f\in H(\Omega)$ can be extended continuously on $\Omega^{*}$ , as a map $\Omega^{*}\rightarrow P$.
This continuous extension of $f$ is denoted by $f^{l}$.

We suppose $N=1$ and $\Omega=U$ (the unit disk) in this paper.

2. Homomorphisms of $H(U)$

A maTimal ideal $M$ determines a point sequence $Z=\{z_{k}\}$ and a ultrafilter $\Psi$,
which in tum determine a boundary point by (see (1.5)). The maximal ideal $M$,
or equivalently the boundary $\Re int$ by, defines a homomorphism $\phi$ of $H(U)$ onto
$c*$ (an extension field of $C$), $C^{*}\cong H(U)/M$, see (1.2).

Conversely, let $\phi$ be a homomorphism of $H(U)$ onto an extension field $C^{*}=$

$C^{I}/t\equiv)$ , where $C^{I}$ is the set of all complex sequences and $\equiv$ is the equivalence
relation defined by a ultrafilter $\Phi$ on the set of all positive integers $I$, see (1.2).
Then, the kernel $K=ker(\phi)$ of the homomorphism $\phi$ is obviously a maximal ideal
in $H(U)$ . $K$ can not correspond to a point of $U$, for otherwise we would have
$H(\sigma)/K\cong C$, in contradiction that $H(U)/K\cong C^{*}$ . Thus, if $f\in K,$ $f$ has infinitely
many zero points $Z=\{z_{k}\}$ , see (1.1). $K$ induces a ultrafilter $\Psi$ on $Z$, which cor-
responds to the ultrafilter $\Phi$ on $I$, which defines the equivalency $(\equiv)$ . The maximal
ideal $K$, or equivalently $(Z, \Psi)$ , defines a boundary point. In this way, the maximal
ideal space $\mathscr{M}$ of $H(U)$ , which is a countable-compactification $U^{*}$ of $U$, can be
identified with the set of homomorphisms of $H(U)$ , of the type stated above.

Every $f\in H(U)$ is continuous at boundary points as a map to $P$, see (1.7).
Thus, at a boundary point $b_{\Gamma},$ $f$ has a limit $f(b_{r})$ , which we denote as $\phi^{\prime}(f)$ ,
where $\phi$ is the homomorphism defined by $b_{r}$ . Thus

(2.1) $\phi^{\epsilon}(f)=f(b_{T})$ .
Then, $\phi^{g}$ is a map of $H(U)$ to $P$. For every $f\in H(U)$ , we have

(2.2) $f^{\iota}(\phi)=\phi^{t}(f)$ $(=f(b_{F}))$ ,

where $f^{l}$ is the continuous extension of $f$ (see (1.7)).

For the function $z\in H(U)$ , we use the symbol $\pi$ for $z^{\prime}$ :

$\pi(\phi)=z^{\prime}(\phi)$ , $\phi\in \mathcal{J}\swarrow$ .
By the definitions, we have easily
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Theorem 2.1. The mapling $\pi$ is a continuous map $oJ\mathscr{M}$ onto the closed disk
U. Over the disk $U,$ $\pi$ is one-to-one, and $\pi^{-1}$ maPs $U$ homeomorPhically onto the
open subset $\rightarrow\swarrow\swarrow$’ $of-\ovalbox{\tt\small REJECT}$

$\mathscr{M}^{\prime}$ is the set of all closed maximal ideals.$\mathscr{M}^{4}$ of $H(U)$ .
That is, $\pi^{-1}$ maps $\lambda\in U$ to $\phi_{\lambda}\in\vee\swarrow\Delta$ where $\phi_{\lambda}$ denotes the evaluatim at $\lambda$ .

It is convenient to picture $\pi$ as a projection of $\mathscr{M}$ onto the closed unit disk.
By Theorem 2.1, $\pi(-\ovalbox{\tt\small REJECT}^{\Delta})=U$. The remainder $\leftrightarrow 4r--\ovalbox{\tt\small REJECT}^{\Delta}$ is mapped by $\pi$ onto the
circumference $T$ . For $\alpha\in T$ , we put

(2.3) $\mathscr{M}_{\alpha}=\pi^{-1}(\alpha)=\{\phi\in-\ovalbox{\tt\small REJECT};\phi^{\gamma}(z)=\alpha\}$ .
$\mathcal{J}\swarrow_{\alpha}$ is called the fiber $ of\swarrow\swarrow over\alpha$ . It is a closed subset of M We have

(2.4) $\mathscr{M}=\mathscr{M}^{A}\cup(\bigcup_{\alpha\in T}\swarrow\swarrow_{\alpha})$ , $\mathscr{M}_{\alpha}\cap \mathscr{M}_{\beta}=void$ if $\alpha\neq\beta$ .

$ForJ\in H(U)$ and $\alpha\in T$ , we define the cluster set $C(f;\alpha)$ off at [2, P. 3] by

(2.5) $C(f;\alpha)=$ {$\zeta\in P$ ; there is a seq. $\{\lambda_{n}\}\subset U$ with $ f(\lambda_{n})\rightarrow\zeta$}

$=\bigcap_{*>0}\overline{f(U\cap\{|z-\alpha|<\epsilon\}})$ .

Theorem 2.2. $f^{\gamma}(\rightarrow\ovalbox{\tt\small REJECT}_{\alpha})=C(f;\alpha)$ .
Proof. Let $ b_{r}\in$ X. Then there is a sequence $Z=\{\lambda_{n}\}$ and a ultrafilter $\Psi$

on $Z$, determining $b_{y}$ . Let $\{\lambda_{n(\nu)}\}$ be a subnet of $Z$ such that $\lambda_{n(\nu)}\rightarrow b,$ . Then
$ z^{a}(\lambda_{n(\nu)})\rightarrow\alpha$ and $f^{\prime}(\lambda_{n(\nu)})\rightarrow f(b,)$ and $f(b_{y})\in C(f;\alpha)$ . Conversely, if $\zeta\in C(f;\alpha)$ , there
is $\lambda_{n}\rightarrow\alpha$ and $ f(\lambda_{n})\rightarrow\zeta$ . Let $\Psi$ be a ultrafilter on $Z=\{\lambda_{n}\}$ and $b_{y}$ be a boundary
point determined by $(Z, \Psi)$ . If $\{\lambda_{n(\nu)}\}$ is a subnet of $\{\lambda_{n}\}$ such that $\lambda_{n(\nu)}\leftarrow b_{Y}$ , then
2 $\iota_{(\lambda_{n(\nu)})\rightarrow\alpha}$ whence $by\in \mathscr{M}_{\alpha}$ , and $f(\lambda_{n(\nu)})\rightarrow f(b_{y})$ , therefore $\zeta=f(b,)\in f^{\gamma}(\mathscr{M}_{\alpha})$ . Q.E.D.

By the way, we define the boundary cluster set $C_{B}(f;\alpha)$ [$2$ , p. 81] of $f\in H(U)$

at $\alpha\in T$ by

(2.6) $C_{B}(f;\alpha)=\bigcap_{l>0}\overline{(\cup\{C(f;\beta):0<|\beta-\alpha|<\epsilon,\beta\in T\})}$ .

3. Boundary fibers and boundary cluster sets

Now we put

(3.1) $-\ovalbox{\tt\small REJECT}_{\alpha}..=\cup\{\mathscr{M}_{\beta};0<|\beta-\alpha|<\epsilon, \beta\in T\}$ ,

(3.2) $-\ovalbox{\tt\small REJECT}_{\alpha}^{B}=\bigcap_{>0}$ cl $(\mathscr{M}_{\alpha}.)$ ,

in which cl $(E)$ denotes the closure of $E$ in $-\mathscr{M}$
$\vee$’ is non-void, since $\vee$’ is

countably compact (1.6). We call.$\sim\ovalbox{\tt\small REJECT}_{a}^{f}$ the boundary fiber of $’\ovalbox{\tt\small REJECT}$ at $\alpha$ . $m=\rightarrow\ovalbox{\tt\small REJECT}_{a}^{B}$
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can not belong to any $\mathscr{M}_{\beta}$ if $\beta\neq\alpha$ . Hence

(3.3) $\mathscr{M}_{a}^{B}\subset\leftarrow\ovalbox{\tt\small REJECT}_{\alpha}$ .
$\vee\swarrow’\alpha$ and X” are closed in /1

Theorem 3.1. We have

(3.4) $-\ovalbox{\tt\small REJECT}_{\alpha}--\ovalbox{\tt\small REJECT}_{\alpha}^{B}$ is open in $\leftarrow\nearrow Z-U$

and

(3.5) $f^{\iota}(\mathscr{M}_{\alpha}^{B})=C_{B}(f;\alpha)$ .
Proof. Take $m\in\rightarrow\ovalbox{\tt\small REJECT}_{\alpha}-\mathscr{M}_{\alpha}^{B}$ . $m$ is defined by a point sequence $Z=\{\lambda_{n}\}$ and

a ultrafilter $\Psi$ on $Z$. There is a set $ E\in\Psi$ such that $\overline{E}\cap T=\{\alpha\}$ . Suppose to the
contrary. Then, for any $ E\in\Psi$ , there would be a point $\beta_{P}\neq\alpha,$ $\beta_{B}\in\overline{E}\cap T$ . Take
a $neighborh\ovalbox{\tt\small REJECT} dN$ of $m$ . $N\cap U$ contains a set $ E\in\Psi$, whence $N$ intersects with

$\swarrow\swarrow\beta_{B}$ , which implies that $ m\in$ cl $(\mathscr{M}_{a}.’)$ for every $\epsilon>0,$ $m\in \mathscr{M}_{a}^{B}$ , contradicting to
the $hy\infty thoeis$ .

Thus, there is a neighborhood $N$ of $m$ such that

$N\cap(-\ovalbox{\tt\small REJECT}-U)\subset-\ovalbox{\tt\small REJECT}_{\alpha}--\ovalbox{\tt\small REJECT}_{\alpha}^{B}$ ,

which proves (3.4).

Now we have, by (2.6) and $Th\ovalbox{\tt\small REJECT} rem2.2$,

$C_{B}(f_{j\alpha})=\bigcap_{*>0}(\cup\{f^{\prime}(\mathscr{M}_{l});0<|\beta-\alpha|<\epsilon, \beta\in T\})$

$=\bigcap_{e>0}\overline{(f^{l}(\cup\{-\ovalbox{\tt\small REJECT}_{f}:0<|\beta-\alpha|<\epsilon,\beta\in T\}))}$

$\supset\bigcap_{\epsilon>0}f\#(c1(\mathscr{M}_{\alpha}.))\supset f^{\gamma}(\bigcap_{e>0}c1(\rightarrow\ovalbox{\tt\small REJECT}_{\alpha},.))=f^{2}(-l_{\alpha}^{B})$ .
Let $w_{0}\in C_{B}(f;\alpha)$ . Take a sequence $\epsilon_{n}\downarrow 0$. Then

$w_{0}\in\cup\{f^{\prime}(-\ovalbox{\tt\small REJECT}_{f});0<|\beta-\alpha|<\epsilon_{n}, \beta\in T\}$ .
We can choose, for a sequence $\delta_{\hslash}\downarrow 0$,

$w_{n}\in\cup\{f^{t}(\mathscr{M}_{\beta});0<|\beta-\alpha|<\epsilon_{n}, \beta\in T\}$ , $|w_{\mathfrak{n}}-w_{0}|<\delta_{n}$ .
Then, $w.\rightarrow w_{0}$ . On the other hand,

$w_{n}=f^{t}(m_{n})$ for an $m_{n}\in_{-\ovalbox{\tt\small REJECT}_{a.l}}n$

By the countable $\ovalbox{\tt\small REJECT} mpactnaes$ of X we have that

$Q=\bigcap_{k>0}$ (cl $(\{m_{n}\}_{n\geq k})$ ) is non-void.
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Take a point $m_{0}$ in $Q$ . Then $ m_{0}\in$ cl $(\mathscr{M}_{a}$ .,$)$ for every $\epsilon>0$ , hence $m_{0}$ belongs to
$-\swarrow\swarrow_{\alpha}B$ Obviously

$f^{\prime}(m_{0})\in\overline{\{f^{l}(m_{n});n\geqq k\}}$ for every $k$ ,

therefore
$f^{\iota}(m_{0})=w_{0}$ , $w_{0}\in f^{\gamma}(\rightarrow^{\prime}Z_{\alpha}^{B})$ ,

which implies (3.5). Q.E.D.

We denote by $\omega$ a subdomain of $U$ whose boundary $\partial\omega$ consists of a Jordan
curve such that $\partial\omega\cap T=\{\alpha\}$ . Put

$\alpha$

and a ultrafilter $\Psi$ on $Z$}.

Theorem 3.2. We have

(3.6) $\leftrightarrow 4\ovalbox{\tt\small REJECT}_{\alpha}-\rightarrow\ovalbox{\tt\small REJECT}_{\alpha}^{B}=\bigcup_{\omega}\mathscr{M}_{\alpha}^{\omega}$ ,

where the sum on the right is taken over all subdomains $\omega$ of the tyPe stated above.

Proof. Obviously, $\cup \mathscr{M}_{\alpha}^{\omega}\subset\vee\prime r_{\alpha}--\ovalbox{\tt\small REJECT}_{\alpha}^{B}$ . Conversely, take $m\in \mathscr{M}_{\alpha}--\ovalbox{\tt\small REJECT}_{\alpha}^{B}$ . $m$

is defined by a sequence $w_{Z=\{\lambda_{n}\}}$ and a ultrafilter $\Psi$ on $Z$. By the $pr\ovalbox{\tt\small REJECT} f$ of Theorem

3.1, there is a set $E\in\Psi,\overline{E}\cap T=\{\alpha\}$ . Put

$\Psi_{E}=E\cap\Psi=\{E\cap F;F\in\Psi\}$ .
Then, $\Psi_{B}$ is a ultrafilter on $E$, and $(E, \Psi_{B})$ is equivalent to $(Z, \Psi)$ in the sense
stated in (1.3). Thus the point $m$ is also defined by $(E, \Psi_{B})$ . The sequence $E$ is

contained in some domain $\omega$ of the type stated above, hence $m\in\bigcup_{a}\rightarrow\ovalbox{\tt\small REJECT}_{\alpha}^{\omega}$ , which
proves (3.6). Q.E.D.

Further, we have

Theorem 3.3. $\leftarrow\ovalbox{\tt\small REJECT}_{\alpha}--\ovalbox{\tt\small REJECT}_{\alpha}^{B}$ is connected.

Proof. By Theorem 3.2, it suffices to show that $-\ovalbox{\tt\small REJECT}_{\alpha}^{\omega}$ is connected. Suppose

to the contrary, $-\ovalbox{\tt\small REJECT}_{\alpha}^{\omega}=A\cup B$ with open sets $A$ and $B$ in $\mathscr{M}_{\alpha}^{\omega},$ $A\cap B=void$ . $A$

and $B$ are derived from some open sets in $U$, say $O_{A}$ and $O_{B},$ $resoectively$ . Since
$A\cap B=void$ , we may assume that $O_{A}\cap O_{B}=void$ , and

$O_{A}\cup O_{B}\supset\omega\cap\{|z-\alpha|<r\}$ for some $r>0$ ,

because $A\cup B=\vee\ovalbox{\tt\small REJECT}_{\alpha}^{w}$ . This is absurd by the connectivity of $\omega$ . Q.E.D.

By the same method, we can show
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Theorem 3.4. $’\ovalbox{\tt\small REJECT}_{\alpha}$ is connected.

4. Maximal ideal spaces of $H(U)$ and of $H^{\infty}(U)$

We denote by $H^{\infty}(U)$ the set of all bounded holomorphic functions in $U$.
$H^{\infty}(U)$ is a Banach algebra with the supremum norm, and has been investigated
by several authors, see e.g., [4]. We write the maximal ideal space of $H^{\infty}(U)$ as
$\vee\ovalbox{\tt\small REJECT}(H^{\infty})$ . $\mathcal{J}\swarrow denotae$ the maximal ideal space of $H(U)$ as before.

Theorem 4.1. For any $\alpha\in T$ , there is a maximal ideal $M\in \mathscr{M}_{\alpha}$ which does
not contain any bounded holomorphic function in $U$, other than the identically 2ero

function.
Proof. Let $Z=\{\lambda_{n}\}$ be a point sequence in $U$ such that

(4.1) $\lambda_{n}\rightarrow\alpha$ as $ n\rightarrow\infty$ , and $\Sigma(1-|\lambda_{n}|)=\infty$ .
Let $\ovalbox{\tt\small REJECT}^{-}$ be a family of subsets of $Z$ defined as follows: $E\subset Z$ belongs to $d^{\varpi}$ if

$Z-E=\{\lambda_{n_{k}}\}$ satisfies $\Sigma(1-|\lambda_{n_{k}}|)<\infty$ .
Let $\Psi$ be a ultrafilter containing $\ovalbox{\tt\small REJECT}^{-}$. Then the maximal ideal $M$ corresponding

to $(Z, \Psi)$ can not contain any bounded function other than $0$ . Q.E.D.

Theorem 4.2. There is a continuous map $\mu$ from $\vee\swarrow\swarrow onto$ $\vee\ovalbox{\tt\small REJECT}(H^{\infty})$ such that
for any $f\in H^{\infty}(U)$

(4.2) $f^{\#}(m)=f(\mu(m))$ , $ m\in\ovalbox{\tt\small REJECT}\swarrow$ ,

where $f$ denotes the Gelfand representation of $f$ [ $4$, p. 159].

Proof. Let $M$ be a maximal ideal in $H(U)$ and $\phi$ be the corresponding
homomorphism of $H(U)$ onto $c*$ , an extension field of $C$. Then, $\phi^{\prime}$, defined in
(2.1), gives obviously a complex homomorphism of $H^{\infty}(U)$ onto $C$, and hence there
exists a unique point m$\in $\ovalbox{\tt\small REJECT}(H^{\infty})$ corresponding to $m$ , and the map $\mu$ is defined
by

$m\#=\mu(m)$ .
(4.2) is clearly satisfied by the definition.

Conversely, take $m^{\prime}\in\vee\swarrow(H^{\infty})$ . There is a point sequence $Z=\{\lambda_{n}\}$ in $U$ whose
closure in $\rightarrow\ovalbox{\tt\small REJECT}(H^{\infty})$ contains $m^{\prime}$ [ $5$ , p. 85, Corollary]. Let the subnet $\{\lambda_{n(\ell)}\}$ of $\{\lambda_{n}\}$

converge to $m^{\prime}$ .
We define a family $\ovalbox{\tt\small REJECT}^{-}$ of subsets of $Z$ as follows: $E\subset Z$ belongs to $\mathscr{L}^{-}$ if there

is an $i_{0}$ such that
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$\{\lambda_{n(i)} ; i\geqq i_{0}\}\subset E$ .
Then, $F$ is a filter on $Z$, and a ultrafilter $\Psi$ containing $\ovalbox{\tt\small REJECT}^{-}$ definae a wint $m$ in
$’\ovalbox{\tt\small REJECT}$ We will show that

(4.3) $m^{\prime}=m^{\prime}=\mu(m)$ .
Let $M^{\prime}$ and $M$ be the maximal ideals in $H^{\infty}(U)$ , respectively, which are represented
by $m^{\prime}$ and $m$ in $\mathscr{M}(H^{\infty})$ and a respectively. Let $\phi$ be the homomorphism cor-
responding to $M$. For any $f\in M^{\prime}\subset H^{\infty}(U)$ , we have

$\lim_{\ell}f(\lambda_{(\ell)})=f(m^{\prime})=0$ .
It is easy to see that the closure of $\{\lambda_{n(\ell)}\}$ in $’\ovalbox{\tt\small REJECT}$ contains $m$ . Hence $f(m)$ belongs
to the closure of ( $f(\lambda_{n(l)})$ }, therefore $f(m)=0,$ $\phi^{t}(f)=0$ , which shows that

$ M^{\prime}=ker(\phi^{1})=M\#$ ,

and (4.3) holds. Thus, the map $\mu$ is onto $\leftrightarrow/Z(H^{\infty})$ .
Now we will prove the continuity of $\mu$ . Let $\{\phi_{\ell}\}$ be a net in $-\swarrow l^{\prime}$ which con-

verges to $\phi$ . Since $f\in H^{\infty}(U)\subset H(U)$ is continuous on $\mathscr{M}_{1}$ we have $f^{l}(\phi_{i})\rightarrow f^{l}(\phi)$ ,
hence

$\phi{}^{t}(f)\rightarrow\phi^{1}(f),$ $f\in H^{\infty}(U)$ ,

which shows that
$\mu(\phi_{\ell})=\phi_{l}^{\iota_{\rightarrow\phi}\#=\mu(\phi)}$

in the weak* topology of $\vee\ovalbox{\tt\small REJECT}(H^{\infty})$ , whence $\mu$ is continuous. Q.E.D.

$\{f^{l};f\in H(U)\}$ separates points of $\vee\swarrow hence$ of $\ovalbox{\tt\small REJECT}\swarrow(H^{\infty})$ , while $\{f\#;feH^{\infty}(U)\}$

separates points of $\vee\ovalbox{\tt\small REJECT}(H^{\infty})$ but not points of $\vee J$

5. Analytic structures

We write

(5.1) $L_{\lambda}(z)=L(z;\lambda)=(z+\lambda)/(1+\overline{\lambda}z)$ , $|\lambda|<1$ ,

which transforms $U$ into Mr i.e., $L_{\lambda}\in( ^{\sigma}$ .
$L_{\lambda}$ can be considered also as a map from $U$ into $-\ovalbox{\tt\small REJECT}(H^{\infty})$ . In this point of

view, we write $L_{\lambda}$ as $\mathcal{L}_{\lambda}$ . That is,

(5.2) $\lambda\in U\rightarrow \mathcal{L}_{\lambda}\in(-\ovalbox{\tt\small REJECT}(H^{\infty}))^{U}$ .
By [5, p. 88, $Th\ovalbox{\tt\small REJECT} rem4.3$], the transformation (5.2) can be extended to $\rightarrow\ovalbox{\tt\small REJECT}(H^{\infty})\rightarrow$

$(\leftrightarrow\ovalbox{\tt\small REJECT}(H^{\infty}))^{\sigma},$ $m^{\prime}\in\ovalbox{\tt\small REJECT}\swarrow(H^{\infty})\rightarrow \mathcal{L}_{m^{\prime}}\in(\ovalbox{\tt\small REJECT}(H^{\infty}))^{U}$ . For transformation
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(5.3) $\lambda\in U\rightarrow L_{\lambda}\in(\mathcal{J}\swarrow)^{U}$

we obtain, correspondingly,

Theorem 5.1. The transformation (5.3) can be extended to a continuous trans-
formation which assigns to each $m\in \mathscr{M}$ a map $L_{m}\in(\mathscr{M})^{U}$ .

Let $\mu$ be the cmtinuous map $of\swarrow\swarrow mto$ $\swarrow\swarrow(H^{\infty})$ in Theorem 4.2. Let $m\in \mathscr{M}$

If $\mu(m)$ belongs to the closure (in $\mathscr{M}(H^{\infty})$ ) of some interpolating sequence in $U$ (see

[5, p. 80]), then $L_{m}$ is a me-to-me analytic map of $U$ onto a subset $P(m)$ of $’\ovalbox{\tt\small REJECT}$

such that

$\mu(P(m))=the$ Gleason part $\ovalbox{\tt\small REJECT}(\mu(m))$ of $\mu(m)$ in $-\ovalbox{\tt\small REJECT}(H^{\infty})$ . [5, p. 75]

$P(m)$ is an analytic set in the sense that for each $feH^{\infty}(U),$ $(f\#_{\circ}L.)(z)$ is a
holomorphic functim in $U$ (see [5, p. 77]).

If $\mu(m)$ does not belong to the closure (in $\ovalbox{\tt\small REJECT}(H^{\infty})$ ) of any interpolating sequence
in $U$, then

$\mu(L_{m}(U))=\mu(m)$ ,

i.e., any bounded holomorPhic function is constant on $L_{m}(U)$ .
Proof. Let $m\in\vee\ovalbox{\tt\small REJECT}$ be defined by a sequence $Z=\{\lambda_{n}\}$ and a ultrafilter $\Psi$ on $Z$.

Let $\{\lambda_{n(t)}\}$ be a subnet converging to $m$ . Then $\{\lambda_{n(\ell)}\}$ converges in $\leftrightarrow\ovalbox{\tt\small REJECT}(H^{\infty})$ to $\mu(m)$ ,

since the map $\mu$ is continuous.
By [5, p. 88, Theorem 4.3], we have in $(-\swarrow\swarrow(H^{\infty}))^{\sigma}$

$\lim \mathcal{L}_{\lambda_{n(i)}}=\mathcal{L}_{\mu(m)}$ (see, especially, [5, P. 90]).

If $\mu(m)$ is in the closure of some interpolating sequence, then $\mathcal{L}_{\mu(m)}(U)$ is the
Gleason part $\ovalbox{\tt\small REJECT}(\mu(m))$ in $\mathscr{M}(H^{\infty})$ . Take a point $z\in U$. Put

$W=\{w_{n}\}$ , $w_{n}=L(z;\lambda_{n})$ ,

and, for a set $ E\in\Psi$ ,
$E_{\pi}=\{L(z;\lambda_{n});\lambda_{n}\in E\}$ .

Then
$\Psi_{W}=\{E_{W};E\in\Psi\}$

is a ultrafilter on W. $(W, \Psi_{W})$ defines a point $m.\in-\ovalbox{\tt\small REJECT}$. Then obviously,

$w_{n(:)}=L(z;\lambda_{n(\ell)})\rightarrow m_{s}$ in $X$ .
We define a map $L_{m}$ from $U$ into $\swarrow\swarrow by$

$L_{m}(z)=m$. .
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Since $\{w_{n(i)}\}$ converges to $\mu(m_{z})$ in $-\swarrow\swarrow(H^{\infty})$ by the continuity of $\mu$ , we have
$\mathcal{L}_{\mu(m)}(z)=\mu(L_{m}(z))$ .

If $z_{1},$ $z_{2}\in U(z_{1}\neq z_{2})$ , then $\mathcal{L}_{\mu(m)}(z_{1})\neq \mathcal{L}_{\mu(m)}(z_{2})$ since $\mathcal{L}_{f^{\ell}(m)}$ is one-to-one. Hence
$L_{m}(z_{1})\neq L_{m}(z_{2})$ ,

and the map $L_{m}$ is one-to-one. Obviously, by (4.2),

$(f^{\gamma}\circ L_{m})(z)=f(\mu(L_{m}(z))=(f\circ \mathcal{L}_{\mu(m)})(z)$

is holomorphic on $U$ [$5$ , p. 88, $Th\ovalbox{\tt\small REJECT} rem4.3$], hence $P(m)=L_{m}(U)$ is an analytic
set. Further, by [5, p. 88, Theorem 4.3],

$\mu(P(m))=\mu(L_{m}(U))=\mathcal{L}_{\mu(m)}(U)=\ovalbox{\tt\small REJECT}(\mu(m))=the$ Gleason part of $\mu(m)$ in $\ovalbox{\tt\small REJECT}\swarrow(H)$ .
Suppose, on the other hand, let $\mu(m)$ does not belong to the closure of any

interpolating sequence. Then, $\mathcal{L}_{\mu(m)}$ is constant: $\mathcal{L}_{\mu(m)}(U)=\dagger\mu(m)$}([$5$ , p. 88,
$Th\ovalbox{\tt\small REJECT} rem4.3])$ , thus

$\mu(L_{m}(U))=\mathcal{L}_{\mu(m)}(U)=\{\mu(m)\}$ . Q.E.D.

Obviously, we have that

if $m\in’\ovalbox{\tt\small REJECT}_{\alpha}$ , then $L_{m}(U)\subset\vee\swarrow_{\alpha}$ .
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