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ABSTRACT. This paper gives a criterion for the existence and uniqueness of
solutions to three-point boundary value problems associated with the third
order non-linear differential equations. A matching technique is developed
to match solutions of two, two-point boundary value problems which yield a
unique solution of a certain class of three-point boundary value problems.

1. Introduction.

The study of three-point boundary value problems is an interesting area of
current research and a great deal of work has been done by many authors in the
recent years ([1], [2], [3], [4], [5]). This paper gives a guarentee for the existence
and uniqueness of solutions of three-point boundary value problems associated
with the differential equation

(1.1) $y^{\prime\prime\prime}=f(x, y, y^{\prime}, y^{\prime\prime})$

where $f(x, y, y^{\prime}, y^{\prime\prime})$ is assumed to be continuous on a subset of $R^{4}$ , solutions to
initial value problems associated with (1.1) exist, are unique, and extend throughout
a fixed subinterval of $R$ . In this paper a matching technique is developed to
match solutions of two, two-point boundary value problems which yields a unique
solution of three-point boundary value problems.

In Section 2 a monotonicity restriction on $f$ ensures that the following boundary
value problems:

$y^{\prime\prime\prime}=f(x, y, y^{\prime}, y^{\prime\prime})$

(1.2)
$y(x_{1})=y_{1}$ , $y(x_{2})=y_{2}$ , $y^{(\ell)}(x_{2})=m$ $(i=1,2)$

$y^{\prime\prime\prime}=f(x, y, y^{\prime}, y^{\prime\prime})$

(1.3)
$y(x_{2})=y_{2}$ , $y^{(\ell)}(x_{2})=m$ , $y(x_{3})=y_{3}$ $(i=1,2)$

have solutions and with added hypothesis a unique solution of the following three-
point boundary value problem:
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$y^{\prime\prime\prime}=f(x, y, y^{\prime}, y^{\prime\prime})$

(1.4)
$y(x_{1})=y_{1}$ , $y(x_{2})=y_{2}$ , $y(x_{3})=y_{3}$

is constructed. This is accomplished by matching solutions of $(1.2_{2})$ and $(1.3_{2})$ .
We need the following conditions for our latter discussion
(A) $f:[x_{1}, x_{3}]\times R^{3}\rightarrow R$ and $g;[x_{1}, x_{3}]\chi R^{3}\rightarrow R$ are continuous functions.
(B) for all $w_{1},$ $w_{2}\in Rf(x, y_{1}, z_{1}, w_{1})-f(x, y_{2}, z_{2}, w_{2})>g(x, y_{1}-y_{2}, z_{1}-z_{2}, w_{1}-w_{2})$

for all $x\in(x_{1}, x_{2}$ ] if $y_{1}\leqq y_{2},$ $z_{1}\geqq z_{2}$ and $f(x, y_{1}, z_{1}, w_{1})-f(x, y_{2}, z_{2}, w_{2})>g(x,$ $y_{1}-y_{2}$ ,
$z_{1}-z_{2},$ $w_{1}-w_{2}$) for all $xe[x_{2}, x_{3}$) if $y_{1}\geqq y_{2},$ $z_{1}\geqq z_{2}$ where $g(x, u, v, w)$ satisfies.

(C) the initial value problems $z^{\prime\prime\prime}=g(x, z, z^{\prime}, z^{\prime\prime}),$ $z(c)=0,$ $z^{\prime}(c)=0,$ $ z^{\prime\prime}(c)=\delta$ or
$z(c)=0,$ $z^{\prime}(c)=\delta,$ $z^{\prime\prime}(c)=0$ where $c\geqq x$ , has a solution defined for all $x\geqq c$ ( $\delta$ arbitrary).

(D) there exists a number $h>0$ such that no non-trivial solution $z(x)$ of (C)

may satisfy $z(c)=z(d)=0$ with $0<|d-c|<h$ .
(E) for any $p,$ $g(x, z_{1}, v_{1}, p)\geqq g(x, z_{2}, v_{2}, p)$ either $z_{1}\leqq z_{2},$ $v_{1}\geqq v_{2},$ $x\in(x_{1}, x_{2}$ ] or

$g(x, z_{1}, v_{1}, p)\geqq g(x, z_{2}, v_{2}, p)$ if $z_{1}\geqq z_{2},$ $v_{1}\geqq v_{2},$ $x\in[x_{2}, x_{s}$). Note that the functions
defined by $f(x, y, y^{\prime}, y^{\prime\prime})=xy$ and $g(x, z, z^{\prime}, z^{\prime\prime})=-1$ satisfies all the above conditions
at $0$ on any interval $(a, b)$ where $a<0<b$ .
The major advantage of this study is to find existence and uniqueness of solutions
of more general class of three-point boundary value problems, which are not
covered in [1] and also includes some of the cases of [11 when $g=0$ .

2. Existence and uniqueness of solutions to three-point boundary value
problems.

In this section we intend to find some criteria under which solutions of (1.1)

which satisfy boundary conditions at two-points may be matched to obtain a
unique solution of three-point boundary value problems. We assume in the sequel
that initial value problems of the type(C) exists and are unique in the interval
$[x_{1}, x_{3}]$ . Theorem 2.1 displays the idea of matching of solutions of three-point
boundary value problems associated with (1.4). We now prove the following
lemmas which will be used in our subsequent discussion.

Lemma 2.1. Assume that conditions (A), (B), (C), (D) and (E) hold. Then if
$(x_{2}-x_{1})\leqq h(or(x_{8}-x_{2})\leqq h)$ and for each $y_{1},$ $y_{2},$ $y_{3},$ $meR$ , there exists at most one
solution of either of the following boundary value Problems

$y^{\prime\prime\prime}=f(x, y, y^{\prime}, y^{\prime\prime})$

(2.1)
$y(x_{1})=y_{1*}$ $y(x_{2})=y_{2}$ , $y^{\prime}(x_{2})=m$
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$y^{\prime\prime\prime}=f(x, y, y^{\prime}, y^{\prime\prime})$

(2.2)
$y(x_{2})=y_{2}$ , $y^{\prime}(x_{2})=m$ , $y(x_{3})=y_{3}$ .

Proof. The $prf$ of the uniqueness of solution of (2.2) will be given. Similar
arguments will hold for (2.1). Suppose $\theta(x)$ and $\eta(x)$ be solutions of (2.2) and
write $\phi(x)=\theta(x)-\eta(x)$ . Without loss of generality we can assume that there exists
$c$ and $d$ such that $x_{2}\leqq c<d\leqq x_{3},$ $\phi(c)=\phi^{\prime}(c)=\phi(d)=0$ and $\phi(x)>0$ for all $x\in(c, d)$ .
Since $\phi(c)=0=\phi(d)$ , it follows that there exists an $r\in(c, d)$ such that $\phi^{\prime}(r)=0$ and
$\phi^{\prime}(x)>0$ for all $x\in(c, r)$ . Consider the solution of (C) with initial conditions
$z(c)=0,$ $z^{\prime}(c)=0$ and $z^{\prime\prime}(c)=\phi^{\prime\prime}(c)$ . Let $\psi(x)=\phi(x)-Z(x)$ . Clearly $\psi(c)=0=\psi^{\prime}(c)=\psi^{\prime\prime}(c)$ ,
$\psi(d)=-Z(d)<0$ and

$\phi^{\prime\prime\prime}(c)=\phi^{\prime\prime\prime}(c)-Z^{\prime\prime\prime}(c)$

$=\theta^{\prime\prime\prime}(c)-\eta^{\prime\prime\prime}(c)-Z^{\prime\prime\prime}(c)$

$=f(c, \theta(c),$ $\theta^{\prime}(c),$ $\theta^{\prime\prime}(c))-f(c, \eta(c),$ $\eta^{\prime}(c),$ $\eta^{\prime\prime}(c))-g(c, Z(c),$ $Z^{\prime}(c),$ $Z^{\prime\prime}(c))$

$>g(c, \theta(c)-\eta(c),$ $\theta^{\prime}(c)-\eta^{\prime}(c),$ $\theta^{\prime\prime}(c)-\eta^{\prime\prime}(c)-g(c, Z(c),$ $Z^{\prime}(c),$ $Z^{\prime\prime}(c))$

$=g(c, 0,0, \theta^{\prime\prime}(c)-\eta^{\prime\prime}(c))-g(c, 0,0, Z^{\prime\prime}(c))$

$=0$ .
Hence it follows that there exists an $r\in(c, d)$ such that $\psi(r)=0$ and $\psi(t)>0$ for
all $t\in(c, r)$ . Since $\phi(c)=0,$ $\psi(r)=0$ it follows that there exists a $t_{0}\in(c, r)$ such that
$\phi^{\prime}(t)>0\forall t\in(c, t_{0})$ and $\phi^{\prime}(t_{0})=0$ . This together with $\psi^{\prime}(c)=0$ gives that there
exists a $t_{1}\in(c, t_{0})$ such that $\psi^{\prime\prime}(t_{1})=0$ and $\phi^{\prime\prime\prime}(t_{1})\leqq 0$ and $\phi^{\prime\prime}(t)>0$ for all $t\in(c, t_{1})$ .
But

$\psi^{\prime\prime\prime}(t_{1})=\phi^{\prime\prime\prime}(t_{1})-Z^{\prime\prime\prime}(t_{1})$

$=f(t_{1}, \theta(t_{1}),$ $\theta^{\prime}(t_{1}),$ $\theta^{\prime\prime}(t_{1}))-f(t_{1}, \eta(t_{1}),$ $\eta^{\prime}(t_{1}),$ $\eta^{\prime\prime}(t_{1}))-Z^{\prime\prime\prime}(t_{1})$

$>g(t_{1}, \phi(t_{1}),$ $\phi^{\prime}(t_{1}),$ $\phi^{\prime\prime}(t_{1}))-g(t_{1}, Z(t_{1}),$ $Z^{\prime}(t_{1}),$ $Z^{\prime\prime}(t_{1}))$

$\geqq 0$ .
Lemma 2.2. Assume that conditions (A), (B), (C), (D) and (E) hold. Then if

$(x_{8}-x_{2})\leqq h$ and for each $y_{1},$ $y_{2},$ $y_{3},$ $m\in R$ there exists atmost one solution of each
of the following boundary value problems:

$y^{\prime\prime\prime}=f(x, y, y^{\prime}, y^{\prime\prime})$

$y(x_{2})=y_{2}$ , $y^{\prime\prime}(x_{2})=m$ , $y(x_{3})=y_{3}$

$or$

$y(x_{1})=y_{1}$ , $y(x_{2})=y_{2}$ , $y^{\prime\prime}(x_{2})=m$ .
Proof. The $prf$ is analogous as in Lemma 2.1.
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Theorem 2.1. Let $f(x, y, z, w)$ satisfy conditions (A), (B), (C), (D) and $(E)$ and
suppose that for each $m\in R$ there exist solutions of $(1.2)_{1}$ and $(1.3)_{1}(i=1,2)$ . Then
there exists a unique solution of (1.4).

Proof. From Lemmas 2.1 and 2.2 the solutions of $(1.2)_{1}$ and $(1.3)_{1}(i=1,2)$

whenever exists are unique. Let $\theta$ be a solution of $(1.2_{2})$ with second derivative
$m$ at $x=x_{2}$ .

Claim. $\theta^{\prime}(x_{2}, m)$ is an increasing function of $m$ with range $R$ . Write $\phi=$

$\theta(\cdot, m_{1})-\theta(\cdot, m_{2})$ . If $m_{1}<m_{2},$ $\phi^{\prime\prime}(x_{2})<0$ . Clearly $\phi(x_{1})=0,$ $\phi(x_{2})=0$ . Without loss
of generality we can assume that $\phi^{\prime}(x_{2})>0$ since $\phi(x_{1})=0,$ $\phi(x_{2})=0$ there exists an
$r\in(x_{1}, x_{2})\ni\phi^{\prime}(r)=0,$ $\phi^{\prime}(x)>0\forall x\in[r, x_{2}]$ . Clearly $\phi(x)<0$ in $[r, x_{2}$). Consider the
solution of initial value problem $z^{\prime\prime\prime}=g(x, z, z^{\prime}, z^{\prime\prime}),$ $z(x_{2})=0,$ $z^{\prime}(x_{2})=\delta,$ $z^{\prime\prime}(x_{2})=0$ .
Write $\psi=\phi-Z$. Clearly $\psi(x_{2})=0,$ $\phi^{\prime}(x_{2})>0,$ $\phi^{\prime\prime}(x_{2})<0,$ $\psi^{\prime}(r)\leqq 0$ . Hence there exists
an $r_{1}\in(r, x_{2})$ such that $\psi^{\prime\prime}(r_{1})=0$ and $\phi^{\prime\prime}(x)<0$ in $(r_{1}, x_{2}$]. These properties imply

that $\phi^{\prime\prime\prime}(r_{1})\leqq 0$ . Now $\phi^{\prime}(x)>0$ in $[r_{1}, x_{2}]$ and $\psi(x)<0$ in $[r_{1}, x_{2}$). Consider

$\phi^{\prime\prime\prime}(r_{1})=\phi^{\prime\prime\prime}(r_{1})-Z^{\prime\prime\prime}(r_{1})=f(r, \theta(r_{1}, m_{1}), \theta^{\prime}(r_{1}, m_{1}), \theta^{\prime\prime}(r_{1}, m_{1}))$

$-f(r, \theta(r_{1}, m_{2}), \theta^{\prime}(r_{1}, m_{2}), \theta^{\prime\prime}(r_{1}, m_{2}))-g(r_{1}, Z(r_{1}),$ $Z^{\prime}(r_{1}),$ $Z^{\prime\prime}(r_{1}))$

$>g(r_{1}, \phi(r_{1}, m_{1}), \phi^{\prime}(r_{1}, m_{1}), \phi^{\prime\prime}(r_{1}, m_{1}))-g(r_{1}, Z(r_{1}),$ $Z^{\prime}(r_{1}),$ $Z^{\prime\prime}(r_{1}))$

$>0$ . Hence a contradiction.

Hence $\phi^{\prime}(x_{2})\leqq 0$ .
Let $m\in R$ . Now the problem $(1.2_{1})$ has a unique solution in $[x_{1}, x_{2}]$ and let

it be $\psi_{m}$ . Since $\psi_{m}$ and $\theta(\cdot, \phi_{m}^{\prime\prime}(x_{2}))$ are solutions of the problem $y^{\prime\prime\prime}=f(x, y, y^{\prime}, y^{\prime\prime})$ ,
$y(x_{1})=y_{1},$ $y(x_{2})=y_{2},$ $y^{\prime\prime}(x_{2})=\phi_{m}^{\prime\prime}(x_{2})$ in $[x_{1}, x_{2}]$ , we must have $\theta(\cdot, \phi_{m}^{\prime\prime}(x_{2}))=\phi_{m}$ .
Hence $\theta^{\prime}(x_{2}, \phi_{m}^{\prime\prime}(x_{2}))=\phi_{m}^{\prime}(x_{2})=m$ . Thus $R$ is the range of $\theta^{\prime}(x_{2}, )$ . Hence the
claim. The remainder of the proof of existence follows as in Theorem 2.1 in [1].

Now to establish uniqueness, let $\phi$ and $\psi$ be solutions.

Claim. $\phi^{\prime\prime}(x_{2})=\psi^{\prime\prime}(x_{2})$ .
$Suppoee$ to the contrary $\phi^{\prime\prime}(x_{2})\neq\psi^{\prime\prime}(x_{2})$ . Without loss of generality assume that

$\phi^{\prime\prime}(x_{2})<\phi^{\prime\prime}(x_{2})$ . Let $\phi^{\prime\prime}(x_{2})=m_{1}$ and $\phi^{\prime\prime}(x_{2})=m_{2}$ . Then $\phi$ is a solution of the
problem $(1.2_{2})$ with $\cdot$ second derivative $m_{1}$ at $x=x_{2}$ and $\psi$ is a solution of the
problem $(1.3_{2})$ with second derivative $m_{2}$ at $x=x_{2}$ . Hence we must have

$\phi(x)=\theta(x, m_{1})$

for all $x\in[x_{1}, x_{2}]$ .
$\psi(x)=\theta(x, m_{2})$

Therefore
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$\phi^{()}(x_{2})=\theta^{(t)}(x_{2}, m_{1})$ $(i=1,2)$ ; $\phi^{(\ell)}(x_{2})=\theta^{(\ell)}(x_{2}, m_{2})$ $(i=1,2)$ .
Now $m_{1}<m_{2}\Rightarrow\theta^{\prime}(x_{2}, m_{1})<\theta^{\prime}(x_{2}, m_{2})$ i.e.,

(2.3) $\phi^{\prime}(x_{2})<\psi^{\prime}(x_{2})$ .
Similarly $\phi$ and $\psi$ are solutions of the problem $(1.3_{2})$ . Therefore, we must have

$\phi(x)=\eta(x, m_{1})$

for all $x\in[x_{2}, x_{8}]$ .
$\psi(x)=\eta(x, m_{2})$

Hence

$\phi^{()}(x_{2})=\eta^{(i)}(x_{2}, m_{1})$ ; $\psi^{(\ell)}(x_{2})=\eta^{()}(x_{2}, m_{2})$ $(i=1,2)$ .
Now $m_{1}<m_{t}\Rightarrow\eta^{\prime}(x_{2}, m_{1})>\eta^{\prime}(x_{2}, m_{2})$ i.e.,

(2.4) $\phi^{\prime}(x_{2})>\psi^{\prime}(x_{2})$ .
(2.3) and (2.4) contradict each other. Hence the claim. Thus uniqueness is
established.

The next theorem establishes validity of hypothesis (ii) in $Threm2.1$ .
Theorem 2.2. Let $f:[x_{1}, x_{\theta}]\times R^{8}\rightarrow R$ with $x_{1}<x_{2}<x_{8}$ and suppose there exists

a constant $N>0$ such that $|f(x, y, z, w)|\leqq N$ for all $x\in[x_{1}, x_{\epsilon}],$ $-\infty<y,$ $z,$ $ w<\infty$

then there exist solutions of the problems $(1.2)_{1}$ and $(1.3)_{1}(i=1,2)$ .
Proof. The proof is analogous as in Theorem 2.3 in [5].
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