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Asstract. Every universally weakly inner one-parameter automorphism group
of a simple C*.algebra with identity is shown to be uniformly continuous (so
that it is inner by Sakai’s theorem).

E. C. Lance has shown in [3] that every universally weakly inner automorphism
of a UHF algebra is inner. His method can be generalized to yield the result
that such an automorphism of a separable simple AF algebra is inner (e.g., in
non-unital case, implemented by a unitary multiplier). But it remains open for
a general simple C*-algebra.

G. A. Elliott has given in [2] a characterization of universally weakly inner
one-parameter automorphism groups of separable C*-algebras. (In particular, those
are approximately inner.) We may ask the following question; whether such
automorphism groups are inner if the C*-algebra is simple. (If the C*-algebra is
a separable simple AF algebra, it follows from Lance’s result that this is the case.)
We shall answer this affirmatively; every universally weakly inner one-parameter
automorphism group of a simple C*-algebra is inner, i.e., implemented by a norm-
continuous unitary group in the algebra if it has an identity (Theorem 7), and by
a unitary group of multipliers, which is continuous in the strict topology, if it
does not have an identity (Theorem 8).

For a (one-parameter) automorphism group of a C*-algebra we may think of
the condition, which is appatantly weaker than universally weak innerness, that
the dual action of the automorphism group on the dual of the C*-algebra is strongly
continuous, i.e., the extension of the automorphism group to the second dual of
the C*-algebra is weak*-continuous. In fact what we shall show in[Theorem 7|is
that an automorphism group satisfying this condition is inner (if the C*-algebra
is simple and unital). | '

In the appendix we shall discuss the case of AF algebras above-mentioned; the
results there are more or less known.
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We shall give a series of lemmas to prove the main lemma,

Lemma 1. Let A be a C*-algebra acting on a Hilbert space  and o a strongly
continuous one-parameter automorphism group of A implemented by a weakly
continuous unitary group V on . Then

I={z € A; t—aV, is norm-continuous}
is a closed two-sided ideal of A.

Proof. It is obvious that I is a left ideal. If xeland y € A, then the identity
2y V,=2V.a_.,(y) shows xzye . Hence I is a two-sided ideal. If xz,e I converges,to
z€ A, then z,V, converges to #V, uniformly in ¢, so xe€l. Thus I is closed.

q.e.d.

Let H be the (self-adjoint) generater of V, and E( ) the spectral projections
of H.

There is a sequence (f,) of positive continuous functions on R such that 0=
A,,§1=f,,(0), and f, converges to the Dirac function at the origin (in the dual of
G,(R)). '

Lemma 2. Under the assumption in Lemma 1, adopting the functions (f,)
given above; for any ac A,

[fulH), al=Fu(H)a—af,(H)
converges to zero as n tends to infinity.

Proof. Let 9(f)=|a,(a)—all. Then g is continuous and bounded by 2|a|/, and
vanishes at f==0. Now by a simple calculation,

LA HD, all< Sf,.(t)ll Via—aV,)dt

- S LIt .

The last term goes to-zero as # tends to infinity. q.e.d.
Lemma 3. Under the assumption in Lemma 1, ac I if and only if
}vim {1—E(—N, N)}la=0.

Proof. If ael, then 9(t)=|V,a—a]l is continuous. As in the proof of
2 we show that

I{1l—Fu(H )a|
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converges to zero. Since 1—f, is close to 1 uniformly except for a compact set,
we get the conclusion.

The converse implication follows from:
| Via—al =2{{1—E(—N, N)}a|+| V.E(—N, N)—E(—N, N)||all . q.e.d.

Lemma 4. Under the assumption of Lemma 1, let e, ac A satisfy e=e*, ea=a.
If there is v<1 such that

}Vim [{1—E(—N, N)}eli<r,
then ac I

Proof. Notice that ||{I—E(—N, N)}e| is monotonely decreasing so that the
limit exists.

For large enough N, we have

r*>[|{1—E(—N, N)}e*{1—E(—N, N)}| .
Since £, converges to 1 on every compact set,

{1~ H)}1—E(—N, Nj}—{1—f(FD}H|
converges to zero as n#—oco. Hence, as I]l——fA,,(H MI=1, for large #,

' 7> [{1—fu el —F, (HDY] .
By this implies that for large 7, |
7> |{1—f(H)ie] .

Again we can replace {l—fA,,(H )} by 1—E(—M, M) with large enough M and still
get the same inequality. Hence

lim [{1—E(—N, N)jetl|<7r* .
By repeating this argument we obtain

lim [{1—E(—N, N)}e!|<r*
for any £=1,2,.... Since

{1—E(—N, N)la|=||{1—E(—N, N)}e*a|
=|{1-E(—N, N)let| |all

we have that

lim |{1—E(—N, N)a| <7r*|a|




92 AKITAKA KISHIMOTO

for any k. Hence we get the conclusion. q.e.d.

Lemma 5. Suppose that A is acting irreducibly, besides the assumption of
Lemma 1. If there are r<1 and be A with ||b|=1 such that

sup [|b(a.(x) —2)o*|| <7 *)

ze 4,llzl|=1
is satisfied for sufficiently small, t, then I+(0).

Proof. We have (*) with 6*b in place of b. If we replace b by an element
ec A with the property that [[p*b—e]| is sufficiently small, we still get (*), possibly
by replacing 7 too by a slightly larger »/<1.

Hence we may assume that there are ¢ and ¢ in A such that lell=lali=1,
0<ex<l1, ea=a and

sup [le(a.(x)—x)el| <7 (<1)

ze 4,llzlls1

is satisfied for sufficiently small ¢.
For any ¢>0 with r+4¢<1, since |le|=1, there is a unit vector ®<€ H such

that |le®||>1—¢. Since

l(eV.—e)xeD|| =|leV,x V *eD—exe®| 1 ||| || V. *eP—ed|
<l|lea,(x)e—exel|+ x| || V. *eD—e®| ,

we know that for sufficiently small ¢,

sup |[(eV,—e)xed|<r+e.

ze 4,llzlis1

For any unit vector ¥e€ H, by applying Kaplansky’s density theorem to
led|| ¥ RePec A, we have a sequence z,€ A with [x,]|=[ed|-* such that
lim 2,e@=%. Thus, for sufficiently small ¢,

leV,—e)T || < ||le@|| Hr+e)<r+4e, i.e., |eV,—el<r+4e.
By using the functions f, given in Lemma 2,
N FEHe—el <1
for large n. Hence
lim |[{1—E(—N, N)le||<1.
By [Lemma 4] we have a€ . g.e.d.

Lemma 6. Under the assumption of Lemma 5, suppose that [=(0). Then there
is a state ¢ of A such that t—qoa, is not norm-continuous.
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Proof. By Lemma 5, for any b€ A with ||b]|=1, the set of £>0 which satisfies
sup 1||b(a,(x)—x)b*[|>2/3

ze A,lzlls

has 0 as'an accumulation point. Hence there are ¢, € (0, 1) and x1=x;*e A with
[lz,]l=1 such that

”au(m1)’_x1"’>1/3 .
Otherwise, for all ye A with |y[|=1 and ¢t€(0,1) we have

lla:(y)—y=2/3

by decomposing ¥ into the self-adjoint and anti-self-adjoint parts, which is a
contradiction. . » |

We may suppose that Sp(a,,(2,)—=,)N[1/3, 2] = @. Let f and g be continuous
functions on R such that

(1 t=1/6

f(t)=!6t 0=t=1/6
0 =0
1 t=1/3
9(t)= {Gt——l 1/6=t=<1/3
0 1=1/6 .

Set a;=f(a,,(x,)—x,) and b,=9(a;,(®,)—x1). Then 0=a,<1, 0=b,<1, |la,|=[b,]=1,
and a1b1=bl.
Next there are ¢,€ (0, #,/2) and z,=x,*€ A with |z,]|=1 such that

llae,(b1)—b,]| <1/24 ,
Sp (by(a, () —2)by) N [1/3, 21+ @ .

Set a,=f(b,(a;,(2:)—2:)b,) and b,=9(b,(a,,(x:)—2:)b,). Then the pair (a,, b,) satisfies
the same properties as (a,, b;). Furthermore a,a.=a,. (If fis a polynomial with
f(0)=0, this follows from a,b,=b,a,=b,.)

Now we repeat this argument, i.e., assuming that we have constructed ¢, x;,
a,, b, up to n—1, we have ¢,€(0, ¢,_,/2) and z,=x,*€ A with ||z,]|=1 such that

lete,(Ba-1)—bn-1ll<1/24 ,
Sp(b —1(atn(wn)_xn)b )N [1/3’ 2]#: 2,

and set @, and b, as before. Notice that (a,) has the property: If n>m, a.a,=a,.
Let ¢, be a state of A such that ¢,(@,)=1. Then ¢,(a,)=1 for any 2<n. Let
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¢ be an accumulation point of (¢,). Then ¢(a,)=1 for all n. We want to show
that f—¢oa, is not norm-continuous.

Since ¢(a,)=1, the restriction of ¢ to the C*-algebra generated by bn—s(a;, (%) —
%.)b,—; has support in the closed subset {p; p(a,)=1} of its spectrum. Hence
P(Bn-s(tey (%) —)b,-)=1/6.  Thus |

SD(at,.(bn—1mnbn—1) ~Op1%nbn_y) ,
gq’(b’n—latn(xn)bn—l ——bn—lxnbn—l) - ”atﬂ(bn—lxnb'n—l) —bn—lat"(x'n)bn— 1 "
21/6—2|lay,(ba-1)—bn-s[| >1/12 .

This implies that [poa,,—¢| >1/12. q.e.d.

Now we come to the main theorems. Remark that if a** on A** is ¢-weak
continuous, «** fixes a minimal central projection, and that any ¢-weak continuous
one-parameter automorphism group of B(9) is covariant.

Theorem 7. Let A be a simple C*-algebra with identity and a a (strongly
continuous) one-parameter automorphism group of A. If a* on A* is strongly
continuous, then « is uniformly continuous, so that it is implemented by a norm-
continuous unitary group of A.

Proof. By the assumption there are an irreducible representation = of A and
a weakly continuous unitary group V on §, such that roa,(x)=V,z(z)V*, xcA.
Hence we can apply the preceding lemmas to z(A) which is identified with A.
Since I (in is an ideal of A, I is either (0) or A. If I=(0),
yields a state ¢ of A with the property that #—¢goa, is not norm-continuous. This
is a contradiction. Hence I=A. Since A351, t—V, is norm-continuous. Thus «
is uniformly continuous, and so V,€ A by Sakai’s theorem. q.e.d.

Remark that the strong continuity of a follows from a* being strongly
continuous. .

We say that « is universally weakly inner if for any representation = of A,
there is a weakly continuous unitary group V of n(A)’’ such that woa,(x)= V,r(z) V,*,
ze A.

Theorem 8. Let A be a simple C*-algebra without identity, and a a (strongly
continuous) one-parameter automorphism group of A. If a is universally weakly
inner, then a is implemented by a unitary group of multipliers which is continuous
in the strict topology.

Proof. By the argument in the proof of we can show that for -
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any irreducible representation = of A, the weakly continuous unitary group V= on
9, which implements zoa,or! (and which is unique up to phase factors) satisfies
that #— V,z(x) is norm-continuous for any ze€ A. Now we have to show that
Vir(x) € n(A), x € A.

The proof is essentially the same as Sakai’s in [4, 4.1.9-11]. Let D, be the
C*-algebra generated by Vi z(x), x€ A, teR. We divide the proof into several
steps.

Step 1. For any non-zero 1€ R, there is not an endomorphism @ of D, which
satisfies that O(zf(H")=xf(H*+2)), z€x(A), fe L\(R), where Hr is the generator
of V=

This is because

lim l2f (H=+n2)[| =0 .

Step 2. D, is independent of =, i.e., for two irreducible representations =,
and m, of A, there is an isomorphism @ of D,, onto D,, such that Q(nl(ac)f (H™))=
mo(@)f(H 2+ 2), z€ A, fe L' (with some 1€R).

To show this first notice that V,* is a multiplier of D,. Let n,==, with a
pure state o of A. We extented the state wer;”! of 7,(A) to a pure state of D,,,
say @. In the representation nzom, of A there is a weakly continuous unitary
group U in ngom,(A)”” such that Urgery(x) UX=ngeroay(x), 2 € A. Hence ng5(V,)U*=
U*r5(V,) is in the commutant of zzor,(A), hence in the center of zz(D,,)”’ which
is trivial. Thus rngen, is irreducible, i.e., ngom,=n, and U=V=. Since

m(mxl)zefltlftxz
with some 21€R, 7; is a homomorphism of D,, onto D,, with the prescribed

property. By interchanging =, with =,, we get such a homomorphism of D,, onto
D,,; the composition of those must be trival by Step 1.

Step 3. D, is simple.

If J is a proper closed ideal of D,, then JN=(A)=(0). Let p be an irreducible
representation of D,/J, and q be the qoutient map of D, onto D,/J. Then poq map
D, onto D,.,., satisfying the prescribed property, so pog must be an isomorphism.

Now fixing such an irreducible representation =, we identify =(A) with A and
let D=D,.

Step 4. If two factorial states of D coincide on A, they are equal.

Let ¢, and ¢, be these two states which are different. First we can show
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that =,,(A)"’=nr,(D)”’. Since ¢;=¢, on A, there is an isomorphism @ of =,,(A)"”
onto 7,,(A)” such that
Dorn,, (x)=mps(x) , TEA.

As in the proof of Step 2 we can show that this isomorphism induces an auto-
morphism of D, which is of the type prohibited in Step 1.

The final step is to combine the result in Step 4 with Sakai’s arguments in
[4, 4.1.9, 10]. His arguments yield, by supposing D224, two different factorial
states which coincide on A, a contradiction. q.e.d.

Our final result is a simple remark on the‘ assumption which has appeared in

Proposition 9. Let A be a C*-algebra and a a one-parameter automorphism
group of A. If t—gpoa, is norm-continuous for any pure state ¢ of A, then t—¢ea,
is norm-continuous for any state ¢ of A.

Proof. Suppose that there is a state ¢ of A such that [poa,—¢| does not
converge to zero as t—0; there are §>0 and a sequence (Z,) converging to zero
such that ||pea,,—¢||>6. Then there is a sequence (z,) in A with [lz,[]=1 such
that

[poas, (@) —(@a) > . ™

Let G be the subgroup of R generated by #¢,, e N. Then G is countable. Let
B be the C*-subalgebra generated by

{al(x,); teG, neN}.

Then B is separable and a,-invariant for f€G.
Any pure state w of B has an extension to a pure state @ of A. Since, for
teG,

lwea,—o||=||Boa,—a]l ,

llwea,—w|| converges to zero as {—0 in G. For the restriction ¢ of ¢ to B, there
is a Radon measure v on the set E of pure states of B such that '

¢=SE wdv(®) .

Let (y,) be a dense sequence in the unit ball of B. Then for teG,

lwea,—all =sup lwoa(ya) —o(Ya)| .
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Thus E € w—|woa,,—w| is measurable, and
u¢oa,,.—¢n§§ lwoa,, —wlldu(w) .
E

Since E € o—|lwea,,—w| is bounded by 2, and goes to zero as z—oo, theL ebesgue
theorem implies that [|¢oa,,—¢|| >0 which contradicts (*). : q.e.d.

Appendix

Let A be a C*-algebra and « an automorphism of A. If r is a representation
of A such that @« maps the kernel of = onto itself, then a induces an automorphism
of n(A). If this automorphism extends to an automorphism of the weak closure
of n(A), then « is said to be extendible in the representation = (cf. [3]).

Theorem Al. Let A be a separable simple AF algebra and a an automorphism
of A. If a is extendible in every irreducible representation of A, then a is inner.

Proof. Let (A4,) be a generating increasing sequence of finite-dimensional
subalgebras of A. Since A is simple, we may assume that each factor direct
summand of A4, is mapped into each one of A,,, under the natural imbedding for
n=1,2,

An inspection of the proof of Lemma 2.6 in [I] shows that a there can be
chosen as an inner automorphism. Hence there is an inner automorphism ¢ of
A such that

0'°CI!(U An)=U Aﬂ .

Therefore by taking soa instead of «, and by choosing a subsequence of (A,) we
may assume that a(A4,)CA,.; and a 1(4,)CA,.,.

We assert that for each projection ¢, of A,,

lesla—al A= sup  lleg(alx)—a)|
ze 4,0 llzll<1

converges to zero as n—oo, where A4,°’=ANA,’ and ¢ is the identity automorphism.

If it is false, there are >0, a subsequence (2,) of integers and z,—=z,*¢€
A,,NA, s with [z,]|=1 such that »,>n,_,+3 and |e,(a(z,)—=)]|>6. We may
assume that the positive part z, of a(x,)—=x, satisfies that [e,z,]| >5.. Set y.=e,z;.

Since a(w,)—, € An+1NAn_ 42, all 2z, are mutually commuting. There are
minimal central projections ¢ and p in B,,—e(,A,.,‘ﬂeO and C,_;=e,A4,, ,.:¢ respec
tively, such that |y.epll=|ly.ll. Since
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e-pB,p=ep(B,NC/_)@pC:-, ,
and
pBi1=B,_,,
it follows that

lyy <« yll=lys - yeepll=Nys -« - vu-rdll lyeepll=lly: - - vl llw:ll .

Hence, for any &, [ly: - yull=lly:ll -« lmll.
Let

S={p; state of A, ¢(y.)=|y:l, for any %} .

Then S is a compact face. Let ¢, be a state of A such that

O o Y=Y oyl

Then ¢(y,)=|ly:ll for i=<k. Since any weak limit point of (¢,) belongs to S, S is
not empty. Let ¢ be an extremal point of S, which is a pure state of A.

In the representation r,, since «, is a central sequence in A, we may assume
that =,(x,) converges weakly, say to z, which is a multiple of the identity. Since
e(a(we) —2)=|¥:]| >0, and myeaom,”! extends to an automorphism, say &, of w,(A)",
we obtain '

(24, (@(2)—2)2,)+0 .

which contradicts &(z)=z.

Hence lim |le(a—:)| A.¢[|=0. The rest of the proof procedes as the proof of
Lemma 3.1 in [3]. ,

Assuming that A is acting irreducibly on a Hilbert space £, we find a unitary
V on  such that

alx)=VeV*, xecA.
For y€ A,° with [y] =1,
lleo Vy V¥—eoyl =llesla—2)| Al =e, .
Hence for any unitary « in A,° with »=#»,, we have
lleo V—ue, Vu¥|| Ze, .

Since A,° is an AF algebra and (A4,°)’=A,, there is x € A, such that |le, V—z| =Ze,.
Thus ¢,V e A, and a(eo V)=Ve,e A. Since A is generated by projections in U 4.,
this implies that V is a multiplier of A. ‘ q.e.d.
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Corollary A2. Let A be a separable simple AF algebra without identity and
« a one-parameter automorphism group of A. If a* on A* is strongly continuous,
then a is implemented by a unitary group of multipliers which is continuous in
the strict topology.

Proof. It follows from the assumption that each a, is extendible in every
irreducible representation. Hence there is a family (v,) of unitary multipliers such
that a;.=Adv,, teR. It is routine to construct a group with the required continuity
property from (v,). q.e.d.

By using the fact that A has an approximate identity consisting of projections,
we can give a proof to this result as a corollary of First we can
form, as an approximate identity, an increasing sequence (e,) of projections which
are all in the domain of the generator § of a. Then, by using

ole,)=[o(en)e.—enqd(e,), e,] ,

we repeat inner perturbations to get another one-parameter automorphism group
B of A such that

Bi(x)=Adv,calx), xz€A,
ﬁt(en):e'n ’ n_:ly 2) ttty

where (v,) is a continuous cocycle of unitary multipliers. Since 8 satisfies the same
property as a does, a successive application of [Theorem 7 to ¢,Ae, yields that g
is inner. .

Hence we may conjecture the following; the conclusion of is true
under the weaker assumption on « that a* on A* is strongly continuous.
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Note added in proof. After completion of this work I have shown that every
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