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ABSTRACT. Every universally weakly inner one-parameter automorphism group
of a simple $C^{*}$-algebra with identity is shown to be uniformly continuous (so

that it is inner by Sakai’s theorem).

E. C. Lance has shown in [3] that every universally weakly inner automorphism

of a UHF algebra is inner. His method can be generalized to yield the result

that such an automorphism of a separable simple AF algebra is inner (e.g., in
non-unital case, implemented by a unitary multiplier). But it remains open for
a general simple $c*$-algebra.

G. A. Elliott has given in [2] a characterization of universally weakly inner
one-parameter automorphism groups of separable $c*$-algebras. (In particular, those
are approximately inner.) We may ask the following question; whether such
automorphism groups are inner if the $c*$-algebra is simple. (If the $c*$-algebra is
a separable simple AF algebra, it follows from Lance’s result that this is the case.)

We shall answer this affirmatively; every universally weakly inner one-parameter

automorphism group of a simple $c*$-algebra is inner, i.e., implemented by a norm-
continuous unitary group in the algebra if it has an identity (Theorem 7), and by

a unitary group of multipliers, which is continuous in the strict topology, if it

does not have an identity (Theorem 8).

For a (one-parameter) automorphism group of a $c*$-algebra we may think of

the condition, which is appafantly weaker than universally weak innemess, that

the dual action of the automorphism group on the dual of the $c*$-algebra is strongly

continuous, i.e., the extension of the automorphism group to the second dual of

the $c*$-algebra is weak*-continuous. In fact what we shall show in Theorem 7 is

that an automorphism group satisfying this condition is inner (if the $c*$-algebra

is simple and unital).

In the appendix we shall discuss the case of AF algebras above-mentioned; the

results there are more or less known.



90 AKITAKA KISHIMOTO

We shall give a series of lemmas to prove the main lemma, Lemma 6.

Lemma 1. Let $A$ be a $c*$-algebra acting on a Hilbert space $\mathfrak{H}$ and $a$ a strongly
continuous one-parameter automorphism group of $A$ implemented by a weakly
continuous unitary group $V$ on $\mathfrak{H}$ . Then

$I=$ {$x\in A;t\mapsto xV_{t}$ is norm-continuous}

is a closed two-sided ideal of $A$ .
Proof. It is obvious that $I$ is a left ideal. If $x\in I$ and $y\in A$ , then the identity

$xyV_{t}=xV_{t}\alpha_{-t}(y)$ shows $xy\in L$ Hence $I$ is a two-sided ideal. If $x_{n}\in I$ converges. to
$x\in A$ , then $x_{n}V_{t}$ converges to $xV_{t}$ uniformly in $t$ , so $x\in I$. Thus $I$ is closed.

q.e. $d$ .
Let $H$ be the (self-adjoint) generater of $V$, and $E($ $)$ the spectral projections

of $H$.
There is a sequence $(f_{n})$ of positive continuous functions on $R$ such that $ 0\leqq$

$\hat{f}_{n}\leqq 1=\hat{f}_{n}(0)$ , and $f_{n}$ converges to the Dirac function at the origin (in the dual of
$C_{b}(R))$ .

Lemma 2. Under the assumption in Lemma 1, adopting the functions $(f_{n})$

given above; for any $a\in A$ ,

$[\hat{f}_{n}(H), a]=\hat{f}_{n}(H)a-a\hat{f}_{n}(H)$

converges to zero as $n$ tends to infinity.

Proof. Let $g(t)=\Vert\alpha_{t}(a)-a||$ . Then $g$ is continuous and bounded by $ 2\Vert a\Vert$ , and
vanishes at $t=0$ . Now by a simple calculation,

$\Vert[\hat{f}_{n}(H), a]\Vert\leqq\int f_{n}(t)\Vert V_{t}a-aV_{t}\Vert dt$

$=\int f_{n}(t)g(t)dt$ .

The last term goes to.zero as $n$ tends to infinity. q.e. $d$ .
Lemma 3. Under the assumption in Lemma 1, $a\in I$ if and only if

$\lim_{N\rightarrow\infty}\{1-E(-N, N)\}a=0$ ,

Proof. If $a\in I$, then $ g(t)=\Vert V_{t}a-a\Vert$ is continuous. As in the proof of Lemma
2 we show that

$\Vert\{1-\hat{f}_{n}(H)\}a\Vert$
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converges to zero. Since $1-\hat{f}_{n}$ is close to 1 uniformly except for a compact set,
we get the conclusion.

The converse implication follows from:

$\Vert V_{t}a-a\Vert\leqq 2\Vert\{1-E(-N, N)\}a\Vert+\Vert V_{t}E(-N, N)-E(-N, N)\Vert\Vert a\Vert$ . q.e.d.

Lemma 4. Under the assumption ofLemma 1, let $e,$ $a\in A$ satisfy $e=e^{*},$ $ea=a$ .
If there is $r<1$ such that

$\lim_{N\rightarrow\infty}\Vert\{1-E(-N, N)\}e\Vert<r$ ,

then $a\in I$.
Proof. Notice that $\Vert\{1-E(-N, N)\}e\Vert$ is monotonely decreasing so that the

limit exists.
For large enough $N$, we have

$ r^{2}>\Vert\{1-E(-N, N)\}e^{2}\{1-E(-N, N)\}\Vert$ .
Since $\hat{f}_{n}$ converges to 1 on every compact set,

$\Vert\{1-\hat{f}_{n}(H)\}\{1-E(-N, N)\}-\{1-\hat{f}_{n}(H)\}||$

converges to zero as $ n\rightarrow\infty$ . Hence, as $\Vert 1-\hat{f}_{n}(H)\Vert\leqq 1$ , for large $n$ ,

$ r^{2}>\Vert\{1-\hat{f}_{n}(H)e^{2}\{1-\hat{f}_{n}(H)\}\Vert$ .
By Lemma 2 this implies that for large $n$ ,

$ r^{2}>\Vert\{1-\hat{f}_{n}(H)\}^{2}e^{2}\Vert$ .
Again we can replace $\{1-\hat{f}_{n}(H)\}^{2}$ by $1-E(-M, M)$ with large enough $M$ and still
get the same inequality. Hence

$\lim_{N\rightarrow\infty}\Vert\{1-E(-N, N)\}e^{2}\Vert<r^{2}$

By repeating this argument we obtain

$\lim_{N\rightarrow\infty}||\{1-E(-N, N)\}e^{k}\Vert<r^{k}$

for any $k=1,2,$ $\ldots$ . Since

$\Vert\{1-E(-N, N)\}a\Vert=\Vert\{1-E(-N, N)\}e^{k}a\Vert$

$\leqq\Vert\{1-E(-N, N)\}e^{k}\Vert\Vert a\Vert$

we have that

$\lim\Vert\{1-E(-N, N)\}a\Vert<r^{k}\Vert a\Vert$
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for any $k$ . Hence we get the conclusion. q.e. $d$ .
Lemma 5. Suppose that $A$ is acting irreducibly, besides the assumPtion of

Lemma 1. If there are $r<1$ and $b\in A$ with $\Vert b\Vert=1$ such that

$\sup_{xeA,||x||\leqq 1}\Vert b(\alpha_{t}(x)-x)b^{*}\Vert<r$
$(^{*})$

is satisfied for sufficiently small, $t$, then $I\neq(O)$ .
Proof. We have $(^{*})$ with $b^{*}b$ in place of $b$ . If we replace $b$ by an element

$e\in A$ with the property that $\Vert b^{*}b-e\Vert$ is sufficiently small, we still get $(^{*})$ , poesibly
by replacing $r$ too by a slightly larger $r^{\prime}<1$ .

Hence we may assume that there are $e$ and $a$ in $A$ such that $\Vert e\Vert=\Vert a\Vert=1$ ,
$0\leqq e\leqq 1,$ $ea=a$ and

$\sup_{xeA.||x||\leqq 1}\Vert e(\alpha_{t}(x)-x)e\Vert<r(<1)$

is satisfied for sufficiently small $t$ .
For any $\epsilon>0$ with $r+4\epsilon<1$ , since $\Vert e\Vert=1$ , there is a unit vector $\Phi\in H$ such

that $\Vert e\Phi\Vert>1-\epsilon$ . Since

$\Vert(eV_{t}-e)xe\Phi\Vert\leqq\Vert eVxV^{*}e\Phi-exe\Phi\Vert+\Vert x\Vert\Vert V_{\iota^{*}}e\Phi-e\Phi\Vert$

$\leqq\Vert e\alpha_{t}(x)e-exe\Vert+\Vert x\Vert\Vert V_{t}^{*}e\Phi-e\Phi\Vert$ ,

we know that for sufficiently small $t$ ,

$\sup_{xeA,||x||\leqq 1}\Vert(eV_{t}-e)xe\Phi\Vert<r+\epsilon$ .

For any unit vector $\Psi\in H$, by applying Kaplansky’s density theorem to
$\Vert e\Phi\Vert^{-2}\Psi\otimes e\Phi\in A^{\prime\prime}$ , we have a sequence $x_{n}\in A$ with $\Vert x_{n}\Vert\leqq\Vert e\Phi\Vert^{-1}$ such that
$\lim x_{n}e\Phi=\Psi$ . Thus, for sufficiently small $t$ ,

$\Vert(eV_{l}-e)\Psi\Vert<\Vert e\Phi\Vert^{-1}(r+\epsilon)<r+4\epsilon$ , i.e., $\Vert eV_{t}-e\Vert<r+4\epsilon$ .
By using the functions $f_{n}$ given in Lemma 2,

$\Vert\hat{f}_{n}(H)e-e\Vert<1$

for large $n$ . Hence

$\lim\Vert\{1-E(-N, N)\}e\Vert<1$ .
By Lemma 4 we have $a\in L$ q.e.d.

Lemma 6. Under the assumption of Lemma 5, suppose that $I=(O)$ . Then there
is a state $\varphi$ of $A$ such that $t-\triangleright\varphi\circ a$ is not norm-continuous.
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Proof. By Lemma 5, for any $b\in A$ with $\Vert b\Vert=1$ , the set of $t>0$ which satisfies

$\sup_{xeA,||x||\leq 1}\Vert b(a_{t}(x)-x)b^{*}\Vert>2/3$

has $0$ as $\cdot$ an accumulation point. Hence there are $t_{1}\in(0,1)$ and $x_{1}=x_{1}^{*}\in A$ with
$\Vert x_{1}\Vert=1$ such that

$\Vert a_{\iota_{1}}(x_{1})-x_{1}\Vert>1/3$ .
Otherwise, for all $y\in A$ with $\Vert y\Vert=1$ and $t\in(O, 1)$ we have

$\Vert a(y)-y\Vert\leqq 2/3$

by decomposing $y$ into the self-adjoint and anti-self-adjoint parts, which is a
contradiction.

We may suppose that Sp $(a_{t_{1}}(x_{1})-x_{1})\cap[1/3,2]\neq\emptyset$ . Let $f$ and $g$ be continuous
functions on $R$ such that

$f(t)=\left\{\begin{array}{ll}1 & t\geqq 1/6\\6t & 0\leqq t\leqq 1/6\\0 & t\leqq 0\end{array}\right.$

$g(t)=\left\{\begin{array}{ll}1 & t\geqq 1/3\\6t-1 & 1/6\leqq t\leqq 1/3\\0 & t\leqq 1/6.\end{array}\right.$

Set $a_{1}=f(a_{t_{1}}(x_{1})-x_{1})$ and $b_{1}=g(a_{t_{1}}(x_{1})-x_{1})$ . Then $0\leqq a_{1}\leqq 1,0\leqq b_{1}\leqq 1,$ $\Vert a_{1}\Vert=||b_{1}\Vert=1$ ,

and $a_{1}b_{1}=b_{1}$ .
Next there are $t_{2}\in(0, t_{1}/2)$ and $x_{2}=x_{2}^{*}\in A$ with $\Vert x_{2}\Vert=1$ such that

$\Vert a_{2}(b_{1})-b_{1}\Vert<1/24$ ,
Sp $(b_{1}(a_{2}(x_{2})-x_{2})b_{1})\cap[1/3,2]\neq\emptyset$ .

Set $a_{2}=f(b_{1}(a_{g}(x_{2})-x_{2})b_{1})$ and $b_{2}=g(b_{1}(a_{t_{2}}(x_{2})-x_{2})b_{1})$ . Then the pair $(a_{2}, b_{2})$ satisfies
the same properties as $(a_{1}, b_{1})$ . Furthermore $a_{1}a_{2}=a_{2}$ . (If $f$ is a polynomial with
$f(O)=0$, this follows from $a_{1}b_{1}=b_{1}a_{1}=b_{1}.$ )

Now we repeat this argument, i.e., assuming that we have constructed $t_{k},$ $x_{k}$ ,
$a_{k},$ $b_{k}$ up to $n-1$ , we have $t_{n}\in(0, t_{n-1}/2)$ and $x.=x^{*}e$ $A$ with $||x_{n}\Vert=1$ such that

$||a_{l_{\hslash}}(b_{n-1})-b_{n-1}||<1/24$ ,
Sp $(b_{n-1}(a_{n}(x_{n})-x_{n})b_{n-1})\cap[1/3,2]\neq\emptyset$ ,

and set $a_{n}$ and $b_{n}$ as before. Notice that $(a_{n})$ has the property: If $n>m,$ $a.a.=a.$ .
Let $\varphi_{n}$ be a state of $A$ such that $\varphi_{n}(a_{n})=1$ . Then $\varphi_{n}(a_{k})=1$ for any $k\leqq n$ . Let
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$\varphi$ be an accumulation point of $(\varphi_{n})$ . Then $\varphi(a_{n})=1$ for all $n$ . We want to show
that $t\mapsto\varphi\circ a_{t}$ is not norm-continuous.

Since $\varphi(a_{n})=1$ , the restriction of $\varphi$ to the $c*$-algebra generated by $b_{n-1}(\alpha_{n}(x_{n})-$

$x_{n})b_{n-1}$ has support in the closed subset $\{p;p(a.)=1\}$ of its soectrum. Hence
$\varphi(b_{n-1}(a_{t_{n}}(x_{n})-x_{n})b_{n-1})\geqq 1/6$ . Thus

$\varphi(\alpha_{n}(b_{n-1}x_{n}b_{n-1})-b_{n-1}x_{n}b_{n-1})$

$\geqq\varphi(b_{n-1}\alpha_{n}(x_{n})b_{n-1}-b_{n-1}x_{n}b_{n-1})-\Vert a_{\iota_{n}}(b_{n-1}x_{n}b_{n-1})-b_{n-1}\alpha_{t_{n}}(x_{n})b_{n-1}\Vert$

$\geqq 1/6-2\Vert a_{t_{n}}(b_{n-1})-b_{n-1}\Vert>1/12$ .
This implies that $\Vert\varphi\circ a_{t_{n}}-\varphi\Vert>1/12$ . q.e.d.

Now we come to the main theorems. Remark that if $a^{**}$ on $A^{**}$ is a-weak
continuous, $a^{**}$ fixes a minimal central projection, and that any a-weak continuous
one-parameter automorphism group of $B(\mathfrak{H})$ is covariant.

Theorem 7. Let $A$ be a simple $c*$-algebra with identity and $a$ a (strongly
continuous) one-parameter automorphism group of A. If $a^{*}$ on $A^{*}$ is strongly
continuous, then $a$ is uniformly continuous, so that it is imPlemented by a norm-
continuous unitary group of $A$ .

Proof. By the assumption there are an irreducible repraeentation $\pi$ of $A$ and
a weakly continuous unitary group $V$ on $\mathfrak{H}_{\pi}$ such that $\pi\circ\alpha(x)=V_{t}\pi(x)V_{\iota^{*}},$ $x\in A$ .
Hence we can aPply the preceding lemmas to $\pi(A)$ which is identified with $A$ .
Since $I$ (in Lemma 1) is an ideal of $A,$ $I$ is either (0) or $A$ . If $I=(O)$ , Lemma 6
yields a state $\varphi$ of $A$ with the property that $ t-\rangle$

$\varphi\circ a$ is not norm-continuous. This
is a contradiction. Hence $I=A$ . Since $A\ni 1,$ $t\mapsto V_{t}$ is norm-continuous. Thus $\alpha$

is uniformly continuous, and so $V\in A$ by Sakai’s theorem. q.e. $d$ .
Remark that the strong continuity of $\alpha$ follows from $a^{*}$ being strongly

continuous.
We say that $a$ is universally weakly inner if for any $repr\infty entation\pi$ of $A$ ,

there is a weakly continuous unitary group $V$ of $\pi(A)^{\prime\prime}$ such that $\pi\circ a(x)=V_{t}\pi(x)V_{t}^{*}$ ,
$x\in A$ .

Theorem 8. Let $A$ be a simple $c*$-algebra without identity, and $a$ a (strongly
continuous) one-parameter automorphism group of A. If $a$ is universally weakly
inner, then $a$ is implemented by a unitary group of multipliers which is continuous
in the strict topology.

Proof. By the argument in the proof of Theorem 7, we can show that for
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any irreducible representation $\pi$ of $A$ , the weakly continuous unitary group $V^{\kappa}$ on
$\mathfrak{H}_{\pi}$ which implements $\pi\circ a_{t}\circ\pi^{-1}$ (and which is unique up to phase factors) satisfies
that $t\mapsto V\pi(x)$ is norm-continuous for any $x\in A$ . Now we have to show that
$V_{t}\pi(x)\in\pi(A),$ $x\in A$ .

The proof is essentially the same as Sakai’s in [4, 4.1.9-11]. Let $D_{x}$ be the
$c*$-algebra generated by $V_{t}^{\pi}\pi(x),$ $x\in A,$ $ t\in$ R. We divide the proof into several
steps.

Step 1. For any non-zero $\lambda\in R$ , there is not an endomorphism $\Phi$ of $D_{\pi}$ which
satisfies that $\Phi(x\hat{f}(H^{\pi}))=x\hat{f}(H^{\pi}+\lambda)),$ $x\in\pi(A),$ $f\in L^{1}(R)$ , where $H^{\pi}$ is the generator

of $V^{x}$ .
This is because

$\lim_{|\sim|\rightarrow\infty}\Vert x\hat{f}(H^{\pi}+n\lambda)||=0$ .

Step 2. $D_{\kappa}$ is independent of $\pi$ , i.e., for two irreducible representations $\pi_{1}$

and $\pi_{2}$ of $A$ , there is an isomorphism $\Phi$ of $D_{\pi_{1}}$ onto $D_{\pi_{2}}$ such that $\Phi(\pi_{1}(x);(H^{x_{1}}))=$

$\pi_{2}(x)\hat{f}(H^{\pi_{2}}+\lambda),$ $x\in A,$ $f\in L^{1}$ (with some $\lambda\in R$).

To show this first notice that $V_{t}^{x}$ is a multiplier of $D_{\pi}$ . Let $\pi_{2}=\pi_{\omega}$ with a
pure state $\omega$ of $A$ . We extented the state $\omega\circ\pi_{1}^{-1}$ of $\pi_{1}(A)$ to a pure state of $D_{it_{1}}$ ,

say $\overline{\omega}$ . In the representation $\pi_{\overline{\omega}}\circ\pi_{1}$ of $A$ there is a weakly continuous unitary
group $U$ in $\pi_{\overline{\omega}^{O}}\pi_{1}(A)^{\prime\prime}$ such that $U\pi_{\overline{\omega}}\circ\pi_{1}(x)U_{t}^{*}=\pi_{\overline{\omega}}\circ\pi_{1}\circ a_{\ell}(x),$ $x\in A$ . Hence $\pi_{\overline{\omega}}(V_{t})U_{\iota^{*}}=$

$U^{*}\pi_{\overline{\omega}}(V)$ is in the commutant of $\pi_{\overline{\omega}}^{\circ}\pi_{1}(A)$ , hence in the center of $\pi_{\overline{\omega}}(D_{\pi_{1}})^{\prime\prime}$ which
is trivial. Thus $\pi_{\overline{\omega}}\circ\pi_{1}$ is irreducible, i.e., $\pi_{\overline{\omega}}\circ\pi_{1}=\pi_{2}$ and $U=V^{x_{2}}$ . Since

$\pi_{\overline{\omega}}(V^{\pi_{1}})=e^{\ell\lambda t}V_{\iota}^{\pi_{2}}$

with some $\lambda\in R,$
$\pi_{\overline{\omega}}$ is a homomorphism of $D_{\pi_{1}}$ onto $D_{\pi_{2}}$ with the prescribed

property. By interchanging $\pi_{1}$ with $\pi_{2}$ , we get such a homomorphism of $D_{x_{2}}$ onto
$D_{\pi},$ ; the composition of those must be trival by Step 1.

Step 3. $D_{\pi}$ is simple.

If $J$ is a proper closed ideal of $D_{\pi}$ , then $J\cap\pi(A)=(O)$ . Let $\rho$ be an irreducible
representation of $D./J$, and $q$ be the qoutient map of $D_{\kappa}$ onto $D./J$. Then $\rho\circ q$ map
$D_{\pi}$ onto $D_{\rho’ q\cdot r}$ satisfying the prescribed property, so $\rho\circ q$ must be an isomorphism.

Now fixing such an irreducible representation $\pi$ , we identify $\pi(A)$ with $A$ and
let $D=D.$ .

Step 4. If two factorial states of $D$ coincide on $A$ , they are equal.

Let $\varphi_{1}$ and $\varphi_{2}$ be these two states which are different. First we can show
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that $\pi_{\varphi}(A)^{\prime\prime}=\pi_{\varphi}(D)^{\prime\prime}$ . Since $\varphi_{1}=\varphi_{2}$ on $A$ , there is an isomorphism $\Phi$ of $\pi_{\varphi_{1}}(A)^{\prime\prime}$

onto $\pi_{\varphi_{2}}(A)^{\prime\prime}$ such that

$\Phi\circ\pi_{\varphi_{1}}(x)=\pi_{\varphi 2}(x)$ , $x\in A$ .
As in the $prf$ of Step 2 we can show that this isomorphism induces an auto-
morphism of $D$, which is of the type prohibited in Step 1.

The final step is to combine the result in Step 4 with Sakai’s arguments in
[4, 4.1.9, 10]. His arguments yield, by supposing $D\supsetneq A$ , two different factorial
states which coincide on $A$ , a contradiction. q.e. $d$ .

Our final result is a simple remark on the assumption which has appeared in
Theorem 7:

Proposition 9. Let $A$ be a $c*$-algebra and $a$ $a$ one-parameter automorPhism
group of A. If $t\mapsto\varphi\circ a_{t}$ is norm-continuous for any Pure state $\varphi$ of $A$ , then $t\mapsto\varphi\circ a$

is norm-continuous for any state $\varphi$ of $A$ .
Proof. Suppose that there is a state $\varphi$ of $A$ such that $\Vert\varphi\circ a_{\iota}-\varphi\Vert$ does not

converge to zero as $t\rightarrow 0$; there are $\delta>0$ and a sequence $(t_{n})$ converging to zero
such that $||\varphi\circ a_{t}.-\varphi||>\delta$ . Then there is a sequence $(x_{n})$ in $A$ with $\Vert x_{n}\Vert=1$ such

that

$|\varphi\circ a_{\hslash}(x_{n})-\varphi(x_{n})|>\delta$ . $(^{*})$

Let $G$ be the subgroup of $R$ generated by $t_{n},$ $ n\in$ N. Then $G$ is countable. Let
$B$ be the $c*$-subalgebra generated by

$\{a(x_{n});teG, n\in N\}$ .
Then $B$ is separable and $a_{t}$-invariant for $t\in G$ .

Any pure state to of $B$ has an extension to a pure state $\overline{\omega}$ of $A$ . Since, for
$t\in G$ ,

$\Vert\omega\circ a_{t}-\omega||\leqq\Vert\overline{\omega}\circ a_{t}-\overline{\omega}\Vert$ ,

$\Vert\omega\circ a-\omega\Vert$ converges to zero as $t\rightarrow 0$ in $G$ . For the restriction $\psi$ of $\varphi$ to $B$, there
is a Radon measure $\nu$ on the set $E$ of pure states of $B$ such that

$\phi=|_{B}\omega d\nu(\omega)$ .

Let $(y_{n})$ be a dense sequence in the unit ball of $B$. Then for $teG$ ,

$||\omega 0\alpha_{\iota}-\omega||=\sup|\omega\circ a_{t}(y_{l})-\omega(y_{n})|$ .
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Thus $ E\in\omega\mapsto\Vert\omega\circ a_{\ell_{n}}-\omega\Vert$ is measurable, and

$\Vert\psi\circ a_{t_{\hslash}}-\psi\Vert\leqq\int_{B}||\omega\circ a_{t_{\hslash}}-\omega\Vert d\nu(\omega)$ .

Since $ E\in\omega\mapsto\Vert\omega\circ a_{t_{n}}-\omega\Vert$ is bounded by 2, and goes to zero as $ n\rightarrow\infty$ , theL ebesgue
theorem implies that $\Vert\psi\circ\alpha_{t_{n}}-\phi\Vert\rightarrow 0$ which contradicts $t^{*}$). q.e.d.

AppendIx

Let $A$ be a $c*$-algebra and $a$ an automorphism of $A$ . If $\pi$ is a representation
of $A$ such that $a$ maps the kernel of $\pi$ onto itself, then $a$ induces an automorphism
of $\pi(A)$ . If this automorphism extends to an automorphism of the weak closure
of $\pi(A)$ , then $a$ is said to be extendible in the representation $\pi$ (cf. [3]).

Theorem Al. Let $A$ be a seParable simple $AF$ algebra and $a$ an automorphism
of A. If $a$ is extendible in every irreducible rePresentation of $A$ , then $a$ is inner.

Proof. Let $(A_{n})$ be a generating increasing sequence of finite-dimensional
subalgebras of $A$ . Since $A$ is simple, we may assume that each factor direct
summand of $A_{n}$ is mapped into each one of $A_{n+1}$ under the natural imbedding for
$n=1,2,$ $\ldots$ .

An inspection of the proof of Lemma 2.6 in [1] shows that $a$ there can be
chosen as an inner automorphism. Hence there is an inner automorphism $\sigma$ of
$A$ such that

$\sigma\circ a(\cup A_{n})=\bigcup_{n}A_{n}$ .

Therefore by taking $\sigma\circ a$ instead of $a$ , and by choosing a subsequence of $(A_{n})$ we
may assume that $a(A_{n})\subset A_{n+1}$ and $a^{-1}(A_{n})\subset A_{n+1}$ .

We assert that for each projection $e_{0}$ of $A_{n_{0}}$ ,

$\Vert e_{0}(a-\ell)|A_{n^{C}}\Vert\equiv\sup_{x\in A^{e}.||x||\leq 1}\Vert e_{0}(a(x)-x)||$

converges to zero as $ n\rightarrow\infty$ , where $A_{n}^{e}=A\cap A_{n}^{\prime}$ and $\ell$ is the identity automorphism.
If it is false, there are $\delta>0$, a subsequence $(n_{k})$ of integers and $ x_{k}=x_{k}^{*}\in$

$A_{n_{k}}\cap A_{n_{k-1}+3^{\prime}}$ with $\Vert x_{k}\Vert=1$ such that $n_{k}>n_{k-1}+3$ and $\Vert e_{0}(a(x_{k})-x_{k})||>\delta$ . We may
assume that the positive part $z_{k}$ of $a(x_{k})-x_{k}$ satisfies that $\Vert e_{0}z_{k}\Vert>\delta.$ . Set $y_{k}=e_{0}z_{k}$ .

Since $a(x_{k})-x_{k}\in A_{n_{k}+1}\cap A_{n_{k-1}+2^{\prime}}$ , all $z_{k}$ are mutually commuting. There are
minimal central projections $e$ and $p$ in $B_{k}=e_{0}A_{n_{k}+1}e_{0}$ and $C_{k-1}=e_{0}A_{n_{k-1}+l_{0}}$ respec-
tively, such that $\Vert y_{k}ep\Vert=\Vert y_{k}\Vert$ . Since
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$e\cdot pB_{k}p\cong ep(B_{k}\cap C_{k-1}^{\prime})\otimes pC_{k-1}$ ,

and
$pB_{k-1}\cong B_{k-1}$ ,

it follows that

$||y_{1}\cdots y_{k}\Vert\geqq\Vert y_{1}\cdots y_{k}ep||=\Vert y_{1}\cdots y_{k- 1}p\Vert\Vert y_{k}ep\Vert=\Vert y_{1}\cdots y_{k}\Vert\Vert y_{k}$ Il.
Hence, for any $k,$ $\Vert y_{1}\cdots y_{k}\Vert=\Vert y_{1}\Vert\cdots\Vert y_{k}\Vert$ .

Let

$S=$ {$\varphi$ ; state of $A,$ $\varphi(y_{k})=\Vert y_{k}\Vert$ , for any $k$}.

Then $S$ is a compact face. Let $\varphi_{k}$ be a state of $A$ such that

$\varphi_{k}(y_{1}\cdots y_{k})=\Vert y_{1}\cdots y_{k}\Vert$ .
Then $\varphi_{k}(y_{2})=\Vert y||$ for $i\leqq k$ . Since any weak limit point of $(\varphi_{k})$ belongs to $S,$ $S$ is
not empty. Let $\varphi$ be an extremal point of $S$, which is a pure state of $A$ .

In the representation $\pi_{\varphi}$ , since $x_{k}$ is a central sequence in $A$ , we may assume
that $\pi_{\varphi}(x_{k})$ converges weakly, say to $z$, which is a multiple of the identity. Since
$\varphi(a(x_{k})-x_{k})=\Vert y_{k}\Vert>\delta$ , and $\pi_{\varphi}\circ\alpha\circ\pi_{\varphi^{-1}}$ extends to an automorphism, say $\tilde{\alpha}$ , of $\pi_{\varphi}(A)^{\prime\prime}$ ,

we obtain

$(\Omega_{\varphi}, (\tilde{\alpha}(z)-z)\Omega_{\varphi})\neq 0$ .
which contradicts $\tilde{\alpha}(z)=z$ .

Hence $\lim\Vert e_{0}(\alpha-f)|A_{n^{C}}\Vert=0$ . The rest of the proof procedes as the $prf$ of
Lemma 3.1 in [3].

Assuming that $A$ is acting irreducibly on a Hilbert space $\mathfrak{H}$ , we find a unitary
$V$ on $\mathfrak{H}$ such that

$a(x)=VxV^{*}$ , $x\in A$ .
For $y\in A_{n^{C}}$ with $||y\Vert\leqq 1$ ,

$\Vert e_{0}VyV^{*}-e_{0}y\Vert\leqq\Vert e_{0}(\alpha-\ell)|A_{n^{t}}\Vert\equiv\epsilon_{n}$ .
Hence for any unitary $u$ in $A^{c}$ with $n\geqq n_{0}$ , we have

$\Vert e_{0}V-ue_{0}Vu^{*}\Vert\leqq\epsilon_{n}$ .
Since $A_{n^{C}}$ is an $AF$ algebra and $(A_{n^{l}})^{\prime}=A_{n}$ , there is $x\in A_{n}$ such that $||e_{0}V-x\Vert\leqq\epsilon_{n}$ .
Thus $e_{\mathfrak{v}}V\in A$ , and $a(e_{0}V)=Ve_{0}\in A$ . Since $A$ is generated by projections in $\cup A_{n}$ ,

this implies that $V$ is a multiplier of $A$ . q.e. $d$ .
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Corollary A2. Let $A$ be a seParable simple $AF$ algebra without identity and
$\alpha$ $a$ one-parameter automorPhism group of A. If $a^{*}$ on $A^{*}is$ strongly continuous,
then $a$ is imPlemented by a unitary group of multiPliers which is continuous in
the strict topology.

Proof. It follows from the assumption that each $a_{t}$ is extendible in every
irreducible repr\’eentation. Hence there is a family $(v_{t})$ of unitary multipliers such
that $a=Adv_{t},$ $ t\in$ R. It is routine to construct a group with the required continuity
property from $(v_{t})$ . q.e.d.

By using the fact that $A$ has an approximate identity consisting of projections,
we can give a proof to this result as a corollary of Theorem 7. First we can
form, as an aPproximate identity, an increasing sequence $(e_{n})$ of projections which
are all in the domain of the generator $\delta$ of $\alpha$ . Then, by using

$\delta(e_{n})=[\delta(e_{n})e_{n}-e_{n}\delta(e_{n}), e_{n}]$ ,

we repeat inner perturbations to get another one-parameter automorphism group
$\beta$ of $A$ such that

$\beta(x)=Adv_{t}\circ a_{t}(x)$ , $x\in A$ ,
$\beta_{t}(e_{n})=e_{n}$ , $n=1,2,$ $\cdots$ ,

where $(v_{t})$ is a continuous cocycle of unitary multipliers. Since $\beta$ satisfies the same
property as $a$ does, a successive application of Theorem 7 to $e_{n}Ae_{n}$ yields that $\beta$

is inner.
Hence we may conjecture the following; the conclusion of Theorem 8 is true

under the weaker assumption on $a$ that $a^{*}$ on $A^{*}$ is strongly continuous.
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Note added in proof. After completion of this work I have shown that every
universally weakly inner automorphism of a separable simple $c*$-algebra is inner
and that the conjecture at the end of Appendix is true. See Commun. Math.
Phys. 81, 429-435 (1981) for details.
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