Yokohama Mathematical Journal Vol. 29, 1981

UNIVERSALLY WEAKLY INNER ONE-PARAMETER AUTOMORPHISM GROUPS OF SIMPLE C*-ALGEBRAS

By

AKITAKA KISHIMOTO

(Received February 12, 1981)

Abstract. Every universally weakly inner one-parameter automorphism group of a simple C^* -algebra with identity is shown to be uniformly continuous (so that it is inner by Sakai's theorem).

E. C. Lance has shown in [3] that every universally weakly inner automorphism of a UHF algebra is inner. His method can be generalized to yield the result that such an automorphism of a separable simple AF algebra is inner (e.g., in non-unital case, implemented by a unitary multiplier). But it remains open for a general simple C^* -algebra.

G. A. Elliott has given in [2] a characterization of universally weakly inner one-parameter automorphism groups of separable C^* -algebras. (In particular, those are approximately inner.) We may ask the following question; whether such automorphism groups are inner if the C^* -algebra is simple. (If the C^* -algebra is a separable simple AF algebra, it follows from Lance's result that this is the case.) We shall answer this affirmatively; every universally weakly inner one-parameter automorphism group of a simple C^* -algebra is inner, i.e., implemented by a normcontinuous unitary group in the algebra if it has an identity (Theorem 7), and by a unitary group of multipliers, which is continuous in the strict topology, if it does not have an identity (Theorem 8).

For a (one-parameter) automorphism group of a C^* -algebra we may think of the condition, which is apparantly weaker than universally weak innerness, that the dual action of the automorphism group on the dual of the C^* -algebra is strongly continuous, i.e., the extension of the automorphism group to the second dual of the C^* -algebra is weak*-continuous. In fact what we shall show in Theorem 7 is that an automorphism group satisfying this condition is inner (if the C^* -algebra is simple and unital).

In the appendix we shall discuss the case of AF algebras above-mentioned; the results there are more or less known.

We shall give a series of lemmas to prove the main lemma, Lemma 6.

Lemma 1. Let A be a C*-algebra acting on a Hilbert space \mathfrak{H} and α a strongly continuous one-parameter automorphism group of A implemented by a weakly continuous unitary group V on \mathfrak{H} . Then

 $I = \{x \in A; t \mapsto xV_t \text{ is norm-continuous}\}$

is a closed two-sided ideal of A.

Proof. It is obvious that I is a left ideal. If $x \in I$ and $y \in A$, then the identity $xy V_t = x V_t \alpha_{-t}(y)$ shows $xy \in I$. Hence I is a two-sided ideal. If $x_n \in I$ converges to $x \in A$, then $x_n V_t$ converges to $x V_t$ uniformly in t, so $x \in I$. Thus I is closed.

q.e.d.

q.e.d.

Let H be the (self-adjoint) generater of V, and E() the spectral projections of H.

There is a sequence (f_n) of positive continuous functions on **R** such that $0 \leq \hat{f}_n \leq 1 = \hat{f}_n(0)$, and f_n converges to the Dirac function at the origin (in the dual of $C_{\delta}(\mathbf{R})$).

Lemma 2. Under the assumption in Lemma 1, adopting the functions (f_n) given above; for any $a \in A$,

$$[\hat{f}_n(H), a] = \hat{f}_n(H)a - a\hat{f}_n(H)$$

converges to zero as n tends to infinity.

Proof. Let $g(t) = ||\alpha_t(a) - a||$. Then g is continuous and bounded by 2||a||, and vanishes at t=0. Now by a simple calculation,

$$\|[\hat{f}_n(H), a]\| \leq \int f_n(t) \|V_t a - aV_t\| dt$$
$$= \int f_n(t)g(t)dt .$$

The last term goes to zero as n tends to infinity.

Lemma 3. Under the assumption in Lemma 1, $a \in I$ if and only if

$$\lim_{N\to\infty} \{1-E(-N, N)\}a=0,$$

Proof. If $a \in I$, then $g(t) = ||V_t a - a||$ is continuous. As in the proof of Lemma 2 we show that

 $\|\{1-\hat{f}_n(H)\}a\|$

converges to zero. Since $1-\hat{f}_n$ is close to 1 uniformly except for a compact set, we get the conclusion.

The converse implication follows from:

$$||V_t a - a|| \leq 2||\{1 - E(-N, N)\}a|| + ||V_t E(-N, N) - E(-N, N)|| ||a||$$
. q.e.d.

Lemma 4. Under the assumption of Lemma 1, let $e, a \in A$ satisfy $e=e^*$, ea=a. If there is r < 1 such that

$$\lim_{N \to \infty} \|\{1 - E(-N, N)\}e\| < r ,$$

then $a \in I$.

Proof. Notice that $\|\{1-E(-N, N)\}e\|$ is monotonely decreasing so that the limit exists.

For large enough N, we have

$$r^{2} > \|\{1 - E(-N, N)\}e^{2}\{1 - E(-N, N)\}\|$$

Since \hat{f}_n converges to 1 on every compact set,

$$\|\{1-\hat{f}_n(H)\}\{1-E(-N, N)\}-\{1-\hat{f}_n(H)\}\|$$

converges to zero as $n \to \infty$. Hence, as $||1 - \hat{f}_n(H)|| \leq 1$, for large n,

 $r^2 > \|\{1 - \hat{f}_n(H)e^2\{1 - \hat{f}_n(H)\}\|$.

By Lemma 2 this implies that for large n,

$$r^2 > \|\{1 - \hat{f}_n(H)\}^2 e^2\|$$
.

Again we can replace $\{1-\hat{f}_n(H)\}^2$ by 1-E(-M, M) with large enough M and still get the same inequality. Hence

$$\lim_{N \to \infty} \|\{1 - E(-N, N)\}e^2\| < r^2$$

By repeating this argument we obtain

$$\lim_{k \to \infty} \|\{1 - E(-N, N)\}e^k\| < r^k$$

for any $k=1, 2, \ldots$ Since

$$\|\{1-E(-N, N)\}a\| = \|\{1-E(-N, N)\}e^{k}a\| \le \|\{1-E(-N, N)\}e^{k}\| \|a\|$$

we have that

$$\lim \|\{1 - E(-N, N)\}a\| < r^k \|a\|$$

for any k. Hence we get the conclusion.

Lemma 5. Suppose that A is acting irreducibly, besides the assumption of Lemma 1. If there are r < 1 and $b \in A$ with ||b|| = 1 such that

$$\sup_{x \in A, ||x|| \le 1} \|b(\alpha_t(x) - x)b^*\| < r$$
(*)

is satisfied for sufficiently small, t, then $I \neq (0)$.

Proof. We have (*) with b*b in place of b. If we replace b by an element $e \in A$ with the property that ||b*b-e|| is sufficiently small, we still get (*), possibly by replacing r too by a slightly larger r' < 1.

Hence we may assume that there are e and a in A such that ||e|| = ||a|| = 1, $0 \le e \le 1$, ea = a and

$$\sup_{x \in A, ||x|| \leq 1} \|e(\alpha_t(x) - x)e\| < r \ (<1)$$

is satisfied for sufficiently small t.

For any $\varepsilon > 0$ with $r+4\varepsilon < 1$, since ||e||=1, there is a unit vector $\Phi \in H$ such that $||e\Phi|| > 1-\varepsilon$. Since

 $\begin{aligned} \|(eV_t-e)xe\Phi\| &\leq \|eV_txV_t^*e\Phi - exe\Phi\| + \|x\| \|V_t^*e\Phi - e\Phi\| \\ &\leq \|e\alpha_t(x)e - exe\| + \|x\| \|V_t^*e\Phi - e\Phi\| , \end{aligned}$

we know that for sufficiently small t,

$$\sup_{x \in A, ||x|| \leq 1} \|(eV_t - e)xe\Phi\| < r + \varepsilon .$$

For any unit vector $\Psi \in H$, by applying Kaplansky's density theorem to $\|e\Phi\|^{-2}\Psi \otimes e\Phi \in A''$, we have a sequence $x_n \in A$ with $\|x_n\| \leq \|e\Phi\|^{-1}$ such that $\lim x_n e\Phi = \Psi$. Thus, for sufficiently small t,

$$\|(eV_t-e)\Psi\| < \|e\Phi\|^{-1}(r+\varepsilon) < r+4\varepsilon , \quad \text{i.e.,} \quad \|eV_t-e\| < r+4\varepsilon .$$

By using the functions f_n given in Lemma 2,

$$\|\hat{f}_{n}(H)e-e\|<1$$

for large n. Hence

$$\lim ||\{1-E(-N, N)\}e|| < 1.$$

By Lemma 4 we have $a \in I$.

Lemma 6. Under the assumption of Lemma 5, suppose that I=(0). Then there is a state φ of A such that $t \mapsto \varphi \circ \alpha_t$ is not norm-continuous.

92

q.e.d.

q.e.d.

Proof. By Lemma 5, for any $b \in A$ with ||b|| = 1, the set of t > 0 which satisfies

$$\sup_{x \in A, ||x|| \leq 1} \|b(\alpha_t(x) - x)b^*\| > 2/3$$

has 0 as an accumulation point. Hence there are $t_1 \in (0, 1)$ and $x_1 = x_1^* \in A$ with $||x_1|| = 1$ such that

$$\|\alpha_{t_1}(x_1) - x_1\| > 1/3$$
.

Otherwise, for all $y \in A$ with ||y|| = 1 and $t \in (0, 1)$ we have

$$\|\alpha_t(y) - y\| \leq \frac{2}{3}$$

by decomposing y into the self-adjoint and anti-self-adjoint parts, which is a contradiction.

We may suppose that $\text{Sp}(\alpha_{t_1}(x_1)-x_1)\cap[1/3, 2]\neq \emptyset$. Let f and g be continuous functions on **R** such that

$$f(t) = \begin{cases} 1 & t \ge 1/6 \\ 6t & 0 \le t \le 1/6 \\ 0 & t \le 0 \end{cases}$$
$$g(t) = \begin{cases} 1 & t \ge 1/3 \\ 6t - 1 & 1/6 \le t \le 1/3 \\ 0 & t \le 1/6 \end{cases}$$

Set $a_1 = f(\alpha_{t_1}(x_1) - x_1)$ and $b_1 = g(\alpha_{t_1}(x_1) - x_1)$. Then $0 \le a_1 \le 1$, $0 \le b_1 \le 1$, $||a_1|| = ||b_1|| = 1$, and $a_1b_1 = b_1$.

Next there are $t_2 \in (0, t_1/2)$ and $x_2 = x_2^* \in A$ with $||x_2|| = 1$ such that

$$\|\alpha_{t_2}(b_1) - b_1\| < 1/24 ,$$

Sp $(b_1(\alpha_{t_2}(x_2) - x_2)b_1) \cap [1/3, 2] \neq \emptyset .$

Set $a_2 = f(b_1(\alpha_{t_2}(x_2) - x_2)b_1)$ and $b_2 = g(b_1(\alpha_{t_2}(x_2) - x_2)b_1)$. Then the pair (a_2, b_2) satisfies the same properties as (a_1, b_1) . Furthermore $a_1a_2 = a_2$. (If f is a polynomial with f(0)=0, this follows from $a_1b_1=b_1a_1=b_1$.)

Now we repeat this argument, i.e., assuming that we have constructed t_k , x_k , a_k , b_k up to n-1, we have $t_n \in (0, t_{n-1}/2)$ and $x_n = x_n^* \in A$ with $||x_n|| = 1$ such that

$$\|\alpha_{t_n}(b_{n-1}) - b_{n-1}\| < 1/24 ,$$

Sp $(b_{n-1}(\alpha_{t_n}(x_n) - x_n)b_{n-1}) \cap [1/3, 2] \neq \emptyset ,$

and set a_n and b_n as before. Notice that (a_n) has the property: If n > m, $a_n a_m = a_n$. Let φ_n be a state of A such that $\varphi_n(a_n) = 1$. Then $\varphi_n(a_k) = 1$ for any $k \le n$. Let

 φ be an accumulation point of (φ_n) . Then $\varphi(a_n)=1$ for all n. We want to show that $t\mapsto \varphi \circ \alpha_t$ is not norm-continuous.

Since $\varphi(a_n)=1$, the restriction of φ to the C*-algebra generated by $b_{n-1}(\alpha_{t_n}(x_n)-x_n)b_{n-1}$ has support in the closed subset $\{p; p(a_n)=1\}$ of its spectrum. Hence $\varphi(b_{n-1}(\alpha_{t_n}(x_n)-x_n)b_{n-1})\geq 1/6$. Thus

$$\begin{aligned} \varphi(\alpha_{t_n}(b_{n-1}x_nb_{n-1})-b_{n-1}x_nb_{n-1}) \\ &\geq \varphi(b_{n-1}\alpha_{t_n}(x_n)b_{n-1}-b_{n-1}x_nb_{n-1}) - \|\alpha_{t_n}(b_{n-1}x_nb_{n-1})-b_{n-1}\alpha_{t_n}(x_n)b_{n-1}\| \\ &\geq 1/6-2\|\alpha_{t_n}(b_{n-1})-b_{n-1}\| > 1/12 \end{aligned}$$

This implies that $\|\varphi \circ \alpha_{t_n} - \varphi\| > 1/12$.

Now we come to the main theorems. Remark that if α^{**} on A^{**} is σ -weak continuous, α^{**} fixes a minimal central projection, and that any σ -weak continuous one-parameter automorphism group of $B(\mathfrak{F})$ is covariant.

q.e.d.

Theorem 7. Let A be a simple C*-algebra with identity and α a (strongly continuous) one-parameter automorphism group of A. If α^* on A* is strongly continuous, then α is uniformly continuous, so that it is implemented by a norm-continuous unitary group of A.

Proof. By the assumption there are an irreducible representation π of A and a weakly continuous unitary group V on \mathfrak{G}_{π} such that $\pi \circ \alpha_t(x) = V_t \pi(x) V_t^*$, $x \in A$. Hence we can apply the preceding lemmas to $\pi(A)$ which is identified with A. Since I (in Lemma 1) is an ideal of A, I is either (0) or A. If I=(0), Lemma 6 yields a state φ of A with the property that $t \mapsto \varphi \circ \alpha_t$ is not norm-continuous. This is a contradiction. Hence I=A. Since $A \ni 1$, $t \mapsto V_t$ is norm-continuous. Thus α is uniformly continuous, and so $V_t \in A$ by Sakai's theorem. q.e.d.

Remark that the strong continuity of α follows from α^* being strongly continuous.

We say that α is universally weakly inner if for any representation π of A, there is a weakly continuous unitary group V of $\pi(A)''$ such that $\pi \circ \alpha_t(x) = V_t \pi(x) V_t^*$, $x \in A$.

Theorem 8. Let A be a simple C*-algebra without identity, and α a (strongly continuous) one-parameter automorphism group of A. If α is universally weakly inner, then α is implemented by a unitary group of multipliers which is continuous in the strict topology.

Proof. By the argument in the proof of Theorem 7, we can show that for

any irreducible representation π of A, the weakly continuous unitary group V^{π} on \mathfrak{H}_{π} which implements $\pi \circ \alpha_t \circ \pi^{-1}$ (and which is unique up to phase factors) satisfies that $t \mapsto V_t \pi(x)$ is norm-continuous for any $x \in A$. Now we have to show that $V_t \pi(x) \in \pi(A), x \in A$.

The proof is essentially the same as Sakai's in [4, 4.1.9-11]. Let D_{π} be the C*-algebra generated by $V_t^{\pi}\pi(x)$, $x \in A$, $t \in \mathbb{R}$. We divide the proof into several steps.

Step 1. For any non-zero $\lambda \in \mathbf{R}$, there is not an endomorphism Φ of D_{π} which satisfies that $\Phi(x\hat{f}(H^{\pi})) = x\hat{f}(H^{\pi} + \lambda))$, $x \in \pi(A)$, $f \in L^{1}(\mathbf{R})$, where H^{π} is the generator of V^{π} .

This is because

$$\lim_{|n|\to\infty} \|x\hat{f}(H^{\pi}+n\lambda)\|=0.$$

Step 2. D_{π} is independent of π , i.e., for two irreducible representations π_1 and π_2 of A, there is an isomorphism Φ of D_{π_1} onto D_{π_2} such that $\Phi(\pi_1(x)\hat{f}(H^{\pi_1})) = \pi_2(x)\hat{f}(H^{\pi_2}+\lambda), x \in A, f \in L^1$ (with some $\lambda \in \mathbf{R}$).

To show this first notice that V_t^{π} is a multiplier of D_{π} . Let $\pi_2 = \pi_{\omega}$ with a pure state ω of A. We extended the state $\omega \circ \pi_1^{-1}$ of $\pi_1(A)$ to a pure state of D_{π_1} , say $\bar{\omega}$. In the representation $\pi_{\overline{\omega}} \circ \pi_1$ of A there is a weakly continuous unitary group U in $\pi_{\overline{\omega}} \circ \pi_1(A)''$ such that $U_t \pi_{\overline{\omega}} \circ \pi_1(x) U_t^* = \pi_{\overline{\omega}} \circ \pi_1 \circ \alpha_t(x)$, $x \in A$. Hence $\pi_{\overline{\omega}}(V_t) U_t^* = U_t^* \pi_{\overline{\omega}}(V_t)$ is in the commutant of $\pi_{\overline{\omega}} \circ \pi_1(A)$, hence in the center of $\pi_{\overline{\omega}}(D_{\pi_1})''$ which is trivial. Thus $\pi_{\overline{\omega}} \circ \pi_1$ is irreducible, i.e., $\pi_{\overline{\omega}} \circ \pi_1 = \pi_2$ and $U = V^{\pi_2}$. Since

$$\pi_{\omega}(V_t^{\pi_1}) = e^{i\lambda t} V_t^{\pi_2}$$

with some $\lambda \in \mathbf{R}$, $\pi_{\overline{\omega}}$ is a homomorphism of D_{π_1} onto D_{π_2} with the prescribed property. By interchanging π_1 with π_2 , we get such a homomorphism of D_{π_2} onto D_{π_1} ; the composition of those must be trivial by Step 1.

Step 3. D_{π} is simple.

If J is a proper closed ideal of D_{π} , then $J \cap \pi(A) = (0)$. Let ρ be an irreducible representation of D_{π}/J , and q be the qoutient map of D_{π} onto D_{π}/J . Then $\rho \circ q$ map D_{π} onto $D_{\rho \circ q \circ \pi}$ satisfying the prescribed property, so $\rho \circ q$ must be an isomorphism.

Now fixing such an irreducible representation π , we identify $\pi(A)$ with A and let $D=D_{\pi}$.

Step 4. If two factorial states of D coincide on A, they are equal.

Let φ_1 and φ_2 be these two states which are different. First we can show

that $\pi_{\varphi_i}(A)'' = \pi_{\varphi_i}(D)''$. Since $\varphi_1 = \varphi_2$ on A, there is an isomorphism Φ of $\pi_{\varphi_1}(A)''$ onto $\pi_{\varphi_2}(A)''$ such that

$$\Phi \circ \pi_{\varphi_1}(x) = \pi_{\varphi_2}(x)$$
, $x \in A$.

As in the proof of Step 2 we can show that this isomorphism induces an automorphism of D, which is of the type prohibited in Step 1.

The final step is to combine the result in Step 4 with Sakai's arguments in [4, 4.1.9, 10]. His arguments yield, by supposing $D \supseteq A$, two different factorial states which coincide on A, a contradiction. q.e.d.

Our final result is a simple remark on the assumption which has appeared in Theorem 7:

Proposition 9. Let A be a C*-algebra and α a one-parameter automorphism group of A. If $t \mapsto \varphi \circ \alpha_t$ is norm-continuous for any pure state φ of A, then $t \mapsto \varphi \circ \alpha_t$ is norm-continuous for any state φ of A.

Proof. Suppose that there is a state φ of A such that $\|\varphi \circ \alpha_t - \varphi\|$ does not converge to zero as $t \to 0$; there are $\delta > 0$ and a sequence (t_n) converging to zero such that $\|\varphi \circ \alpha_{t_n} - \varphi\| > \delta$. Then there is a sequence (x_n) in A with $\|x_n\| = 1$ such that

$$|\varphi \circ \alpha_{t_n}(x_n) - \varphi(x_n)| > \delta .$$
^(*)

Let G be the subgroup of **R** generated by t_n , $n \in \mathbb{N}$. Then G is countable. Let B be the C*-subalgebra generated by

$$\{\alpha_t(x_n); t \in G, n \in \mathbb{N}\}$$
.

Then B is separable and α_t -invariant for $t \in G$.

Any pure state ω of B has an extension to a pure state $\overline{\omega}$ of A. Since, for $t \in G$,

$$\|\omega \circ \alpha_t - \omega\| \leq \|\bar{\omega} \circ \alpha_t - \bar{\omega}\|$$
,

 $\|\omega \circ \alpha_t - \omega\|$ converges to zero as $t \to 0$ in G. For the restriction ψ of φ to B, there is a Radon measure ν on the set E of pure states of B such that

$$\psi = \int_{E} \omega d\nu(\omega) \; .$$

Let (y_n) be a dense sequence in the unit ball of B. Then for $t \in G$,

$$\|\omega \circ \alpha_t - \omega\| = \sup |\omega \circ \alpha_t(y_n) - \omega(y_n)|$$
.

Thus $E \in \omega \mapsto \|\omega \circ \alpha_{t_n} - \omega\|$ is measurable, and

$$\|\psi\circ\alpha_{\iota_n}-\psi\|\leq \int_E \|\omega\circ\alpha_{\iota_n}-\omega\|d\nu(\omega)$$
.

Since $E \in \omega \mapsto \|\omega \circ \alpha_{t_n} - \omega\|$ is bounded by 2, and goes to zero as $n \to \infty$, the L ebesgue theorem implies that $\|\psi \circ \alpha_{t_n} - \psi\| \to 0$ which contradicts (*). q.e.d.

Appendix

Let A be a C*-algebra and α an automorphism of A. If π is a representation of A such that α maps the kernel of π onto itself, then α induces an automorphism of $\pi(A)$. If this automorphism extends to an automorphism of the weak closure of $\pi(A)$, then α is said to be extendible in the representation π (cf. [3]).

Theorem A1. Let A be a separable simple AF algebra and α an automorphism of A. If α is extendible in every irreducible representation of A, then α is inner.

Proof. Let (A_n) be a generating increasing sequence of finite-dimensional subalgebras of A. Since A is simple, we may assume that each factor direct summand of A_n is mapped into each one of A_{n+1} under the natural imbedding for $n=1,2,\ldots$

An inspection of the proof of Lemma 2.6 in [1] shows that α there can be chosen as an inner automorphism. Hence there is an inner automorphism σ of A such that

$$\sigma \circ \alpha(\bigcup_n A_n) = \bigcup_n A_n .$$

Therefore by taking $\sigma \circ \alpha$ instead of α , and by choosing a subsequence of (A_n) we may assume that $\alpha(A_n) \subset A_{n+1}$ and $\alpha^{-1}(A_n) \subset A_{n+1}$.

We assert that for each projection e_0 of A_{n_0} ,

$$||e_0(\alpha-\iota)|A_n^c|| \equiv \sup_{x \in A_n^c, ||x|| \le 1} ||e_0(\alpha(x)-x)||$$

converges to zero as $n \to \infty$, where $A_n = A \cap A_n$ and ι is the identity automorphism.

If it is false, there are $\delta > 0$, a subsequence (n_k) of integers and $x_k = x_k^* \in A_{n_k} \cap A_{n_{k-1}+3}$ with $||x_k|| = 1$ such that $n_k > n_{k-1}+3$ and $||e_0(\alpha(x_k)-x_k)|| > \delta$. We may assume that the positive part z_k of $\alpha(x_k)-x_k$ satisfies that $||e_0z_k|| > \delta$. Set $y_k = e_0z_k$.

Since $\alpha(x_k) - x_k \in A_{n_k+1} \cap A_{n_{k-1}+2'}$, all z_k are mutually commuting. There are minimal central projections e and p in $B_k = e_0 A_{n_k+1} e_0$ and $C_{k-1} = e_0 A_{n_{k-1}+2} e_0$ respectively, such that $\|y_k ep\| = \|y_k\|$. Since

$$e \cdot pB_k p \cong ep(B_k \cap C'_{k-1}) \otimes pC_{k-1}$$
,

and

 $pB_{k-1}\cong B_{k-1}$,

it follows that

$$||y_1 \cdots y_k|| \ge ||y_1 \cdots y_k e p|| = ||y_1 \cdots y_{k-1} p|| ||y_k e p|| = ||y_1 \cdots y_k|| ||y_k||.$$

Hence, for any $k, ||y_1 \cdots y_k|| = ||y_1|| \cdots ||y_k||$.

Let

$$S = \{\varphi; \text{ state of } A, \varphi(y_k) = ||y_k||, \text{ for any } k\}.$$

Then S is a compact face. Let φ_k be a state of A such that

$$\varphi_k(\boldsymbol{y}_1\cdots\boldsymbol{y}_k)=\|\boldsymbol{y}_1\cdots\boldsymbol{y}_k\|.$$

Then $\varphi_k(y_i) = ||y_i||$ for $i \leq k$. Since any weak limit point of (φ_k) belongs to S, S is not empty. Let φ be an extremal point of S, which is a pure state of A.

In the representation π_{φ} , since x_k is a central sequence in A, we may assume that $\pi_{\varphi}(x_k)$ converges weakly, say to z, which is a multiple of the identity. Since $\varphi(\alpha(x_k)-x_k)=||y_k||>\delta$, and $\pi_{\varphi}\circ\alpha\circ\pi_{\varphi}^{-1}$ extends to an automorphism, say $\tilde{\alpha}$, of $\pi_{\varphi}(A)''$, we obtain

$$(\Omega_{\varphi}, (\tilde{\alpha}(z)-z)\Omega_{\varphi}) \neq 0$$
.

which contradicts $\tilde{\alpha}(z) = z$.

Hence $\lim \|e_0(\alpha-\iota)\|A_n^{\circ}\|=0$. The rest of the proof proceeds as the proof of Lemma 3.1 in [3].

Assuming that A is acting irreducibly on a Hilbert space \mathfrak{H} , we find a unitary V on \mathfrak{H} such that

$$\alpha(x) = Vx V^*$$
, $x \in A$.

For $y \in A_n^c$ with $||y|| \leq 1$,

$$\|e_0 Vy V^* - e_0 y\| \leq \|e_0(\alpha - \iota)|A_n^c\| \equiv \varepsilon_n.$$

Hence for any unitary u in A_n^c with $n \ge n_0$, we have

$$||e_0 V - ue_0 V u^*|| \leq \varepsilon_n$$
.

Since A_n^c is an AF algebra and $(A_n^c)' = A_n$, there is $x \in A_n$ such that $||e_0 V - x|| \le \varepsilon_n$. Thus $e_0 V \in A$, and $\alpha(e_0 V) = Ve_0 \in A$. Since A is generated by projections in $\bigcup A_n$, this implies that V is a multiplier of A. q.e.d.

Corollary A2. Let A be a separable simple AF algebra without identity and α a one-parameter automorphism group of A. If α^* on A^* is strongly continuous, then α is implemented by a unitary group of multipliers which is continuous in the strict topology.

Proof. It follows from the assumption that each α_t is extendible in every irreducible representation. Hence there is a family (v_t) of unitary multipliers such that $\alpha_t = \operatorname{Ad} v_t$, $t \in \mathbb{R}$. It is routine to construct a group with the required continuity property from (v_t) .

By using the fact that A has an approximate identity consisting of projections, we can give a proof to this result as a corollary of Theorem 7. First we can form, as an approximate identity, an increasing sequence (e_n) of projections which are all in the domain of the generator δ of α . Then, by using

$$\delta(e_n) = [\delta(e_n)e_n - e_n\delta(e_n), e_n]$$
,

we repeat inner perturbations to get another one-parameter automorphism group β of A such that

$$\beta_t(x) = \operatorname{Ad} v_t \circ \alpha_t(x) , \quad x \in A ,$$

$$\beta_t(e_n) = e_n , \quad n = 1, 2, \cdots ,$$

where (v_t) is a continuous cocycle of unitary multipliers. Since β satisfies the same property as α does, a successive application of Theorem 7 to e_nAe_n yields that β is inner.

Hence we may conjecture the following; the conclusion of Theorem 8 is true under the weaker assumption on α that α^* on A^* is strongly continuous.

Acknowledgements

I would like to thank Professors O. Bratteli and S. Sakai for attracting my attention to this problem.

Note added in proof. After completion of this work I have shown that every universally weakly inner automorphism of a separable simple C^* -algebra is inner and that the conjecture at the end of Appendix is true. See Commun. Math. Phys. 81, 429-435 (1981) for details.

References

[1] Bratteli, O.: Inductive limits of finite dimensional C*-algebras, Trans. Amer. Math. Soc. 171, 195-234 (1972).

- [2] Elliott, G. A.: Universally weakly inner one-parameter automorphism groups of separable C*-algebras, Math. Scand. 45, 139-146 (1979).
- [3] Lance, E. C.: Inner automorphisms of UHF algebras, J. London Math. Soc. 43, 681-688 (1968).
- [4] Sakai, S.: C*-algebras and W*-algebras, Springer-Verlag, Berlin-Heidelberg-New York, 1971.

Department of Mathematics Yokohama City University Yokohama, 236 Japan