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0. Introduction

In [1, 21, [4] complete systems of invariants corresponding to several different
types of equivalence for meromorphic differential equations $x^{\prime}=A(z)x$ have been
defined, and the author(s) have been aiming at making the structure of these
invariants as explicit as possible. For example, the system of invariants corre.
sponding to formal meromorphic equivalence can be thought of as a matrix $G.(z)$

(the formal meromorphic invariant) which is uniquely defined and explicitly
calculable in terms of $A(z)$ . Furthermore, distinguishing several different cases
in which $G.(z)$ shows a different structure, one may see that in everyone of these
cases $G.(z)$ depends upon finitely many parameters which vary independently
within their range of definition and whose number can be found explicitly in each
case.

For example, if $n$ (the size of the coefficient matrix $A(z)$) equals 3 and the
Poincar\’e rank of $A(z)$ is one, a complete description of $G.(z)$ can be given as
follows:

$G_{m}(z)=z^{J}U\exp[Q(z)]$ ,

where
a) $Q(z)=diag[\lambda_{1}z, \lambda_{2}z, \lambda_{3}z]$ ,

${\rm Re}\lambda_{j}<{\rm Re}\lambda_{k}$ or $({\rm Re}\lambda_{j}={\rm Re}\lambda_{k}, {\rm Im}\lambda_{j}<{\rm Im}\lambda_{k})$ for $1\leqq j<k\leqq 3$ ,

$U=I,$ $J=diag[\lambda_{1}^{\prime}, \lambda_{2^{J}}, \lambda^{\prime}],$ $0\leqq{\rm Re}\lambda_{j}^{\prime}<1(1\leqq j\leqq 3)$ .
b) $Q(z)=diag[\lambda_{1}z,$ $\lambda_{2}z+\lambda z^{1/2}\sim,$ $\lambda_{a^{z-\lambda z^{1/2}]}}^{\sim},$ $\lambda_{1}\neq\lambda_{2},$

${\rm Re}\lambda>0\sim$ ,

$U=\left\{\begin{array}{lll}1 & 0 & 0\\0 & l & l\\0 & l & -l\end{array}\right\}$ ,

$J=diag[\lambda_{1}^{\prime},$ $\lambda_{2}^{\prime},$ $\lambda_{2}^{\prime}+\frac{1}{2}],$ $0\leqq{\rm Re}\lambda_{1}^{\prime}<1,0\leqq{\rm Re}\lambda_{2}^{\prime}<\frac{1}{2}$ .
c) $Q(z)=diag[\lambda_{1}z, \lambda_{2}z, \lambda_{2}z],$ $\lambda_{1}\neq\lambda_{2}$ ,
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$U=I,$ $J$ as in a) with ${\rm Re}\lambda_{2}^{\prime}<{\rm Re}\lambda_{\epsilon^{\prime}}$ or $({\rm Re}\lambda_{2}^{\prime}={\rm Re}\lambda_{3}^{\prime}, {\rm Im}\lambda_{2}^{\prime}\leqq{\rm Im}\lambda_{8}^{\prime})$ .
d) $Q(z),$ $U$ as in c),

$J=\left\{\begin{array}{lll}\lambda_{1}^{\prime} & 0 & 0\\0 & \lambda_{a^{\prime}} & 0\\0 & 1 & \lambda_{2}^{\prime}\end{array}\right\},$ $0\leqq{\rm Re}\lambda_{f}^{\prime}<1(j=1,2)$ .

e) $Q(z)=diag[q(z), q(z\epsilon), q(z\epsilon^{2})]$ ,
$q(z)=\lambda^{(0)}z+\lambda^{(1)}z^{2/8}+\lambda^{(2)}z^{1\prime 8},$ $\epsilon=e^{2s\ell/8}$ ,
either $\lambda^{(1)}\neq 0,0\leqq\arg\lambda^{(1)}<2\pi/3$ ,

or $\lambda^{(1)}=0,$ $\lambda^{(2)}\neq 0,0\leqq\arg\lambda^{(2)}<2\pi/3$ ,

$U=\left\{\begin{array}{lll}1 & l & 1\\l & \epsilon & \epsilon^{2}\\l & \epsilon^{2} & \epsilon^{4}\end{array}\right\},$ $J=diag[\lambda^{\prime},$ $\lambda^{\prime}+\frac{1}{3},$ $\lambda^{\prime}+\frac{2}{3}],$ $0\leqq{\rm Re}\lambda^{\prime}<\frac{1}{3}$ .

f) $Q(z)=\lambda zI,$ $U=I$,
$J$ as in a) with ${\rm Re}\lambda_{j}^{\prime}<{\rm Re}\lambda_{k}^{\prime}$ or $({\rm Re}\lambda_{J^{\prime}}={\rm Re}\lambda_{k}^{\prime}, {\rm Im}\lambda_{j}^{\prime}\leqq{\rm Im}\lambda_{k}^{\prime})(1\leqq j<k\leqq 3)$ .

g) $Q(z),$ $U$ as in f), $J$ as in d).

h) $Q(z),$ $U$ as in f),

$j=\left\{\begin{array}{lll}\lambda^{\prime} & 0 & 0\\l & \lambda^{\prime} & 0\\0 & l & \lambda^{\prime}\end{array}\right\},$
$0\leqq{\rm Re}\lambda^{\prime}<1$ .

In an analogous way, one can write out the different cases occuring for $G.(z)$

for larger $n$ (and higher Poincar\’e rank), although the number of cases increases
rather rapidly with $n$ , and in every case the formal meromorphic invariant has a
completly explicit structure.

The situation in case of formal analytic equivalence is much less explicit: A
formal analytic invariant corresponding to $x^{\prime}=A(z)x$ has been defined in [1], [4]

as a matrix of the form

$G_{a}(z)=P(z)z^{K}G_{m}(z)$ ,

where $K$ is a diagonal matrix of integer entries, and $P(z)$ is lower triangular with
ones along the diagonal and polynomials in 2 without constant term below the
diagonal. In order to define a unique $G_{a}(z)$ corresponding to $x^{\prime}=A(z)x$ , a repre.
sentative was a.priori selected out of the set of all possible $P(z)z^{K}$ occuring with
a given differential equation. This set turned out to be an equivalence class cor.
responding to the following equivalence definition:

A matrix $\tilde{P}(z)z^{\tilde{K}}$ of the same type as $P(z)z^{K}$ is said to be equivalent to $P(z)z^{K}$

(relative to $G.(z)$) whenever a constant invertible $C$ commuting with $G.(z)$ and an
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analytic transformation $C(z)$ exist such that

$(0.1)$ $P(z)z^{K}C=C(z)\tilde{P}(z)z^{\tilde{K}}$ .
In contrast to the formal meromorphic case, the selection of a representative

$P(z)z^{K}$ was done just by help of the axiom of choice. So for the formal analytic
invariant one cannot directly determine the number of parameters contained in
$G.(z)$ (corresPonding to differential equations of fixed size and Poincar\’e rank, say).

In [3], the author contributed an algorithmic procedure(ln case $n=2$) which,
given any $P(z)z^{K}$ and the group $\mathcal{G}_{m}$ of constant invertible matrices commuting
with $G_{m}$ , enables to calculate a representative within the equivalence class of
$P(z)z^{K}$ : In case $n=2$ , the group $\mathcal{G}_{m}$ is either

$(a)$
$\mathcal{G}_{n}=\{\left\{\begin{array}{ll}c_{1} & 0\\c_{2} & c_{1}\end{array}\right\},$ $c_{1}\neq 0\}$ ,

or
$(\beta)$

$\mathcal{G}_{m}=\{\left\{\begin{array}{ll}c_{1} & 0\\0 & c,\end{array}\right\},$ $c_{1}c_{2}\neq 0\}$ ,

or
$t\gamma)$

$\mathcal{G}_{m}=\{\left\{\begin{array}{ll}c_{11} & c_{12}\\c_{21} & c_{22}\end{array}\right\},$ $C_{1}{}_{1}C_{22^{-c_{1}{}_{2}C_{21}\neq 0\}}}$ .

Then in every equivalence class there is a unique representative $P(z)z^{K}$ ,

$P(z)=\left\{\begin{array}{ll}1 & 0\\p(z) & l\end{array}\right\}$ , $K=diag[l, k],$ $l,$ $k$ integer,

satisfying the following conditions:
In case $(a)$ ; The polynomial $p(z)$ does not contain a term $z^{k-\iota}$ (if $k\leqq l$, this

is to be interpreted void, since by definition $p(z)$ is a polynomial without constant
term).

In case $(\beta)$ : Either $P(z)\equiv 0$ or $p(z)$ has highest coefficient 1.
In case $(\gamma)$ : Either $P(z)\equiv 0$ and $k\leqq l$ , or $k-l<\deg P$ and $p(z)$ has highest coef.

ficient 1 and does not contain a term $z^{k-\ell}$ .
In all three cases, if a given $P(z)z^{K}$ does not satisfy the conditions stated,

then one can explicitly find Ce $\mathcal{G}_{n}$ such that $\tilde{P}(z)z^{\tilde{K}}$ defined by (0.1) satisfies the
conditions and therefore $\tilde{P}(z)z^{\tilde{K}}$ is the unique representative.

The purpose of this paper is to generali $ze$ this result to arbitrary $n$ . This
is again done by stating an algorithmic procedure involving a finite number of
steps of the following type.

Given any group $\Psi$ of invertible, constant matrices showing a structure
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described in Section 1, we consider an arbitrary equivalence class of matrices
$P(z)z^{K}$ (relative to $\mathcal{G}$ ). If the equivalence class contains at least two different
matrices, we specify a subset of matrices $P(z)z^{K}$ by fixing some of the parameters

in $P(z)z^{K}$ to certain ”natural” values, such as minimal values for the integers in
$K$ or zero or one for the coefficients of the polynomials in $P(z)$ . It is a non.
trivial consequence of the special structure of $\mathcal{G}$ that this selection of a subset
can always be done in a way that the subset of matrices $P(z)z^{\iota}$ turns out to be
an equivalence class relative to a subgroup of $y$ which is essentially of the same
structure as $\Psi$.

The following example shows some of the typical arguments which are later
used in general:

Let $G_{n}$ be as in case d) above (with $\lambda_{1}^{\prime}\neq\lambda_{2}^{\prime}$), and let $\mathcal{G}_{m}=\mathcal{G}$ be the group of
constant invertible $C$ commuting with $G_{m}$ , i.e. $C$ is of the form

$C=\left\{\begin{array}{lll}c_{1} & 0 & 0\\0 & c_{2} & 0\\0 & c_{\theta} & c_{g}\end{array}\right\}$ , $c_{1}c_{2}\neq 0$ .

Let

$P(z)=\left\{\begin{array}{lll}l & 0 & 0\\p_{21}(z) & 1 & 0\\p_{81}(z) & p_{82}(z) & l\end{array}\right\}$ , $K=diag[k_{1}, k_{2}, k_{s}]$ ,

then every $\tilde{P}(z)z^{\tilde{K}}$ equivalent to $P(z)z^{K}$ can be found by factorizing $P(z)z^{K}C$ (with

$C$ as above) into $C(z)\tilde{P}(z)z^{\tilde{K}}$ (with an analytic transformation $C(z)$), using a Gaus.
sian algorithm type procedure (compare [41). Since $C$ is lower triangular, we find
$\tilde{K}=K,\tilde{p}_{21}(z)=p_{21}(z)c_{1}/c_{2},\tilde{P}_{31}(z)=p_{31}(z)c_{1}/c_{2}$ , and $\tilde{p}_{2}(z)$ is the polynomial part (without

constant term) of $p_{2}(z)+z^{k_{3}-\iota_{2C_{3}}}/c_{2}$ . Hence assuming $p_{21}\neq 0$ , as a first step we may

consider the subset of matrices (of the given equivalence class) for which the
highest coefficient of $p_{21}(z)$ is one. If both $P(z)z^{K}$ and $\tilde{P}(z)z^{\tilde{K}}$ are taken from this
subset, then (0.1) holds with a $C$ for which $c_{1}=c_{2}$ , and vice versa if $c_{1}=c_{2}$ and
$p_{21}(z)$ has highest coefficient one, then $\tilde{p}_{21}(z)$ has also highest coefficient equal to
one. The set of $C\in \mathcal{G}$ with $c_{1}=c_{2}$ forms a subgroup $\tilde{\mathcal{G}}$, and we next may consider
which influence we have upon $p_{32}(z)$ , when working with matrices Ce $\tilde{\mathcal{G}}$. We im-
mediately see that $\tilde{p}_{8f}(z)=p_{t}(z)$ if $k_{S}-k_{2}\leqq 0$ , and $\tilde{p}_{32}(z)=p_{32}(z)+z^{k_{\theta}-k_{2}}c_{3}/c_{2}$ otherwise.

If the first case occurs, then the equivalence class (with respect to $\tilde{\Psi}$) con.
tains only one element $P(z)z^{K}$ which we take as the representative, whereas in
the second case we restrict to the subset of matrices where $p_{S2}(z)$ contains no term
with exponent $k_{8}-k_{2}$ . This subset, however, is an equivalence class relative to
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the subgroup of matrices with $c_{3}=0$ (and $c_{1}=c_{2}$), i.e. the subgroup of scalar
matrices $c_{1}I$, and the corresponding equivalence class again contains only one
element. Similar arguments aPply if $p_{21}=0$ .

In order to make analogous arguments work in general, it is most important
to understand the structure of the group $\mathcal{G}_{m}$ and its subgroups occuring in the
procedure. It was shown in [1], [4] that $C$ commutes with $G.(z)=z^{J}U$ exp $[Q(z)]$

iff it commutes with $Q(z)$ , with a block permutation matrix $R$ explicitly given in
terms of $Q(z)$ , and with $J$ separately. Since $J$ was taken to be a matrix in Jordan
canonical form, the structure of $\mathcal{G}_{m}$ is related to the structure of matrices com.
muting with Jordan matrices. Although those matrices can be completely char.
acterized ([4], pp. 49, 50), they do not have a structure which is convenient for
handling our normalization problem. We therefore define a modified canonical
form $J$, and show that the group of matrices commuting with $J$ consists of all
lower triangularly blocked matrices $C$ (corresponding to a block structure deter.
mined by $J$) which satisfy additional restrictions expressed in terms of the blocks
rather than of the single elements of $C$ (Section 1). For the definition of the
formal meromorphic invariant $G_{m}(z)$ it was only essential to fix a unique normal
form corresponding to every constant matrix. This was $\dot{d}$ one in [1], [4] by
choosing Jordan canonical form together with an a.priori.ordering of the eigen.
values and the Jordan blocks corresponding to the same eigenvalue ([1], Section
1; [41, \S 3e). Instead one might as well use the modified canonical form together
with an a-priori.ordering of the eigenvalues (compare Remark 1.4), and the
reader may check that none of the results concerning $G_{m}(z)$ fails to hold (modulo
changes in notation) when replacing Jordan canonical forms by modified canonical
forms.

In Section 2 we (analogously to (0.1)) define the notation of $\Psi$-equivalence of
matrices $P(z)z^{K}$ corresponding to an admissible group $\mathcal{G}$ (i.e. a group of matrices
having a structure similar to those commuting with a matrix in modified canon.
ical form, and we indicate several ways of defining subgroups of $\mathcal{G}$ which again
are admissible.

Section 3 contains a discussion of what can be considered as a first step
towards selecting a representative out of any $\mathcal{G}$-equivalence class of matrices
$P(z)z^{K}$ in case $\mathcal{G}$ consists of all $n\times n$ constant, invertible matrices. In Section 4
we then return to the general case and explain how one can select a unique
representative $P(z)z^{K}$ . In a final Section 5, we consider as an example the case
$n=3$ , and aPply our results to the case of normal forms of constant matrices with
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respect to a restricted type of similarity.

We mention the following improvement in the $thry$ of invariants obtained
from this paper: Assume that any two meromorphic differential equations $X^{\prime}=$

$A(z)X$ and $\tilde{X}^{\prime}=\tilde{A}(z)\tilde{X}$ are given, which shall be shown to be formally analytically

equivalent (resp. inequivalent). Then by algebraic arguments one can find

formal fundamental solutions $H(z)(\tilde{H}(z))$ of either one of the equations, which are
of the form

$H(z)=F.(z)P(z)z^{\iota}G_{n}(z)$ ,
(resp. $\tilde{H}(z)=\tilde{F}_{a}(z)\tilde{P}(z)z^{\tilde{K}}\tilde{G},(z)$),

where $G.(z)(G.(z))$ is the formal meromorphic invariant, $P(z)z^{\iota}(\tilde{P}(z)z^{\tilde{\iota}})$ is as
described before, and $F_{*}(z)(\tilde{F}_{*}(z))$ is a formal analytic transformation. Then it
is necessary and sufficient for formal analytic equivalence of the two differential
equations that $G.(z)=G.(z)$ , and that (0.1) holds for a suitable constant, invertible
matrix $Ce9.$ . While the first condition is immediate to check, the second one
will involve finding (resp. disproving the existence of) the matrix C. APplying

the results of this paper, however, enables to find the representative correspond.

ing to $P(z)z^{\iota}(\tilde{P}(z)z^{\tilde{\iota}})$ within finitely many straight forward steps, and then the
question of whether (0.1) holds or not is decided by whether or not the two
representatives are equal.

1. A modified canonical form

Corresponding to an arbitary constant matrix $C$, we define a modified canon $\cdot$

ical form $J$, which differs from the usual Jordan canonical form by a permutation

similarity. We do this since matrices commuting with $J$ (in modified canonical
form) have a simpler structure. As an example, one may see from the following

Lemma 1 that the matrix whose Jordan canonical form is

$N=\left\{\begin{array}{llll}0 & 0 & 0 & 0\\l & 0 & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & l & 0\end{array}\right\}$

has the modified canonical form

$J=\left\{\begin{array}{llll}0 & 0 & 0 & 0\\0 & 0 & 0 & 0\\1 & 0 & 0 & 0\\0 & 1 & 0 & 0\end{array}\right\}$ ,
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and the matrices $C$ commuting with $J$ are precisely of the (blocked) form

$C=\left\{\begin{array}{ll}C_{1} & 0\\C_{2} & C_{1}\end{array}\right\}$ , $C_{1}$ of size $2\times 2$ ,

whereas those commuting with $Nhave$.the form

$C=\left\{\begin{array}{llll}c_{1} & 0 & c_{l} & 0\\c_{2} & c_{1} & c & c_{l}\\c_{5} & 0 & c_{|} & 0\\c_{6} & c_{5} & c_{\epsilon} & c_{7}\end{array}\right\}$ , $c_{1},$ $\cdots,$ $c_{0}$ arbitrary.

Throughout this paper, I. (for any natural s) denotes the identity matrix of
size $sxs$ .

Lemma l. Lets be some natural number, then every constantsxs matrixC is
similar to a matrix $J$ having the following properties: If $\lambda_{1},$

$\cdots,$
$\lambda$, denote the

(distinct) eigenvalues of $C$ , and $s_{1},$ $\cdots,$ $s$, the multiplicities of the corresponding
eigenvalues, then

(1. 1) $J=diag[\lambda_{1}I_{1}+N_{1}, \cdots, \lambda_{\mu}I_{\mu}+N,]$ ,

with nilpotent matrices $N_{1},$
$\cdots,$ $N_{\mu}$ of the following type: For every $\nu,$

$ 1\leqq\nu\leqq\mu$ , let
$l_{\nu}$ denote the smallest positive integer for which

(1. 2) rank $(C-\lambda_{\nu}I)^{i_{\nu}}=s-s_{\nu}$ ,

and define numbers $s_{\nu.k}$ by

(1. 3) $s_{\nu.k}=rank(C-\lambda_{\nu}I)^{\ell_{\nu}-t}$ -rank $\langle C-\lambda_{\nu}I)^{i_{\nu}-l+1}$ , $1\leqq k\leqq l_{\nu}$ .
Then the numbers $s_{\nu.k}$ are (weakly) increasing in $k,$ $1\leqq k\leqq l_{\nu}$ , and if we block $N_{\nu}$

such that the kth diagonal block is of size $s_{\nu.k},$
$1\leqq k\leqq l_{\nu}$ , we have $N_{\nu}=0$ if $l_{\nu}=1$ ,

and otherwise

(1. 4) $N_{\nu}=[_{0}^{M_{\nu.1}}00$

$00$

$0M_{\nu.\ell_{\nu}-1}$

:
$000:]$ ,
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(1. 5)
$M_{\nu.k}=\left\{\begin{array}{lll}0 & \cdots & 0\\\vdots 0 & \vdots & \vdots\\ 0 & \vdots & 0\\1 & \vdots & 0\\0 & \vdots & .\\. & \cdots & 0\\0\cdot & . 0 & 1\end{array}\right\}i_{s_{\nu.r_{1}}}^{s_{\nu.k+1}-s_{\nu.k}}$

$1\leqq k\leqq\ell_{\nu}-1$ .

Remark 1.1. In (1.5) it may occur that $s_{\nu.k+1}-s_{\nu.k}=0$ for some $\nu$ and $k$ . In
this case the reader should interprete (1.5) to read $M_{\nu.k}=I_{*}\nu.k$ There will be other
occasions during this paper, where an analogous interpretation has to be made in
cases matrices are blocked with respect to a certain block structure where the
number of rows $and/or$ columns of certain blocks is zero.

Remark 1.2. Suppose natural numbers $\mu,$
$l_{\nu}$ , and $s_{\nu.k}(1\leqq k\leqq l_{u})$ with $ s_{\nu.1}\leqq\cdots$

$\leqq s_{\nu.\ell_{\nu}}(1\leqq\nu\leqq\mu)$ are given such that $\sum_{k}s_{\nu.k}=s_{\nu},$
$\sum s_{\nu}=s$ , and let $J$ (with distinct

numbers $\lambda_{1},$

$\cdots,$
$\lambda_{\mu}$) be defined by (1.1), (1.4), (1.5). By calculating the powers of

N. $(1\leqq\nu\leqq\mu)$ one can check that $N_{\nu}^{k}=0$ iff $k\geqq l_{\nu}$ , and that

$s_{\nu.k}=rank(J-\lambda_{\nu}I)\nu^{-k}$ -rank $(J-\lambda_{\nu}I)^{\ell_{\nu}-k+1}$ , $1\leqq k\leqq l_{\nu}$ .
Hence if $C$ is similar to $J$, then (1.2) and (1.3) follow. Therefore, given $C$ it is
sufficient to prove the existence of $J$ which is similar to $C$ , satisfying (1.1), (1.4),

(1.5) for any natural $\mu$ , distinct $\lambda_{1},$

$\cdots,$
$\lambda_{\mu}$ , and natural numbers $l_{\nu},$ $ s_{\nu.1}\leqq\cdots\leqq$

$s_{\nu.\iota_{\nu}}(1\leqq\nu\leqq\mu)$ as above.

Remark 1.3. A short proof of Lemma 1 can be given by first putting $C$ into
Jordan canonical form and then applying a permutation similarity. However, we
will give an induction type prove which does not use any other result than just

matrix algebra and which also can be turned into an algorithm construction the
transformation matrix taking $C$ into its modified canonical form, once the eigen.

values of $C$ are known.

Proof of Lemma 1. We proceed by induction with respect to $s$ . For $s=1$ ,
Lemma 1 holds trivially. Let now $s\geqq 2$ . Without loss in generality, assume that
$C$ has zero as an eigenvalue (otherwise replace $C$ by $C-\lambda I$ for some eigenvalue $\lambda$).

By multiplication from the right with an invertible matrix $T$ we can arrange that
the first $\tilde{s}$ columns (with $\tilde{s}=rankC<s$) of $C$ are linearly independent whereas the
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other columns are zero, and multiplication from the left with $T^{-1}$ does not
destroy this Property. Hence we may directly assume

$C=\left\{\begin{array}{ll}C_{11} & 0\\C_{21} & 0\end{array}\right\}$ , $C_{11}$ of size $\tilde{s}\times\tilde{s}$ ,

and by induction hypothesis (not that if $\tilde{s}=0$ , the proof is completed) we may
take

$C_{11}=\tilde{J}=diag[\lambda_{1} I_{\epsilon_{1}}^{\sim}+N_{1}, \cdots, \lambda_{\tilde{\mu}} I_{\tilde{\mu}}^{\sim}+N_{\tilde{\mu}}]$ ,

with matrices $N_{\nu}$ satisfying (1.4), (1.5) corresponding to natural numbers $\overline{l}_{\nu}$ ,
$\tilde{s}_{\nu.1}\leqq\cdots\leqq\tilde{s}_{\nu^{\ell_{\nu}}}^{\sim}(1\leqq\nu\leqq\tilde{\mu}),$

$\sum_{k}\tilde{s}_{\nu.k}=\tilde{s}_{\nu},$ $\sum_{\nu}\tilde{s}_{\nu}=\tilde{s}$ , and distinct numbers $\lambda_{1},$

$\cdots,$
$\lambda_{\tilde{\mu}}$ .

An aPplication of a similarity transformation corresponding to a matrix of
the form

$\left\{\begin{array}{ll}I_{l}^{\sim} & 0\\T_{21} & I_{\iota-}^{\sim}\end{array}\right\}$

is equivalent to replacing $C_{21}$ by $C_{21}-T_{21}f$ . Hence if $\tilde{J}$ is invertible, we may take
$T_{21}=C_{21}\tilde{J}^{-1}$ , and the transformed $C$ is then of the form

$\left\{\begin{array}{ll}\tilde{J} & 0\\0 & 0\end{array}\right\}=J$ .

In view of Remark 1.2, this completes the proof of Lemma 1 if $\tilde{J}$ is invertible
(with an obvious choice of the numbers $\mu,$

$l_{\nu},$
$s_{\nu.k}$ and $\lambda_{\nu}$).

If $\tilde{J}$ is not invertible we take $\mu=\tilde{\mu}$ and may arrange that $\lambda_{\mu}=0$ . By com.
puting $T_{21}\tilde{J}$ we see that we can arrange all the columns of $\tilde{C}_{21}=C_{21}-T_{21}\tilde{J}$ except
for the last $\tilde{s}_{\mu.t_{\mu}}^{\sim}$ ones to be zero, i.e.

$\tilde{C}_{21}=[0, \tilde{C}]$

with $\tilde{C}$ having $\tilde{s}_{\mu.l_{\mu}}^{\sim}$ columns that are linearly independent (otherwise $C$ could not
have had rank $\tilde{s}$ ; note that therefore $\tilde{s}_{\mu.\ell_{\mu}}^{\sim}\leqq s-\tilde{s}$ , i.e. $\tilde{C}_{21}$ has at least as many
rows as columns).

Finally, let $\tilde{T}=diag[I_{l}^{\sim}, \Phi],$ $\phi$ constant, invertible, of size $s-\tilde{s}$ , and choose $\phi$

such that its last $\tilde{s}_{\mu.\ell_{\mu}}^{\sim}$ columns equal $\tilde{C}$ . Then

$\tilde{\tau}^{-1}[\tilde{J}\tilde{C}_{21}$ $00]=\tilde{\tau}[\tilde{J}\hat{C}_{21}$ $00]$

$\hat{C}_{21}=[0,\hat{C}]$ , $\tilde{C}=\hat{T}\hat{C}$ .
By means of the above choice of $\hat{T}$, this implies
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$\hat{C}=\left\{\begin{array}{l}0\\I\end{array}\right\}\}\tilde{s}_{\mu.\iota_{\mu}}^{\sim}=M_{\mu.\iota_{\mu}}^{\sim}$ .

Therefore, if we take

$s_{\nu,k}=\tilde{s}_{\nu.k}$ $(1\leqq k\leqq l_{\nu}=\overline{l}_{\nu}, 1\leqq\nu\leqq\mu-1)$ ,
$l_{\mu}=\tilde{l}_{\mu}+1$ , $s_{\mu.g}=\tilde{s}_{\mu.k}$ $(1\leqq k\leqq l_{\mu}-1)$ , $s_{\mu.\iota_{\mu}}=s-\overline{s}$ ,

then

$J=[\tilde{J}\hat{C}_{21}$ $00]$

satisfies (1.1), (1.4), (1.5), which completes the proof, using again Remark 1.2.

Remark 1.4. Up to an ordering of the eigenvalues, the modified canonical
form is unique. This is another advantage over Jordan canonical form from the
point of view taken in the theory of invariants; compare [1], Section $3a;[4]$ , \S 4a.
It will be important later to actually think of an a.priori fixed ordering of the
eigenvalues of $J$ being made, so that we then can speak of the unique modified
canonical form of a matrix.

Let $\Psi$ be a group (with respect to matrix multiplication) of constant, inver.
tible matrices. We call $\mathcal{G}$ an admissible group, if $\mathcal{G}$ is the set of all the matrices
$C$ which, according to some fixed block structure $C=[C_{\ell j}],$ $1\leqq i,$ $j\leqq m$ , with square
diagonal blocks, are lower triangularly blocked, invertible, and are characterized
by (finitely many) conditions of the following two types:

1. For some pair $(i, j),$ $1\leqq i,$ $j\leqq m$ , we have

(1. 6) $C_{\ell}=C_{jj}$ for every $C\in \mathcal{G}$ .
2. For complex numbers $\alpha_{ij}(1\leqq j<i\leqq m)$ we have

(1. 7) $\sum_{;<}a_{j}C_{\ell j}=0$ ,

(with the implicit assumption that for those $a_{ij}\neq 0$ the corresponding blocks $C_{ij}$

are all of the same size, and that terms with $a_{u}=0$ may be omitted).

Remark 1.5. Note that there is only one block structure, according to which a
group $\mathcal{G}$ can be admissible; we refer to it as the associated block structure. It is
clear that not every set of invertible matrices defined by conditions of type 1 and
2 will be a group with respect to matrix multiplication(compare the following
remark).

Remark 1.6. Let $\mathcal{G}$ be an admissible group, and think of $C=[C_{iJ}]e\mathcal{G}(1\leqq i$ ,
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$j\leqq m)$ being blocked according to the associated block structure. Then we may

divide $\{1, \cdots, m\}$ into disjoint subsets $\sigma_{1},$ $\cdots,$ $\sigma_{r}$ such that the conditions of type

one can altogether be expressed as
$C=C_{jj}$ if $i,$ $j$ are in the same $\sigma_{\nu}$ , for every Ce $\mathcal{G}$ .

Every condition (1.7) can then be rewritten as

(1. 8) $\sum_{\mu=1}^{\prime}\sum_{\nu=1}^{r}$

$\sum_{j,j<\ell,\ell e\sigma_{\nu\mu}je\sigma}\alpha {}_{\ell j}C_{iJ}=0$

.

Since f17 contains all lower triangularly blocked invertible constant matrices satis.
fying the conditions of type 1, 2, we find $D\in \mathcal{G}$ whenever

$D=diag[D_{1}, \cdots, D_{m}]$ , $D_{i}$ invertible $(i=1, \cdots, m)$ ,
$D=D_{j}$ if $i,$ $j\in\sigma_{\nu}(\nu=1, \cdots, r)$ .

Therefore if $C\in \mathcal{G}$, then $DC\in \mathcal{G}$, i.e. (1.8) implies (if we denote the common value
of $D_{i}=D_{j}$ for $i,$ $j\in\sigma_{\nu}$ by $D_{\nu},$ $\nu=1,$ $\cdots,$ $r$)

$\sum_{\mu=1}^{r}\sum_{\nu=1}^{r}D_{\nu}$

$\sum_{\ell,j}$
a ${}_{j}C_{i!}=0$ .

$ j<\ell$ . $e\sigma_{\nu^{\prime}}j\in\sigma_{\mu}$

Since $D_{1},$
$\cdots,$

$D_{f}$ can be arbitrary invertible matrices, we conclude

$\sum_{\iota^{\ell}=1}^{r}$

$\sum_{\ell,j<i,ie\sigma_{\nu}^{\dot{J}},j\in\sigma_{\mu}’}\alpha {}_{J}C_{:j}=0$

for every $\nu$ , $1\leqq\nu\leqq r$ .

Applying an analogous argument to $CD$ which is also in $\mathcal{G}$ shows that even

$j<i,ie\dot{\sigma}_{\nu’\mu}\sum_{is_{je\sigma}}a_{\ell j}C_{ij}=0$

for every $(\nu, \mu)$ ; $ 1\leqq\nu$

’
$\mu\leqq r$ .

Hence without loss in generality, we may only consider conditions (1.7) in which
summation is restricted by $i\in\sigma_{\nu},$ $j\in\sigma_{\mu}$ for some pair $(\nu, \mu);1\leqq\nu,$ $\mu\leqq r$ . This will
be of importance later.

Lemma 2. Let $J$ be in modified canonical form, i.e. having all the Properties

listed in Lemma 1. Let $\mathcal{G}$ be the group of invertible matrices commuting with $J$.
Then $\mathcal{G}$ is admissible.

Proof. Let $C$ be constant, invertible, such that

(1. 9) $CJ=JC$ .
If (with the notations used in Lemma 1) we preliminarily block $C=[C_{Jk}],$ $1\leqq j$,
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$ h\leqq\mu$ , such that the kth diagonal block is of size $s_{k},$ $ 1\leqq k\leqq\mu$ , it follows that $C$

must be diagonally blocked. Hence it suffices to show that matrices commuting
with a diagonal block of $J$ form an admissible group, since a direct sum of admis.
sible groups is again admissible. So without loss in generality, take $\mu=1,$ $\lambda_{1}=0$ ,

$J=N=[00M_{1}0:$

. . $0$ $M_{t-1}$

$00:]$

$M_{k}=\left\{\begin{array}{l}0\\\vee I\end{array}\right\}$

}$s_{k+1}-s_{k}$ , $1\leqq k\leqq l-1$ ,

with natural numbers $l,$ $s_{1}\leqq s_{2}\leqq\cdots\leqq s_{\ell},$
$\sum_{k}s_{k}=s$ . If we now block $ C=[C_{f_{k}}](1\leqq$

$j,$ $k\leqq l$) in the block structure of $N$, we see that (1.9) holds iff

(1. 10) $C_{1.k+1}M_{k}=0$ , $M_{j}C_{j\ell}=0$ , $C_{j+1,k+1}M_{k}=M_{j}C_{j_{k}}$ $(1\leqq;, k\leqq l-1)$ .
Since $M_{j}X=0$ implies $X=0$ , we conclude inductively for $k=l,$ $l-1,$ $\cdots,$

$2$ that
$C_{j_{k}}=0(1\leqq j<k)$ ; i.e. $C$ is lower triangularly blocked in the block structure of $J$

(which generally is not the block structure according to which $\mathcal{G}$ is admissible).
Hence (1.10) reduces to

(1. 11) $C_{j+1.k+1}M_{k}=M_{f}C_{Jk}$ , $1\leqq k\leqq;\leqq l-1$ .
For fixed $k,$ $j(1\leqq k\leqq;\leqq l-1)$ , if we block

$C_{j+1.k+1}=\left\{\begin{array}{ll}C^{(1)} & C^{(2)}\\C^{(s)}\vee & C^{(4)}\vee\end{array}\right\}\}s_{J+1}-s_{j}s_{k+1}-s_{k}s_{k}\}s_{j}$

then (1.11) holds iff $C^{(2)}=0,$ $C^{(4)}=C_{j_{k}}$ . If we now block $C$ according to the finest
possible block structure for which $C$ still is lower triangularly blocked, then from
the above discussion we see that $\mathcal{G}$ becomes admissible (this block structure is
obtained by leaving the first diagonal block, and for $j\geqq 1$ dividing the $(j+1)th$

diagonal block into one of size $s_{J+1}-s_{j}$ plus others having the same sizes and
order as the ones into which the jth block was divided before).

Let now $G.(z)$ be a formal meromorphic invariant of some meromorphic
differential equation, i.e.

$G_{m}(z)=z^{J}Ue^{Q(\iota)}$ , $J=J^{\prime}+U^{\prime}$ ,

where

$Q(z)=diag[q_{1}(z)I_{*}1$ $q_{\iota}(z)I_{\ell}1$
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with positive integers $s_{1},$ $\cdots,$ $s_{\ell}$ and distinct polynomials $q_{1}(z),$ $\cdots,$
$q_{\ell}(z)$ in a root

of $z$ which are ordered in a way such that $Q(z)$ shows a certain suPerblock struc-
ture (for details see [1], [4]), $U$ and $U^{\prime}$ are explicitly given in terms of $Q(z)$ , and

$J^{\prime}$ is showing the same block structure as $Q(z)$ , its blocks are equal within every
superblock and taken to be in canonical form; here we take the modified canon.
ical form defined in Lemma 1.

It was shown in [1], [4] that a constant invertible $C$ commutes with $G_{m}$ iff it
commutes with $Q(z),$ $R$ , and $J^{\prime}$ , where $R$ is built as a direct sum of superblocks,

each of which is of the (blocked) form

$[_{0}^{0}I0$

$00$

$0$

$I00$ $I00]$ ,

where all the blocks are of size $s$ (which is also the common size of blocks in
$Q(z)$ within this superblock). Therefore $\mathcal{G}_{m}$ consists of all constant invertible
matrices that are diagonally blocked in the block structure of $Q(z)$ with equal

blocks within every superblock and each block commuting with the corresponding

block of $J^{\prime}$ . Using Lemma 2, we immediately obtain

Proposition 1. The group $\mathcal{G}_{m}$ of constant invertible matrices that commute
with a given meromorPhic invariant $G_{m}(z)$ is an admissible group, if we take the

modified canonical form instead of Jordan canonical form.
It is this Property of the group $\mathcal{G}_{m}$ that we will use in the next Sections.

2. $\mathscr{G}$-equivalence and admissible subgroups of $\mathscr{G}$

Let $\mathscr{G}$ be any admissible group of constant, invertible matrices of size $n$ .
Throughout this paper, let $P(z)$ always denote a matrix

(2. 1) $P(z)=\left\{\begin{array}{llll}1 & 0 & \vdots & 0\\p_{21}(z) & 1 & \vdots & 0\\\vdots & & \vdots & 0\\p_{n1}(z) & & p_{n.n- 1}(z) & l\end{array}\right\}$

with polynomials $p_{i!}(z)$ in the variable $z$ having zero constant term $(1\leqq j<i\leqq n)$ ,
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and let $K$ always denote a matrix

(2. 2) $K=diag[k_{1}, \cdots, k_{n}]$

with integer entries $h(1\leq\lrcorner\leqq n)$ .
According to [1], Section $4a$ , or [4], page 52, we can uniquely decompose

$P(z)z^{K}C$ for every Ce $\mathcal{G}$ as

(2. 3) $P(z)z^{K}C=C(z)\tilde{P}(z)z^{\tilde{\iota}}$

with $\tilde{P}(z),\tilde{K}$ of the same type as $P(z),$ $K$, resp., and an analytic transformation
$C(z)$ , i.e. amatrix analytic at z $=\infty withC(\infty)$ being invertible. If

(2. 4) $P(z)z^{K}C=F(z)=[f_{j}(z)]$ ,

then $\tilde{P}(z)z^{\tilde{\iota}}$ is calculated by a Gaussian algorithm type procedure, namely apply.
ing elementary row operations to $F(z)$ which correspond to multiplication from
the left by analytic transformations.

Two matrices $P(z)z^{K}$ and $\tilde{P}(z)z^{\tilde{K}}$ as described above will be called $\Psi.equiv\sim$

alent, if there is some Ce $\mathcal{G}$ such that (2.3) holds. Since $\mathcal{G}$ is a group, this
indeed is an equivalence relation. The Purpose of this paper is to describe an
algorithmic procedure that selects a unique representative within every $\mathcal{G}.equiv$.
alence class of matrices $P(z)z^{K}$ and gives a matrix Ce $\mathcal{G}$ that transforms a given
$P(z)z^{K}$ into the corresponding representative by means of (2.3). This procedure
will involve finitely many steps of the following type:

Given $P(z)$ and $K$, a matrix Ce $\mathcal{G}$ is constructed that transforms $P(z)z^{K}$ into
$\tilde{P}(z)z^{\tilde{K}}$ , such that whenever $P(z)z^{K}$ varies within a fixed $\mathcal{G}.equivalence$ class, then
$\tilde{P}(z)z^{\tilde{\iota}}$ will be seen to vary within a strictly smaller class of matrices which will
turn out to be a $\tilde{\mathcal{G}}.equivalence$ class corresponding to an admissible subgroup $\tilde{\mathcal{G}}$

of $\mathcal{G}$. In order to ensure that the subgroups $\tilde{\mathcal{G}}$ which occur are actually admis.
sible, we will make use of the following

Proposition 2. Let $\mathcal{G}$ be any admissible group. If Ce $\mathcal{G}$ is blocked according
to the associated block stracture, then we define a subgroup of $\mathscr{G}$, say $\tilde{\Psi,}$ by rest.
ricting the kth diagonal block of $C$ (for some fixed k) to be taken from an admissible
group $\hat{\mathcal{G}}$ of matrices of aPpropriate size. Then every such $\tilde{\mathcal{G}}$ is again admissible.

Proof. With the same notation as in Remark 1.6, there is a unique $\nu_{0}$ with
$k\in\sigma_{\nu_{0}}$ . By splitting the jth diagonal block (for every je $\sigma_{\nu}$ ) into subblocks accord.
ing to the block structure associated with $e$, we define a new block structure
according to which every Ce $\tilde{\mathcal{G}}$ is lower triangularly blocked. The new diagonal
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blocks are restricted by finitely many conditions of type 1 and otherwise free,
whereas the lower triangular blocks which correspond to diagonal blocks in the
original block structure are characterizable by finitely many conditions of type 2.
Since every condition of the form (compare Remark 1.6)

$je^{i,j},je\sigma\sum_{<\ell,\ell\sigma_{\nu\mu}}\alpha {}_{j}C_{j}=0$

(relative to the original block structure) can be replaced by finitely many condi-
tions of the same type relative to the new block structure, this completes the
proof.

Remark 2.1. Other ways of describing subgroups of an admissible group $\Psi$

that will play a role later are by either requiring that certain two diagonal blocks
have to be equal or by defining an additional restriction (1.7). In the second case
one has to ensure that the subset of matrices Ce $\mathcal{G}$ satisfying the additional equa.
tion actually forms a subgroup, but once this is done, then the subgroup clearly is
admissible.

Before we start defining our normalization procedure, we wish to show that
for a lower triangularly blocked matrix $C$ , the problem of decomposing $P(z)z^{K}C$

according to (2.3) is mainly reduced to decomposing every one of the diagonal
blocks. This can be seen from

Lemma 3. Let $C=\left\{\begin{array}{ll}C_{11} & 0\\C_{21} & C_{22}\end{array}\right\}$ be a constant, inverlible $n\times n$ matrix having

square diagonal blocks, and let $P(z)$ and $K$ be as in (2.1), (2.2). If we decompose
$P(z)z^{K}C$ according to (2.3), then $C(z)$ is also lower triangularly blocked (like $C$).

Furthermore, if we block $\tilde{P}(z),\tilde{K},$ $P(z),$ $K$ in the same block structure, then the
diagonal blocks $\tilde{P}_{1J}(z)z^{\overline{K}_{j}}$ of $\tilde{P}(z)z^{\tilde{K}}$ are found by decomposing $P_{jj}(z)z^{K_{j}}C_{jj}$ analog.
ously to (2.3) (for $j=1,2$), and the $aff\cdot diagonal$ block $\tilde{P}_{21}(z)$ is obtained by taking the
polynomial part without constant terms of

$\tilde{P}_{22}(z)z^{\tilde{\iota}_{2}}C_{22}^{-1}z^{-K_{2}}P_{22}^{-1}(z)[P_{21}(z)z^{K_{1}}C_{11}+P_{22}(z)z^{K_{2}}C_{21}]z^{-\tilde{K}_{1}}\tilde{P}_{11}^{-1}(z)$

and $multiPl\dot{\mu}ng$ it from the right by $\tilde{P}_{11}(z)$ .
Proof. The lower triangular block structure of $C(z)$ follows since every

other matrix in (2.3) is blocked in the same way. Hence with obvious notations
we receive by specializing(2.3) to the diagonal blocks

(2. 5) $P_{jj}(z)z^{K_{j}}C_{jj}=C_{jj}(z)\tilde{P}_{jj}(z)z^{\tilde{\iota}_{j}}$ $(j=1,2)$ .
This is a decomposition of $P_{jj}(z)Z^{\vee}JC_{jj}$ analogously to (2.3) and therefore deter.
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mines $\tilde{P}_{jj}(z)z^{\overline{K}_{j}}$ (since every such decomposition is unique). From the offdiagonal
block in (2.3) we find

$P_{21}(z)z^{K_{1}}C_{11}+P_{22}(z)z^{K_{2}}C_{21}=C_{21}(z)\tilde{P}_{11}(z)z^{\tilde{K}_{1}}+C_{22}(z)\tilde{P}_{21}(z)z^{\tilde{K}_{1}}$ ,

or equivalently

(2. 6) $C_{22}^{-1}(z)C_{21}(z)+\tilde{P}_{21}(z)\tilde{P}_{11}^{-1}(z)=C_{22}^{-1}(z)[P_{21}(z)z^{K_{1}}C_{11}+P_{22}(z)z^{K_{2}}C_{21}]z^{-\tilde{K}_{1}}\tilde{P}_{11}^{-1}(z)$ .
Since $\tilde{P}_{11}^{-1}(z)$ is of the same form as $\tilde{P}_{11}(z)$ , we find that this means a decomposi.
tion of the right hand side into a sum of an analytic matrix (at $ z=\infty$ ) plus a
polynomial without constant term. This uniquely determines $\tilde{P}_{21}(z)\tilde{P}_{11}^{-1}(z)$ , and
solving (2.5) (for $j=2$) for $C_{22}^{-1}(z)$ and inserting it into (2.6) completes the proof.

Remark 2.2. Consider now any admissible group $\mathcal{G}$, and block Ce $\mathcal{G}$ with
respect to the associated block structure. Then the last diagonal block, say $C_{mm}$ ,
of $C$ can be any constant invertible matrix. Furthermore, the last diagonal block
of $\tilde{P}(z)z^{\tilde{K}}$ is determined by $C_{mm}$ and the last diagonal block of $P(z)z^{K}$ alone. This
motivates why in the next section we consider the group of all constant invertible
matrices before then returning to the general case.

3. Normalisations in a special case

Throughout this section, let $\mathcal{G}$ be the group of all constant, invertible mat.
rices of size $n$ . Let $P(z),$ $K$ be as in (2.1), (2.2). We first want to show that
within any equivalence class with respect to $\mathcal{G}.equivalence$ there are only a finite
number of different matrices $K$ occuring. Since for any fixed representative
$P(z)z^{K}$ , the matrix $\tilde{P}(z)z^{\tilde{K}}$ in (2.3) takes on every value within the equivalence class
as $C$ varies within $\mathcal{G}$, it suffices to prove the following estimates for the elements
of $\tilde{K}$:

Lemma4. $LetP(z)z^{K}and\tilde{P}(z)z^{\tilde{K}}oftheabovetypeberelatedby(2.3)forsome$

$C\in \mathcal{G}$. Then

(3. 1) $\sum_{\nu}k_{\nu}-(n-1)M\leqq\tilde{k}_{j}\leqq M$ , $1\leqq j\leqq n$ ,

where

(3. 2) $M={\rm Max}\{k_{\nu}+\deg p_{\mu_{\nu}}|1\leqq\nu\leqq\mu\leqq n\}$ $(p_{\mu\mu}(z)\equiv 1,1\leqq\mu\leqq n)$ .
Proof. In the usual way we define the degree (denoted by $\deg f$ ) of a func.

tion $f\not\equiv O$ which is meromorphic at $\infty$ and extend the definition by deg $ f=-\infty$

if $f\equiv 0$ . Then $M$ is the maximal degree of the elements in $F(z)=P(z)z^{\iota}C$ . Since
multiplication with analytic transformations does not change the maximal degree
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(use that the inverse is also an analytic transformation), we find by solving (2.3)

for $\tilde{P}(z)z^{\tilde{K}}$ that $M$ is also the maximal degree of $\tilde{P}(z)z^{\tilde{K}}$ . This proves the uPper

estimate in (3.1). To obtain the lower estimate, note that by taking deter-
minants of both sides in (2.3) we find that $z^{Zk_{\nu}}z^{-2\tilde{k}_{\nu}}$ is a (one.dimensional) analytic
transformation, hence

$\sum k_{\nu}=\sum\tilde{k}_{\nu}\leqq\tilde{k}_{j}+(n-1)M$

for every $j=1,$ $\cdots,$ $n$ .
Let now any $P(z)z^{K}$ be given. At the moment we are interested in two para.

meters associated with $P(z)z^{K}$ ; one is $k$. (compare (2.2)), the other one is defined
as the minimally chosen integer, say $s$ , between $0$ and $n-1$ such that

(3. 3) $k_{+1}=\cdots=k_{n}$ , and $p_{\ell f}(z)\equiv 0$ $(s+1\leqq j<i\leqq n)$

(with an obvious interpretation if $s=n-1$ ). As a first step towards a calculation
of a representative we wish to characterize within every equivalence class those
$P(z)z^{K}$ for which these two parameters are minimized in the sense that for every
$\tilde{P}(z)z^{\tilde{K}}$ which is $\mathcal{G}.equivalent$ to $P(z)z^{K}$ we have $\tilde{k}_{n}\geqq k_{n}$ , and if $\tilde{k}_{n}=k_{n}$ then $\tilde{s}\geqq s$

(with analogous definition of $\tilde{s}$ ). Every such $P(z)z^{K}$ we call minimal with respect
to $(k_{n}, s)$ , and Lemma 4 guarantees the existence of $P(z)z^{K}$ which are minimal in
this sense.

In this context we may assume that $s\geqq 1$ (since for $s=0$ we have $K=kl.$ ,
$P(z)\equiv I_{n}$ , and $\mathcal{G}$-equivalence reduces to equality in this case). For an arbitrarily
given $P(z)z^{K}$ we distinguish two cases:

I). SuPpose there exists a constant s-tupel $(c_{1}, \cdots, c.)\neq(0, \cdots, 0)$ such that

(3. 4) deg $(\sum_{j=1}^{\ell-1}p_{j}(z)z^{k_{j}}c_{f}+z^{l}:c_{\ell})\leqq k_{n}$ , $1\leqq i\leqq s$ ,
and
(3.5) deg $(\sum_{j=1}^{*}P_{\ell f}(z)_{Z^{k_{j}}}c_{f})\leqq k_{n}$ , $s+1\leqq i\leqq n$ .
Selecting $c_{*+1},$ $\ldots,$ $c_{n}$ aPpropriately we then can arrange that

deg $(\sum_{j=1}^{\cdot}p_{\ell j}(z)z^{k}rc_{j}+c_{\ell}z^{k_{\hslash}})\leqq k_{n}-1$ , $s+1\leqq i\leqq n$ .
If in (3.4) the $‘‘<^{n}$ sign applies for $1\leqq i\leqq s$ , then take any $C=[c_{j}]\in y$ with $c_{n}=c$ ,
$1\leqq i\leqq n$ . Using (3.3), we find for $F(z)=P(z)z^{K}C=[f_{u}(z)]$ , that

(3. 6) $f_{in}(z)=\left\{\begin{array}{ll}\sum_{j=1}^{l-1}p_{tj}(z)z^{k_{j}}c_{j}+z^{\iota_{i}}c_{i}, & 1\leqq i\leqq s,\\\sum_{j=1}^{l}p_{\ell j}(z)z^{k_{j}}c_{j}+c_{i}z^{k_{n}}, & s+1\leqq i\leqq n.\end{array}\right.$
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Since $\tilde{k}_{n}$ always equals the maximal degree of $f_{ln}(z)(1\leqq i\leqq n)$ (compare[4], page
52), we find in this case that $k.\leqq k.-1$ , hence $P(z)z^{K}$ is not minimal with respect

to $(k_{n}, s)$ , and we replace the original $P(z)z^{K}$ by $\tilde{P}(z)z^{\overline{\iota}}$ obtained from (2.3) for any
choice of $C$ as described above.

Now assume that equality holds in (3.4) at least for one index $i_{0},1\leqq i_{0}\leqq s$ . In
this case we take any $C=[c_{\ell j}]e\mathcal{G}$ with

$c_{\ell}.=c_{\ell}$ $(1\leqq i\leqq s)$ ,
$c_{\ell}.=0$ $(s+1\leqq i\leqq n)$ ,
$c_{u}=\delta_{\ell j}$ $(1\leqq i\leqq n, s+1\leqq j\leqq n)$ .

By following the decomposition procedure in [41, p. 52, we find for $\tilde{P}(z)z^{\overline{K}}$ in (2.3):

$\tilde{k}_{\iota}=\cdots=\tilde{k}_{n}=k_{n}$ , $p_{:j}(z)\equiv 0$ $(s\leqq j<i\leqq n)$ .
So in this case we replace $P(z)z^{K}$ by $\tilde{P}(z)z^{\tilde{K}}$ which has smaller value $\tilde{s}\leqq s-1$ and
$\tilde{k}_{n}=k_{n}$ .

We have seen so far that whenever we are in Case I, then $P(z)z^{\iota}$ is not
minimal with respect to $(k_{n}, s)$ , and we have shown how to find a $Ce$ E9 such that
the modified $\tilde{P}(z)z^{\tilde{K}}$ is closer to being minimal in the sense that either $k.<k$. or
$\tilde{k}_{n}=k_{n},\tilde{s}<s$ .

II). Now suPpose that the only s.tupel $(c_{1}, \cdots, c.)$ for which (3.4) and (3.5)

hold, is $c_{1}=\cdots=c_{\iota}=0$ . We wish to show that then $P(z)z^{K}$ is minimal with
respect to $(k_{n}, s)$ . Let Ce $\mathcal{G}$ be taken such that for $\tilde{P}(z)z^{\tilde{K}}$ obtained from (2.3) we
find

$\tilde{k}_{n}\leqq k_{n}$ , and if $\tilde{k}_{n}=k_{n}$ then $\tilde{s}\leqq s$ .
If we define $c_{\ell}=c_{\ell n},$ $1\leqq i\leqq n$ , then, as seen before, $\tilde{k}_{n}$ is the maximal degree of

$f_{\ell n}(z)(1\leqq i\leqq n)$ which are given by (3.6), So we see that $k.\leqq k$. holds only if (3.4)

and (3.5) are satisfied which according to our assumption implies $c_{1}=\cdots=c.=0$,
and consequently we have $\tilde{k}_{n}=k_{n}$ . Therefore we see that $k,$, is minimal, and $\tilde{k}_{*}=$

$k_{n}$ iff
$c_{\ell},=0$ , $1\leqq i\leqq s$ .

Let now $j_{0},$ $s+1\leqq j_{0}\leqq n-1$ , be taken such that

$c_{\ell j}=0$ , $1\leqq i\leqq s$ , $j_{0}+1\leqq j\leqq n$

(if $s=n-1$ , then this step may be omitted). We aim at showing that $\overline{s}\leqq s$ implies
$c_{\ell J0}=0,1\leqq i\leqq s$ . To do so, we take an invertible matrix $\hat{C}$ of size $n-s$ such that
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$C=diag[I_{\iota},\hat{C}]\tilde{C}$ ,
with $\tilde{C}=[\tilde{c}_{u}]$ satisfying

$\tilde{c}_{j}=\delta_{\ell j}$ , $1\leqq i\leqq n$ , $j_{0}+1\leqq;\leqq n$ .
If we define $\hat{P}(z)z^{\hat{K}}$ by

$P(z)z^{K}$ diag $[I,\hat{C}]=\hat{C}(z)\hat{P}(z)z^{\hat{K}}$

with an analytic transformation $\hat{C}(z)$ , then we easily see that $\hat{K}=K,$ $P(z)=$

diag [I., $\hat{C}$ ]$\hat{P}(z)$ , i.e. $\hat{C}(z)=diag$ [I., $\hat{C}$ ]. Consequently, since $\hat{P}(z)z^{k}$ satisfies all the
requirements on $P(z)z^{K}$ including that (3.4), (3.5) implies $c_{1}=\cdots=c.=0$ , we may
without loss in generality assume that

$c_{ij}=\delta_{\ell j}$ , $1\leqq i\leqq n$ , $j_{0}+1\leqq j\leqq n$ .
In this case we find

$k_{j_{0+1}}=\cdots=k_{\mathfrak{n}}=k_{\mathfrak{n}}$ , $\tilde{p}_{iJ}(z)=0$ , $j_{0}+1\leqq j<i\leqq n$ .
We further see from the decomposition algorithm that $k_{f_{0}}$ equals the maximal
degree of $f_{1j_{0}}(z),$ $\cdots,f_{j_{0}f_{0}}(z)$ , and that $\tilde{p}_{\ell j}(z)$ is the polynomial part (without con-
stant term) of $f_{\ell J_{0}}(z)z^{-\tilde{k}_{\dot{S}_{0}}}(j_{0}+1\leqq i\leqq n)$ . The $f_{\ell J_{0}}(z)$ are given by

$f_{\ell j_{0}}(z)=\left\{\begin{array}{ll}\sum_{j=1}^{\ell-1}p_{:j}(z)_{Z^{k_{j}}}c_{JJ_{0}}+z^{k_{i}}c_{J_{0}}, & 1\leqq i\leqq s,\\\sum_{j=1}^{l}p_{\ell j}(z)z^{k_{j}}c_{jj_{0}}+z^{k_{\hslash}}c_{\ell J_{0}}, & s+1\leqq;\leqq n.\end{array}\right.$

Therefore $\tilde{k}_{j_{0}}=k_{n}$ and $\tilde{p}_{u_{0}}(z)=0(j_{0}+1\leqq;\leqq n)$ imply (3.4) and (3.5) with $ c_{j}=c_{jj_{l}}(1\leqq$

$j\leqq s)$ , which then implies $c_{jj_{l}}=0(1\leqq j\leqq s)$ .
The foregoing discussion shows that $k.=k$. and $\tilde{s}\leqq s$ hold iff $c_{\ell j}=0(1\leqq i\leqq s$ ,

$s+1\leqq j\leqq n)$ , and we finally show that then even $\tilde{s}=s$ holds. By the same argu.
ment as above, we may assume $c_{j}=\delta_{\ell j}(1\leqq i\leqq n, s+1\leqq j\leqq n)$ , and in this case
(with $j_{0}=s$) we conclude that $\tilde{s}<s$ is equivalent with (3.4) and (3.5) to hold for
$c_{j}=c_{j}$. $(1\leqq j\leqq s)$ , hence equivalent with $c_{j}=0(1\leqq j\leqq s)$ . But this contradicts to the
invertibility of $C$, which proves $\tilde{s}=s$ .

We formalize the results of the foregoing discussion as
Proposition 3. Let $\mathcal{G}$ be the group of all constant invertible matrices of size

$n(n\geqq 2)$ , and let $P(z)z^{K}$ as in (2.1), (2.2) be given having Parameter $s\geqq 1$ . Then
$P(z)z^{K}$ is minimal with $resPect$ to $(k_{n}, s)$ iff the only $s\cdot tuple(c_{1}, \cdots, c_{\iota})$ for which

deg $(\sum_{=j1}^{\ell-1}p_{\ell f}(z)z^{k_{j}}c_{j}+z^{k_{i}}c_{\ell})\leqq k_{n}$ , $1\leqq;\leqq s$ ,
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and

deg $(\sum_{j=1}^{l}p_{\ell j}(z)z^{k_{j}}c_{j})\leqq k_{n}$ , $s+1\leqq i\leqq n$ ,

is $c_{1}=\cdots=c.=0$ .
In case of minimality, the matrices $C\in \mathcal{G}$ which transform $P(z)z^{K}$ into $\tilde{P}(z)z^{\tilde{K}}$

with $k_{n}=k_{n},\tilde{s}=s$ are precisely of the form

(3. 7) $C=\left\{\begin{array}{ll}C_{11} & 0\\C_{21} & C_{22}\end{array}\right\}$ ,

where $C_{11},$ $C_{22}$ are arbitrary invertible matrices of size $s$ and $n-s$ , resp., and $C_{21}$ is
an arbitrary matrix of appr0Priate siz$e$ .

In case $P(z)z^{K}$ is not minimal with respect to $(k_{n}, s)$ then one can by a clear
procedure described above construct a $\mathcal{G}\cdot equivalent$ matrix $\tilde{P}(z)z^{\tilde{K}}$ which is minimal.

4. Normalizations in the general case

a) Normalizations of the diagonal blocks:
Let now $\mathcal{G}$ be any admissible group of $n\times n$ matrices, and consider any $P(z)z^{K}$

as in (2.1), (2.2). According to the block structure associated with $\mathcal{G}$ we block
$P(z),$ $K$ as

(4. 1) $P(z)=[_{P_{m1}(z)}^{P_{11}(z)}:$

$0$

$P_{mm}(z)0:0]$ , $P_{jj}(z)$ of size $s_{j}$ , $1\leqq j\leqq m$ ,

(4. 2) $K=diag[K_{1}, \cdots, K_{m}]$ .
Let $C=[C_{j}]e\mathcal{G}$ be arbitrarily given and factor $P(z)z^{K}C$ according to (2.3).

Since $C$ is lower triangularly blocked, we see by means of Lemma 3 that the

diagonal blocks $\tilde{P}_{jj}(z)z^{\tilde{K}_{j}}$ are obtained by decomposing $P_{jj}(z)z^{K_{j}}C_{jj}$ analogously to
(2.3). For every fixed $j,$ $1\leqq;\leqq m$ , the block $C_{fj}$ can be any constant invertible

matrix of appropriate size. Hence if we aPply Proposition 3 to the jth diagonal

block, we can replace $P(z)z^{K}$ by a $\mathcal{G}.equivalent$ matrix (which we again denote
by $P(z)z^{K})$ for which $P_{jj}(z)z^{K_{j}}$ is minimal (with respect to two parameters anal.

ogously defined as in Section 3). If $P_{jj}(z)z^{K_{j}}=z^{k_{j}}I_{*}j$ then every $P(z)z^{K}$ has the

minimality property. Hewever, if this is not the case, then those $P(z)z^{K}$ for

which the jth diagonal block is minimal form a strictly smaller subset of the $\mathcal{G}$.
equivalence class which we are working with, and from Propositions 2 and 3 we
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conclude that this subset is a $\tilde{\mathcal{G}}.equivalence$ class with respect to an admissible
subgroup $\tilde{\mathcal{G}}$ of $\mathcal{G}$ .

A matrix $P(z)z^{K}$ is said to have completely normalized diagonal blocks, if

(4. 3) $P_{ff}(z)z^{K_{j}}=z^{k_{j}}I_{j}$ , $j=1,$ $\cdots,$ $m$ ,

with integers $k_{j},$ $1\leqq j\leqq m$ . If $P(z)z^{K}$ has completely normalized diagonal blocks,
then every $\mathcal{G}.equivalent$ matrix $\tilde{P}(z)$ has completely normalized diagonal blocks,
and $\tilde{K}=K$ . If some of the diagonal blocks of $P(z)z^{K}$ are not yet normalized, then
by applying the foregoing discussion to anyone of the $non\cdot normalized$ diagonal
blocks we construct a proper subset of the equivalence class of $P(z)z^{K}$ which is a
$\tilde{\mathcal{G}}equivalence$ class for an admissible subgroup $\tilde{\mathcal{G}}$ of $\mathcal{G}$, and either every member
of this subset has completely normalized diagonal blocks according to the finer
block structure corresponding to $\tilde{\mathcal{G}}$ or we again choose a non-normalized diagonal
block and construct another subset, and so forth. This normalization Procedure
for the diagonal blocks must within finitely many steps lead to a matrix having
completely normalized diagonal blocks, since at every single normalization step
the block structure associated with the subgroup $\tilde{\mathcal{G}}$ is strictly finer than the one
associated with $\mathcal{G}$, and if the block sizes $s_{f}=1,1\leqq j\leqq m=n$ , then (4.3) is trivially
satisfied.

At every normalization step, we have chosen any diagonal block, which was
not yet normalized, to work with. Since some diagonal blocks of $C\in \mathcal{G}$ may be
restricted to be equal by means of conditions of type1, the resulting finite
sequence of equivalence classes and subgroups will in general depend upon the
choice of the diagonal block. So in order to have a unique procedure, we think
of an a.priori defined rule which decides which diagonal block we take in every
normalization step. This rule must not depend upon the particular $P(z)z^{K}$ but
only upon the $\mathcal{G}.equivalence$ class which we are working with. As a natural
example of such a selection rule, one may decide to take the diagonal block with
maximal (minimal) index which is not normalized.

Theorem 1. Let $\mathcal{G}$ be an admissible group, $P(z)z^{K}$ be any matrix as described
in (2.1), (2.2), and blocked as in (4.1), (4.2). Then

$\tilde{K}=K$

for every $\tilde{P}(z)z^{\overline{K}}$ which is $\mathcal{G}.equivalent$ to $P(z)z^{K}$ iff $P(z)z^{K}$ has completely normal.
ized diagonal blocks. If $P(z)z^{K}$ does not have completely normalized diagonal
blocks, then we may construct a $\mathcal{G}.equivalent$ matrix $\tilde{P}(z)z^{\tilde{K}}$ and an admissible sub-
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group $\tilde{\mathcal{G}}$ such that according to the block structure associated with $\tilde{\mathcal{G}}$ the diagonal

blocks of $\tilde{P}(z)z^{\tilde{K}}$ are completely normalized. The construction yields unique $\tilde{P}(z)z^{\tilde{K}}$

and $\tilde{\mathcal{G}}$, if we proceed according to an arbitnry but fixed selection $mle$ .

Proof. Most of the proof was given in the discussion preceding Theorem 1.

It only remains to prove that $\tilde{K}=K$ (for every $\mathcal{G}$-equivalent $\tilde{P}(z)z^{\tilde{K}}$) implies that
$P(z)z^{K}$ has completely normalized diagonal blocks. So we take any diagonal block

of $P(z)z^{K}$ which for the sake of simplicity we may denote by $P(z)z^{K}$ . If $C$ de.

notes the corresponding diagonal block of an arbitrary matrix of fif7, then $C$ can
be any constant invertible matrix. Suppose that $P(z)z^{K}\neq z^{k}I$, and that $P(z)z^{K}$ is

minimal with respect to $(k_{n}, s)$ (which implies $s\geqq 1$ ). Then we conclude from
Proposition 3 that for $(c_{1}, \cdots, c.)=(1,0, \cdots, 0)$ either

deg $(z^{k_{1}})>k_{n}$ ,

or
deg $(p_{\ell 1}(z)z^{k_{1}})>k_{n}$ for at least one $i$ , $2\leqq i\leqq n$ ,

and if $C$ is any constant, invertible matrix with $c_{1\mathfrak{n}}=1,$ $c_{\ell n}=0(2\leqq i\leqq n)$ , then
$\tilde{k}_{n}>k_{*}$ , hence $\tilde{K}\neq K$ .

Remark 4.1. Using Lemma 4, one finds another way to define a unique $K$

among all the finitely many different $K^{\prime}s$ occurring within a fixed equivalence

class: Suppose that $k_{n}$ is fixed to be the minimal possible value, then take $k_{-1}$

to be minimal with respect to the different possible values with fixed (minimal)

$k_{n}$ , and so forth. This might be considered a natural normalization, however the

group of matrices relating any two $P(z)z^{K}$ and $\tilde{P}(z)z^{\tilde{K}}$ with “minimal” $K=\tilde{K}$ can.
not so easily be determined and might turn out to be not admissible. In fact,

one can make examples even when $n=3$ , where this method of fixing $K$ and the

one explained in Theorem 1 are leading to different results.

b) Normalization of the off-diagonal blocks.

Suppose that (for any given admissible group $\mathcal{G}$ ) $P(z)z^{K}$ has completely

normalized diagonal blocks, i.e. $P_{jj}(z)\equiv I_{j},$ $K_{j}=h_{j}I_{j},$ $1\leqq j\leqq m$ . Then for every
$\tilde{P}(z)z^{\tilde{K}}$ which is $\mathcal{G}$-equivalent to $P(z)z^{K}$ we find $\tilde{K}=K,\tilde{P}_{jj}(z)\equiv I_{l}j$ $1\leqq j\leqq m$ . The

off.diagonal blocks of $\tilde{P}(z)$ and $P(z)$ can, however, still be different, and we will

discuss now what we can do to normali $ze$ these blocks. For any $(i, j),$ $1\leqq;<i\leqq m$ ,

the block $P_{j}(z)$ is said to be completely normalized, if for every $\tilde{P}(z)z^{K}$ which is
$\Psi$ equivalent to $P(z)z^{K}$

(4. 4) $\tilde{P}_{if}(z)=P_{\ell j}(z)$ .
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Theorem 2. Let $\mathcal{G}$ be an admissible group with an associated block structure
having $m\geqq 2$ diagonal blocks, and let $P(z)z^{K}$ be blocked according to the same block
structure and have all completely normalized blocks (including the diagonal blocks)

except for $P_{m1}(z)$ . Then for any Ce $\mathcal{G}$ we find when factoring $P(z)z^{K}C$ according to
(2.3)

(4. 5) $C_{mm}\tilde{P}_{m1}(z)+C_{m1}(z)=P_{m1}(z)C_{11}+R_{m1}(z)$ ,

where $R_{m1}(z)$ is meromorphic at $\infty$ , and we can choose Ce $\mathcal{G}$ such that $\tilde{P}_{m1}(z)$

satisfies one of the following conditions:
a) In case $\nu=\max$ {$\deg R_{m1}(z)|$ Ce $\mathcal{G}$} $\geqq 1$ , we require $\tilde{P}_{m1}(z)$ not to contain a

term $z^{\nu}$ .
b) In case deg $R_{m1}(z)\leqq 0$ and $C_{mm}=C_{11}$ for every Ce $\mathcal{G}$, we require the highest

coefficient of $\tilde{P}_{m1}(z)$ which is not a scalar multiPle of the identity matrix to be in

modified canonical form.
c) In case $R_{m1}(z)\leqq 0$ for every $C\in \mathcal{G}$, and $C_{mm}$ can differ from $C_{11}$ for certain

Ce $\mathcal{G}$, we require the highest non-zero coefficient of $\tilde{P}_{m1}(z)$ either to be the identity

matrix (if $P_{m1}(z)$ is square and has invertible highest coefficient) or otherwise to
have the form

$\left\{\begin{array}{ll}0 & 0\\B & 0\end{array}\right\}$

where $B$ may be any square constant invertible matrix having the same size as the
rank of the highest coefficient of $P_{m1}(z)$ .

In everyone of these cases, the class of matrices $\tilde{P}(z)z^{K}$ which are $\mathcal{G}$ equivalent

to $P(z)z^{K}$ and satisfy the normalizing condition form a $\tilde{\mathcal{G}}.equivalence$ class with re-
spect to an admissible subgroup $\tilde{\mathcal{G}}$ of $\mathcal{G}$.

Proof. As a direct consequence of the definition of admissible groups we see
that if $C=[C_{lj}]\in \mathcal{G}$, then diag $[C_{11}, \cdots, C_{mm}]\in \mathcal{G}$. But for $\tilde{C}=diag[C_{11}, \cdots, C_{nm}]$

$\in \mathcal{G}$ we obtain (using that $P(z)z^{K}$ has completely normalized diagonal blocks) that
(2.3) holds iff $C(z)\equiv\tilde{C}$, hence $\tilde{C}\tilde{P}(z)=P(z)\tilde{C}$ . Therefore (4.4) holds for every fixed
$(i, j)\neq(m, 1),$ $1\leqq j<i\leqq m$ , iff either $P_{ij}(z)\equiv 0$ or $C_{i:}=C_{jj}$ for every Ce $\mathcal{G}$ and $P_{j}=$

$p_{\ell j}(z)I$. with $s=s_{\ell}=s_{j}$ and a scalar polynomial $p_{ij}(z)$ without constant term; hence
in every case $P_{lj}C_{jj}=C_{ii}P_{\ell f}$ for $(i, f)\neq(m, 1)$ .

Comparing the $(m, 1)\cdot block$ position of equation (2.3), we find

$\sum_{\ell=1}^{*}P_{m\ell}(z)z^{k_{i}I}\cdot {}_{i}C_{\ell 1}=\sum_{\ell=1}^{n}C_{m}(z)\tilde{P}_{1}(z)z^{r_{1^{I}\cdot 1}}$ ,

or equivalently (note that $C_{mm}(z)\equiv C_{mm}$ , and use (4.4) for $i=2,$ $\cdots,$ $m-1,$ $j=1$ )



70 W. BALSER

(4. 6) $C_{mm}\tilde{P}_{m1}(z)+C_{m1}(z)=\sum_{i=1}^{m}P_{m\ell}(z)C_{t1}z^{k}i^{-k}1-\sum_{\ell=2}^{n-1}C_{mi}(z)P_{i1}(z)$ .

Hence (4.5) holds with

(4. 7) $R_{n\cdot 1}(z)=\sum_{\ell=2}^{m}P_{m}(z)C_{\ell 1}z^{k}i^{-k}1-\sum_{\ell=2}^{n-1}C_{m\ell}(z)P_{\ell 1}(z)$ .

Using again (4.4) for $ti,$ $j$ ) $\neq(m, 1)$ and denoting the blocks of $P^{-1}(z)$ by $P_{\ell j}^{(-1)}(z)$ ,
one obtains from (2.3)

$C_{mi}(z)=\sum_{\dot{g}=\ell}^{l*}P_{m}j(z)\sum_{\nu=\ell}^{\dot{f}}C_{J\nu}P_{\nu t}^{(-1)}(z)z^{k_{j}-k_{\nu}}$ , $2\leqq i\leqq m-1$ .

Considering the terms $\nu=j$ separately, and using $P_{m}{}_{j}C_{jf}=C_{m},{}_{\iota}P_{nj}$ (compare

above), we find

$C_{m}(z)=C_{mm}\sum_{j=\ell}^{n}P_{mJ}(z)P_{j\ell}^{(-1)}(z)+\sum_{j=\ell+1}^{n}P_{m!}(z)\sum_{\nu=\ell}^{j-1}C_{j\nu}P_{\nu\ell}^{(-1)}(z)z^{k_{j}-k_{\nu}}$

$=\sum_{j=\ell+1}^{n}P_{mJ}(z)\sum_{\nu=\ell}^{j-1}C_{j\nu}P_{\nu\ell}^{(-1)}(z)z^{k_{j}-k_{\nu}}$ , $2\leqq i\leqq m-1$ .

Hence it follows that

$\sum_{i=2}^{n\iota-1}C_{m\ell}(z)P_{l1}(z)=\sum_{\nu=2}^{n-1}\sum_{\dot{g}=\nu+1}^{*}P_{mJ}(z)C_{f\nu}z^{k-k}j\nu\sum_{\ell=2}^{\nu}P_{\nu\ell}^{(-1)}(z)P_{\ell 1}(z)$

$=-\sum_{\nu=2}^{m-1}\sum_{j=\nu+1}^{*}P_{mf}(z)C_{J\nu}P_{\nu 1}^{(-1)}(z)z^{k_{j}-k_{y}}$ .

Inserting this into (4.7), we find that

$R_{m1}(z)=\sum_{\nu=1}^{*-1}\sum_{j=\nu+1}^{l*}P_{m}j(z)C_{J\nu}P_{\nu 1}^{(-1)}(z)z^{k_{j}-t_{\nu}}$ .

Since $\tilde{C}\tilde{P}(z)=P(z)\tilde{C}$ for every $\tilde{C}=diag[C_{11}, \cdots, C_{mm}]\in \mathcal{G}$ implies $P^{-1}(z)\tilde{C}=\tilde{C}\tilde{P}^{-1}(z)$

for every such $\tilde{C}$, we conclude (compare the beginning of the proof) that the non.
zero blocks of $P^{-1}(z)$ (except for $P_{m1}^{(-1)}$) are scalar polynomials times identity

matrices. Therefore we obtain

(4. 8) $R_{m1}(z)=\sum_{\mu}z^{\mu}$ $\sum_{\ell.\dot{g}}$

$a_{\ell f}^{(\mu)}C_{\ell j}$ ,
$1\leq j<\ell\leqq m$

where the first sum is finite, and $\alpha_{\ell j}^{(\mu)}$ are complex numbers, which do not depend
upon the particular $P(z)$ but only upon the $\mathcal{G}.equivalence$ class we are working in
(due to our assumptions).

Now suPpose that the maximal degree of $R_{m1}(z)$ with respect to all $c\in \mathcal{G}$ is
$\nu\geqq 1$ . Then from (4.8) we learn that the highest coefficient of $R_{m1}(z)$ can take on
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every value, due to the structure of $\mathcal{G}$. Hence we may find $C\in \mathcal{G}$ such that
$\tilde{P}_{m1}(z)$ does not contain a term $z^{\nu}$ . If the same holds for $P_{m1}(z)$ as well, then the
subset $\tilde{\mathcal{G}}$ of all $C\in \mathcal{G}$ such that $\tilde{P}(z)$ satisfies normalization condition a) is pre.
cisely determined by

(4. 9)
$1\leq g<i\leq*\sum_{:\cdot\dot{f}}\alpha_{ij}^{(\nu)}C_{\ell j}=0$

.

So if we can certify that $\tilde{\mathcal{G}}$ is a group, then it certainly is admissible. But since
the coefficients $\alpha_{\ell j}^{(\nu)}$ do not depend upon the particular $P(z)$ (compare above), we
see that $\tilde{\mathcal{G}}$ is independent of the particular $P(z)$ as long as it is normalized.
Hence if $C_{1},$ $C_{2}\in\tilde{\mathcal{G}}$, then

$P(z)z^{K}C_{1}=C_{1}(z)\tilde{P}(z)z^{K}$ ,
$\tilde{P}(z)z^{K}C_{2}=C_{2}(z)\hat{P}(z)z^{K}$ ,

where $P(z),\tilde{P}(z)$ and $\hat{P}(z)$ are normalized, and $C_{1}(z),$ $C_{2}(z)$ are analytic trans-
formations, hence

$P(z)z^{K}C_{1}C_{2}=C_{1}(z)C_{2}(z)\hat{P}(z)z^{K}$ ,
$\tilde{P}(z)z^{K}C_{1}^{-1}=C_{1}^{-1}(z)P(z)z^{K}$ ,

which proves that both $C_{1}^{-1}$ and $C_{1}C_{2}$ are in $\tilde{\mathcal{G}}$, so $\tilde{\mathcal{G}}$ is a group. This proves the
Theorem in case a).

Suppose now deg $R_{m1}(z)\leqq 0$ for every $C\in \mathcal{G}$ . Then it follows from (4.5) that

$\tilde{P}_{m1}(z)=C_{mm}^{-1}P_{m1}(z)C_{11}$ .
If $C_{mm}=C_{11}$ for every $Ce\mathcal{G}$, then $P_{m1}(z)$ is square and either $P_{n1}(z)=p_{m1}(z)I_{1}$ with
a scalar polynomial $p_{m1}(z)$ (in which case even $P.1(z)$ would be completely normal.
ized), or we can normalize $\tilde{P}(z)$ by putting the highest non $\cdot$scalar coefficient of
$P_{m1}(z)$ into modified canonical form $J$. If we now assume that $P(z)$ had already

been normalized, then $\tilde{P}(z)$ is normalized iff $C$ satisfies

(4. 10) $C_{11}J=JC_{11}$ .
Using Lemma 2 and Proposition2, the group $\tilde{\mathcal{G}}$ of all Ce $\mathcal{G}$ which satisfy (4.10)

is seen to be admissible, which completes the proof in case b).

Finally, if deg $R_{m1}(z)\leqq 0$ for every $C\in \mathcal{G}$, and $C_{mm}$ and $C_{11}$ can vary independ.

ently, then we can arrange to normali $ze\tilde{P}(z)$ by requiring that the highest non $\cdot$

zero coefficient of $P(z)$ either becomes the identity matrix (if it is square and
invertible) or is brought into the form $\left\{\begin{array}{ll}0 & 0\\B & 0\end{array}\right\},$ $B$ square, invertible, but otherwise

arbitrary. (Note that we do not have to consider $P_{m1}(z)\equiv 0$ , since then $P,.1(z)$
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would be completely normalized). Again, if $P(z)$ is assumed to be normalized,
too, then the group $\tilde{\mathcal{G}}$ of all $C\in \mathcal{G}$ such that $\tilde{P}(z)$ is normalized is described by
either $C_{11}=C_{mm}$ or by

$C_{11}=\left\{\begin{array}{ll}C_{11}^{(1)} & 0\\C_{21}^{(1)} & C_{22}^{(1)}\end{array}\right\}$ , $C_{mm}=\left\{\begin{array}{ll}C_{11}^{(m)} & 0\\C_{21}^{(m)} & C_{22}^{(m)}\end{array}\right\}$ ,

with square diagonal blocks and $C_{11}^{(1)},$ $C_{22}^{(m)}$ being of same size as $B$ . In both cases
$\tilde{\mathcal{G}}$ can be seen to be admissible, which completes the proof in case c).

In order to complete the definition of a procedure selecting a representative
within every $\mathcal{G}.equivalence$ class, we return to the point where an admissible
group $\mathcal{G}$ together with any $P(z)z^{K}$ having completely normalized diagonal blocks
are given. Select any pair of indices $(i,j),$ $1\leqq j<i\leqq m$ , such that for every $C\in \mathcal{G}$

that takes $P(z)z^{K}$ into $\tilde{P}(z)z^{K}$ we find

$\tilde{P}_{\nu\mu}(z)=P_{\nu\mu}(z)$ , $;\leqq\mu<\nu\leqq i$ , $(\nu, \mu)\neq(i,j)$ .
From (2.3) we then conclude

$\left\{\begin{array}{llll}P_{jj}(z) & 0 & \cdots & 0\\. & & & \vdots\\ & & & 0\\P_{cJ}(z) . & & & P_{i\ell}(z)\end{array}\right\}$ diag $[z^{K_{j}}, \cdots, z^{K_{i}}]\left\{\begin{array}{lll}C_{fj} & 0\cdot & 0\\. & & \vdots\\ & & . 0\\ & & C_{\ell j}\cdot C_{\ell\ell}\end{array}\right\}$

$=\left\{\begin{array}{llll}C_{fj}(z) & 0 & \cdots & 0\\. & & & \vdots\\ & & & 0\\C_{j}(z) . & & & C_{\ell}(z)\end{array}\right\}\left\{\begin{array}{llll}P_{jj}(z) & 0 & \cdots & 0\\. & & & \vdots\\ & & & 0\\\tilde{P}_{j}(z) . & & & \tilde{P}_{\ell\ell}(z)\end{array}\right\}\sim$ diag $[z^{K_{j}}, \cdots, z^{K}\ell]$ .

In order to apply Theorem 2 (with $i,$ $j$ instead of $m,$ $1$ ), we have to ensure that
the group of matrices

$C^{(.j)}=\left\{\begin{array}{lll}C_{fj} & 0\cdot & .0\\. & & \vdots\\ & & . 0\\ & & C_{\ell j}\cdot C_{\ell\ell}\end{array}\right\}$

is admissible. It is however clear that conditions requiring equality for certain
diagonal blocks of $C$ are either meaningless for $C^{(.j)}$ or just restrict two of its
diagonal blocks to be equal. So we consider the system of homogeneous equa-
tions restricting the lower triangular blocks. As we have seen in Remark 1.6,
this system splits into a direct sum of smaller systems where the blocks involved
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are of fixed size, hence every block may be treated as one unknown. By con.
sidering a fixed one of those smaller systems and numbering the unknowns in a
way that those corresponding to blocks, in $C^{(\ell.j)}$ come last, we can by means of
Gaussian algorithm find an equivalent system with upper triangular coefficient
matrix. In this form, the equations coming last (if any) are those equations
describing the structure of $C^{(.j)}$ whereas the others are meaningless for $C^{(.j)}$ .
This shows the admissibility of the group of $C^{(.j)}$ , hence all assumptions of
Theorem 2 are satisfied (with obvious changes in notations) and we define a
normalizing step to mean a step described in cases a), b), c) of Theorem 2, applied
to the pair $(i, j)$ instead of $(m, 1)$ . By iterating this procedure, we finally come
within finitely many steps to a point where $\mathcal{G}$-equivalence coincides with equality,

since at every level the block structure associated to the admissible group becomes
strictly finer $and/or$ some of the parameters of the matrices $P(z)$ within the
equivalence class are fixed.

Remark 4.2. Whenever we choose a pair $(i, j)$ as described above, there may
be several possible choices which lead to different normalizations. Hence analo.
gously to the normalization of the diagonal blocks we have to define a selection
rule in order to make the choice unique. Again, a natural example for such a
rule may be to take $j$ maximal and then with fixed $j$ take $i$ maximal such that
the block $P_{\ell j}(z)$ is not yet completely normalized when $P(z)$ varies within a $\mathcal{G}$.
equivalence class.

5. Applications

a) An example
Consider the case $n=3$ , i.e. let

$P(z)=\left\{\begin{array}{lll}1 & 0 & 0\\p_{21}(z) & 1 & 0\\p_{31}(z) & p_{82}(z) & 1\end{array}\right\}$ , $K=diag[k_{1}, k_{2}, k_{3}]$

be arbitrarily given, and let $\mathcal{G}$ be the group of all invertible 3x3 matrices.
Furthermore, suppose that $P(z)z^{K}$ is not a scalar multiple of $I$ , since this would
imply that $\mathcal{G}$-equivalence coincides with equality.

APplying the results of Sections 3 and $4a$ , one can determine a $\mathcal{G}.equivalent$

matrix $\tilde{P}(z)z^{\tilde{K}}$ which has minimized parameters $k_{3}$ and $\tilde{s}$ , and if $\tilde{s}=2$ , one can also
minimize $k_{2}$ (when $k_{3}$ and $\tilde{s}$ are kept minimal). Then if we assume that $P(z)z^{K}$

did already have those minimality properties, one easily determines the subgroup
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$C_{11}C_{2}{}_{2}C_{33}\neq 0\}$ .

of $\mathcal{G}$ (which for the sake of simplicity may again be denoted by $\mathcal{G}$ ) such that the
matrices $\tilde{P}(z)z^{\overline{K}}$ which have these minimality properties are precisely the ones
which are $\mathcal{G}.equivalent$ to $P(z)z^{K}$ . Doing this, one finds the following three dif.
ferent cases:

1. Suppose

(5. 1) $\dagger_{\deg(p_{31}(z)z^{k_{1}}c_{1}}^{\deg(p_{21}(z)z^{k_{1}}c_{1}}\deg(z^{k_{1}}c_{1})\leqq k_{a_{I_{p_{32}(z)z^{k_{2}}c_{2})\leqq k_{3}}^{z^{k_{2}}c_{2})\leqq k_{f}}}}\}$ implies $c_{1}=c_{2}=0$ ,

and

(5. 2) $\left\{\begin{array}{l}deg(z^{k_{1}}c_{1})\leqq k_{2}\\deg(p_{21}(z)z^{k_{1}}c_{1})\leqq k_{f}\end{array}\right\}$ implies $c_{1}=0$ .

Then

$\mathcal{G}=\{\left\{\begin{array}{lll}c_{11} & 0 & 0\\c_{21} & c_{22} & 0\\c_{31} & c_{S2} & c_{88}\end{array}\right\}$ ,

2. Suppose $p_{21}(z)\equiv 0,$ $k_{1}=k_{2}$ , and (5.1) holds.
Then

$\mathcal{G}=\{[c_{21}c_{11}c_{31}$
$c_{82}c_{22}c_{12}$

$c_{3}00]$ ,

3. Suppose $p_{l2}(z)\equiv 0,$ $k_{2}=k_{3}$ , and

$c_{33}$ det $\left\{\begin{array}{ll}c_{11} & c_{12}\\c_{21} & c_{22}\end{array}\right\}\neq 0\}$ .

(5. 3) $\left\{\begin{array}{l}deg(z^{k_{1}}c_{1})\leqq k_{8}\\deg(p_{21}(z)z^{k_{1}}c_{1})\leqq k_{3}\\deg(p_{\$ 1}(z)z^{k_{1}}c_{1})\leqq k_{\epsilon}\end{array}\right\}$ implies $c_{1}=0$ .

Then

$\mathcal{G}=\{\left\{\begin{array}{lll}c_{11} & 0 & 0\\c_{21} & c_{22} & c_{23}\\c_{\theta 1} & c_{\delta 2} & c_{l\delta}\end{array}\right\}$ , $c_{11}$ det $\left\{\begin{array}{ll}c_{22} & c_{23}\\c_{32} & c_{83}\end{array}\right\}\neq 0\}$ .

It is now easy to apply the results of Section $4b$ to see what further normali.
zations can be made. We indicate this procedure in Case 1: Since every $C\in \mathcal{G}$

is now lower triangular, we find that (2.3) implies $\tilde{K}=K,$ $C(z)$ lower triangular,

and $c_{i\ell}(z)=c_{\ell\ell}(i=1,2,3)$ . Using this, we find three equations determining $\tilde{P}(z)z^{K}$

for every Ce $\mathcal{G}$.
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(5. 4) $c_{sa}\tilde{p}_{32}(z)+c_{32}(z)=p_{32}(z)c_{22}+z^{t_{3}-k_{2C_{S2}}}$ ,

(5. 5) $c_{22}\tilde{p}_{21}(z)+c_{21}(z)=p_{21}(z)c_{11}+z^{k_{2}-k_{1}}c_{21}$ ,

(5. 6) $c_{3\theta}\tilde{l}_{\theta 1}tz$ ) $+c_{31}(z)=p_{31}(z)c_{11}+p_{\delta 2}(z)_{Z^{k_{2}-k_{1}}C_{21}+z^{k_{3}-k_{1}}}c_{31}-c_{32}(z)\tilde{p}_{21}(z)$ .
(Compare this to (4.5)). Whenever $k_{8}-k_{2}\geqq 1$ , we may arrange that $\tilde{p}_{S2}(z)$ does not
contain a term $z^{k_{8}-k_{2}}$ , and the set of all matrices $P(z)z^{K}$ (within our equivalence
class) for which $p_{32}(z)$ does not contain a term $z^{k_{3}-k_{2}}$ is precisely an equivalence
class with respect to the subgroup of matrices $C$ with $c_{32}=0$ . If $k_{3}-k_{2}\leqq 0$ , then
(5.4) implies

$(5, 4^{\prime})$

$c_{\theta 2}(z)=z^{k_{3}-k_{2}}c_{32}$ ,
$c_{l3}\tilde{p}_{82}(z)=p_{32}(z)c_{22}$ ,

and the same equations hold in the case $k_{3}-k_{2}\geqq 1$ if we restrict to those $C$ with
$c_{32}=0$ . So we see next, that either $p_{32}(z)\equiv 0$ (in which case $\tilde{p}_{32}(z)\equiv 0$) or we may
normali $ze\tilde{p}_{82}(z)$ to have highest coefficient one. Then the subset of $P(z)z^{K}$ where
$p_{S2}(z)$ has highest coefficient one is an equivalence class corresponding to the sub.
group of $C$ with $c_{22}=c,$, (which again is admissible).

Quite the same arguments show how to normalize $p_{21}(z)$ , and once all the
possible normalizations of $p_{a2}(z)$ and $p_{21}(z)$ are carried out, we are left with equa-
tion (5.6). But since now $\tilde{p}_{21}(z)=p_{21}(z)$ and $c_{32}(z)=z^{k}\epsilon^{-k}sC_{32}$ , it is quite easy to see
how we can normalize $p_{31}(z)$ .

b) Canonical forms of constant matrices with respect to a restricted type of
simila rity:

Suppose that a group $\mathcal{G}$ of constant, invertible $nxn$ matrices is given. We
call two arbitrary constant $n\times n$ matrices $A,$ $B\mathcal{G}$-similar, if for some $C\in \mathcal{G}$

(5. 7) $AC=CB$ ,

and one might ask for a canonical form of a matrix $A$ under $\mathcal{G}.similarity$ . In
case $\mathcal{G}$ is admissible, we can handle this problem: Given any $n\times n$ matrix $A$ ,
form a $2n\times 2n$ matrix $P(z)$ by

(5. 8) $P(z)=\left\{\begin{array}{ll}I_{n} & 0\\zA & I_{n}\end{array}\right\}$ ,

and for Ce $\mathcal{G}$, let

(5. 9) $\tilde{C}=diag[C,$ $ C1\cdot$

Then one finds that the set $\tilde{\mathcal{G}}$ of $\tilde{C}$ with Ce $\mathcal{G}$ is an admissible group, and if
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(with $K=0$) we decompose $P(z)\tilde{C}$ into $C(z)\tilde{P}(z)z^{\tilde{K}}$ according to (2.3), we find

$\tilde{K}=0$ , $C(z)=\tilde{C}$ ,

$\tilde{P}(z)=\left\{\begin{array}{ll}I_{n} & 0\\zB & I_{n}\end{array}\right\}$ , $B=C^{-1}AC$ .

Hence we see that the problem of finding a representative for $P(z)$ with
respect to $\tilde{\mathcal{G}}.equivalence$ is completely the same as finding a canonical form for $A$

with respect to $\mathcal{G}.similarity$ . The procedure defined in this paper therefore can
be used to calculate such a canonical form for every given $A$ and every admis.
sible group $\mathcal{G}$, and in case $\mathcal{G}$ consists of arbitrary invertible matrices, then this
canonical form coincides with the modified canonical form defined in Section 1.
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