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1. Introduction and notations

Let Hp, O<R<°°v, denote the class of functions f(2)= éoa,.z" analytic in D=
{z: |2|<R}. The maximum term p(f) and its rank v(»), for a function f in Hg, are
defined as p(r)Ep(r,f)=rr’1‘§gc {la.lr"} and v(r)=u(r,f)=max {n: p(r)=la,| r}. Let
) =p@, f®) and v (P)=v(r,f®), where f®, k=1,2,..., denotes the kth-
derivative of f. We reckon v,(r), k=0,1,2, «-++, from the first term of the series
of f. For the uniformity in the notation we write go(?)=pg(r) and v(?)=v(r). We
denote the kth-derivateve of u(r) by p™(») at the point of its existence in (0, R).
For the difference v,(r)—v(r), we have the notation

(1' 1) ¢(1’, k)Evk(r)—v(r) s k'—"l’ 29 .

We assume throughout this paper that g(r)—>o as r—R. It is easily seen that
the functions p,(») and v.(r), k=1,2, ...+, are positive, non-decreasing and un-
bounded function of 7 in (0, R), have only ordinary discontinuities and v,(r)=v(7).

For a function f in H, we use the following definitions of the order p, the
lower order 2, the type T and the lower type ¢:

1.2 P _ lim SUP log* log* M(r)

(1.2) 3 rom inf log (RI(R—7))

and

(1.3) T_ |im Sup __log* M(r) (0<p< o)

t rrinf (R/(R-17))r

where M(r)EM("f)=f?,2f (f(2)], 0<r<R and log* x=max (log x, 0).

A function f, in Hy, having order p and lower order 2 is said to be of regular
growth if 0=A=p< 0.

For a function f in H, and 0<p<, Sons [3, Lemma 2] has shown that

log v(7)

1.4 1+ p=1i .
(1-4) to=lim sup - -7
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For 0<p< oo, she also proved [3, p. 301] that

(1. 5) 14 2=lim inf —8¥(")
r—1 —log (1 7’)

However, the equality in (1.5) need not hold in general. For, consider the
following example due to Paul V. Reichelderfer:
Let

F(z)= 2}0 exp (k,)z*i+1

where k, is any integer greater than one, and k,.,=k;?. Then, it is easily seen
that F is analytic in D, and has lower order 1/4 while

.. logv(r)
lim inf —28¥\)
o Tlogd—7)

Thus, we are led to consider the functions in the class H% consisting of
functions in Hy and satisfying

.. log v(7)
(1. 6) 1+2=lu}1_’§enfm§/(R—_rS .

For the functions in Hp, in the present paper, we find a precise measure of
the rates of growth of {u,(r)/p(n)}, {£®@)/¢(»)} and ¢(r, k) as r—R in terms of the
parameters defined in (1.2) and (1.3). We observe that the growth formulae in
terms of order, type and lower type are found for the whole class H; while the
growth formulae in terms of the lower order hold for the class H¥. Our results
give necessary and sufficient conditions such that f in H* is of regular growth.
Some of our results include the results in [2] and [1].

2. Statements of results

Theorem 1. Let f(2)= i_oloa,,z" be in Hy and have order p. Then,

2.1 14+p=1im sup loglé;{:}(/:)gz_(?)})‘“‘) , k=1,2, .

Further, if f belongs to H¥ and is of lower order A, then

| log (r{p.(r)/p(n}"®)
2.2) 1+2= hrrr_ldlznf log (RI(R—7)

k=1,2, 0.

Theorem 2. Let f(z)= Z} a,.z" be in Hy and have order p. Let ¢(r, k) be defined
by (1.1). Then, for 0<ro<r<R and k=1,2, .
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. 1 R \ (" é(x, k)
2.3 1+p= —- AT RALTEL N .
@2.3) p hnfl_‘skpp { k (log R—r) S,o x dm}

Further, if f belongs to H¥ and ‘is of lower order 2, then, for 0<7r,<r<R and
k"_" 1’ 2’ oo l,

2. 4) 1+ A=lim inf {l(log —R—)_l S @ k) d:v} .
roR k R—7r ro x

orollary. Let f(2)= an,.z" be in H% and have regular growth and order p.
n=
Then, as r—R,

2.5) S' de«»log (__R__)“"“) . k=1,2, .-
x R—r

o

Theorem 3. Let f(z)= Zol_ooa,.z" be in Hy and have order p. Let ¢(r, k) be defined
by (1.1). Set - |

2.6 Ax_ i SUP S, R) —1.2 een.
@9 8, +% inf RIR—p' 0P
Then,

2.7) klp+1)=e; .

Further, if f belongs to H¥ and is of lower order A, then
2.8) Br=k(A+1) .
Remark 1. If 8,=o0, then i=p=o00.
Remark 2. If 1'151! {¢(r, B)/(R|(R—7))} exists and is finite for a function f in H¥%,

then f is of regular growth and

2.9) k(o+1)=1lim {—?—"—”’—)—} .
r—RB

RI(R—7)

Theorem 4. Let f(z)=“Z::: a,z* be in H¥ and have finite order p. Let (R—71).
o(r, k) be monotonic in (O,—R), where ¢(r, k) is defined by (1.1). Then, for k=
1,2, .-,

(i) ¢, B/R/(R—7)) is bounded in (0, R);

(ii) f is of regular growth;
and

(iii) 1,155 {o(r, R)(R[(R—1)}=Fk(p+1).
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Corollary. Let f(2)= Z}a,.z" be in H¥% and have order p, 1<p<o. Let
(R—1)é(r, k) be monotonic, where o(r, k) is defined by (1.1). Then, for k=1,2, ¢,
as r>R

2. 10) m(r)~u(r)(”‘r”) .

Theorem 5. Let f(2)= Z‘:‘;oa,,z" be in Hy and have order p. Then, for k=1, 2,
++, and for almost all values of r satisfying 0<r,<r<R :

@11) r-—z:klf—?)+k 1=3(r)

T log (r{p® ()| u()}V*)
(2.12) T+eo=lim sup = e RIR—1)

Further, if f belongs to H%, then

log (r{p™® (r)/pn(r)}'/*)
@-13) 14+ a=lim ot e (RI(R—1)

where r—R(E’) implies that r—R through values of r excluding a set of measure
zero for which p™®(r) does not exist.

Corollary 1. Let f(z)= 3 a.z" be in Hz. Then, for k=1,2, -+, as r>R(E’)

2 ®(r) N v(7) and #(k)(r)~(M>k .

(2.14) 2D (y) r z@) r

Corollary 2. Let f(z)= Za,.z" be in HY and have order p. Then, f is of
regular growth if and only zf

_ log (r{p™® )/ pn(n)}'*)
215 L= Im g RR—r)

Theorem 6. Let f(z)= Z a,.z" belongs to H% and have order p (0<p< o), type
T and lower type t (O<t<T<<>O) and let (R—7)¢(r, k) be monotonic where ¢(r, k) is
defined by (1.1). Then, at the points of existence of p*®(r), k=1,2, -

{ﬂ(k)(r)lﬂ(r)}l/k p+1 p+1
: 1/R<1 R
(@ 16) IR=lim sup pT(R/(R—r))P“_( 0 ) /

i {pt:(r) [u(r)}/* p+1)\r+
(2.17) 1/R<lim sup pT(R/(R_r»PHé( ; )[R

and
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e (L PW pORE L {2 [pM}P*
(2.18) lu}llenf Dt RI(R— 1) <lim inf St RIR=1)" <1/R.

3. Proof of theorems

Proof of Theorem 1. Since the order of a function and its derivative are the
same, in view of (1.4), we have

. log v,(7)
3.1) 1+p=1 _logwlr) o p_1,2,....
G0 rein P e RIR-T) "

Now for k=0,1,2, +-, let f ®(z)= ikAnzn, v.(*)=N and v, ,(n=N,, then,

a1 (N)=N| Ay \r7:t

=M

Ay lrms2n®y o
r Y

This implies,

3.2) e, ), k=012, .
1 (7)

Further, for £=0,1,2, .-,

— A 1< ¥ .
w(n)=|Axlr NNIANV =7 Hes1(7)

It follows for £=0,1,2, «--, that

3.3) v (< rlen®
ﬂk(r)
Combining (3.2) and (3.3), we get
nsrt Dy ), k=0,1,2, - .
#x(7) :

The above inequality, after a simple calculation, yields

3. 4) v(r)ér{”—;z(—:)l}mévk(r) , k=0,1,2, ..

Taking logarithm throughout, dividing by log (R/(R—7r)) and proceeding to limits
as r—R, (3.4) gives that for £=1,2, «--,

. sup _ logw(r) _.. sup log (r{g(r)/pu®)}"*)
(3-5) IR inf log (RIR—r) 1o inf  log (RIR—7)
<lim SUP __logu(r) .
=1 int log (RIR—7)
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The relations (3.1) and (3.5) lead to (2.1). Further, if the function f belongs
to H¥, then (1.6) and (3.5) gives (2.2). This completes the proof of Theorem 1.

Proof of Theorem 2. We have, for k=1,2, +++,

fP@)= Enn=1) -+ (a—k+Daz

and
(=) i(P) —1) <o+ V(1) — k+1)|a,, (1) |rerx,

The functions v,(?) and |a,,.,| are constants in intervals, have at most an enu-
merable number of discontinuities and so their derivatives vanish almost every
where except possibly at a set of measure zero. Taking logarithm of both the
sides, differentiating with respect to » and denoting the derivative of u,(») by
p’(r) at the point of its existence, we have for almost all values of 7 in (7, R).

() = v(n)—Fk , k=1,2, 00,
©:(7) r

This implies, for k=1, 2, «++ and r sufficiently close to R,

3.6) log ()= S

70

2@k 401 0qa) .
x
Following Valiron [49, p. 201], for 0<7,<7<R, we have

3.7) log z(r)=1log p(r)+ S Y@ gy |
70
Combining (3.6) and (3.7), we have for » sufficiently close to R,
3.8) log (r {M}‘"‘)=l S u@—v@ 4.1 0q0).
p(r) k) g
In view of (2.1) and (2.2) the equation (3.8) yields (2.3)_ and (2.4) respectively.
This completes the proof of Theorem 2.

Proof of to Theorem 2. Since the function f belonging to Hj is of
regular growth and order p, by (2.3) and (2.4), we have for 0<7,<?<R and k=
1,2, -,

e (1 R\ (" ¢, &) }
(3.9) 1+p lrl_x.m}e{k(log—-——*R_r S,.,j_w dz} .

Now, by (3.9), the corollary follows immediately.
Proof of Theorem 3. First, let a,<o and 8,>0. By (2.6), for any ¢>0
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and r>7, (0<7,=7,(s)<r<R), we have

(B ) < B0, B) < (ar )=

The above inequality, after a simple transformation yields
3.10) (B:—e) S R__4 (1 R )_1 S (@, k)
log (RIR-7) )., 5R—2) "<\I8%=7) ), & °°

(az+e) S' R " da
log (R/(R—7)) J,, ®(R—%)

Now, by Theorem 2 and [(3.10), we have, for f in Hyg, k=1,2, «+-,

T "R\ (" o, k)
(3.11) k(p+1)—11r£1_‘skup {(log R—r) srd ——m———dm}—f-_a. .

The inequality (3.11) is obviously satisfied if a,=c0. If, f belongs to H¥, then
by Theorem 2 and [3.10), we have, for k=1,2, +--,

3.12) <tim inf {(1og =Z=) ' {”
- pitim inf {(108 525) " |

0

ﬂ%’ﬂdm} =k(A+1).
This completes the proof of Theorem 3 since (3.11)and (1.12) are obvious if a,=
= or B,=0.

Proof of Theorem 4. Since p is finite, by hypothesis of the theorem, using
(3.12), we have for k=1,2, -,

) S —¢(—xk—dx o) as r—R.
ro

If possible, let ¢(r, k)/(R/(R—7r)) be unbounded, then, since (R—r)¢(r, k) is
monotonic and non-negative, we can find 7»,(#) such that

r, k) .
RIR—7F

for every r satisfying 0<ry(k)<r<R. Thus,
S' de>k(log
o X R—

3.13) (log T

—log

R—n)
Since, k can be made arbitrarily large, we obtain a contradiction of (3.13) Thus
é(r, B)/(R/(R—7)) is bounded in (0, R). ‘

Further, as (R—r)¢(r, k) is monotonic and bounded, it must tend to a limit
and so a;=pf8,<oco. Thus, in view of Theorem 3, it follows that f is of regular
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growth and Iin}xe{qi(r, R)/(R|/(R—7))}=Fk(p+1). This completes the proof of Theorem 4.

Proof of the corollary to Theorem 4. By Theorem 4, f(2) is of regular growth
and

(R=rv[ () /v(1))—11~kR(p+1) as r—R.
Following Sons [3, lemma 2], one easily gets

p=lim (loglog p(r)/log (R/(R—7))) ~ and  lim (log p(1)/(R/(R—7)))= oo

follows since 1<p<oo. Now, by (3.7), log u(»)<OQ)+v(r)(log R—log r,) so that
lixg (R—r(r)=cc. Thus, the above asymptotic relation gives v,(*)~v(?) as r—R.

The corollary now immediately follows from the inequalities (3.4).

Proof of Theorem 5. Since p(r)=la,»|r*" is differentiable everywhere ex-
cept at an enumerable set of points of discontinuities of |a,(,,| and v(r), we have,

at the points of existence of u®(7),
(3.14) r—=—"=u(r),
)]

for the derivatives of |a,«,| and v(r) vanish almost everywhere. Differentiating
(3.14) at the points of existence of ¢‘“(r) and p®(r), we get
{re® @)+ p L)~ r{ip®@yE=0.

This, on using (3.14), implies

(2)(r)
zm(r)=v(r)—1 :

On repeating the differentiation j times, we get

(€))
3. 15) r%mm—jﬂ, j=1,2, o0 .

This proves (2.11). Now, writing (3.15) for j=1,2, .-+, # and then multiplying
the k-inequalities thus obtained gives

(3.16) r"{.’%’%‘)} =)@ (@) —=1) eer W@F)—E+1)
= (")*1—-o(1)) .
Thus,
3.17) _.!Qg_”(ﬁ___+o(1)= log (r{u®(r)/p(r)}"*) .

log (RI(R—1)) log (R/(R—7))
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Now, if f belongs to Hp then (3.1) and (3.17) imply (2.12) and if f belongs to H%
then (1.5) and (3.17) imply (2.13), on proceeding to limits as r—R(E’). This com-
pletes the proof of Theorem 5.

Proof of corollaries to The asymptotic relations in (2.14) follows
from (3.15) and (3.16). Further, if f is of regular growth then p=2 and so (2.12)
and (2.13) imply (2.15). If (2.15) holds, then (2.12) and (2.13) imply that f is of
regular growth.

Proof of First, we prove the inequalities on the left hand sides of

(2.16) and (2.17). Since p®()<p,(r) for r satisfying 0<7,<r<R and %k=0,1,2,

.+, it is sufficient to prove the inequality related to p®(r). Let, if possible, for
r satisfying 0<7,<r<R and a fixed positive ¢,

EPOIpE* 1
pT(RI(R=7)F" "R

—c,
then, on using (2.14), we have, for r sufficiently élose to R,

¥<(—R}—— e) T (R{—er)p“ .

The above inequality, on using (3.7), implies

log p(r

wieeor <(z )R-
This is inconsistent with the fact that f(z) is of order p and type T. It proves
the left hand side inequalities in (2.16) and (2.17). :

Now, concerning the inequalities on the right hand side of (2.16) and (2.17),
again by virtue of the relation u®(r)=<p,(r), it is sufficient to prove the inequality
relating to u.(r).

Proceeding on the lines of proof of [2, (1.11)], one can prove

. v(n)|r <fp+tl P“/
418 lim sup e =) /R

Using (2.14), the inequality (3.18) yields

; {p@P*  _ . v(Dlr (e +1)*!
i S T RIR—nyr RSP pT(R/(R-r))"“=( 0 ) / R

This completes the proof of (2.16) and (2.17). Again proceeding on the lines of
proofs of [2, (1.8)], it is easily seen that
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. v(7)/r <
3.19) 111:1_’1Rnf ot RI(R—1)" <1/R.

Using (2.14), the inequality (3.19) gives (2.18).
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