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1. Introduction

In this paper we give some theorems in connection with the reduction of the
codimension of submanifolds of a complete simply.connected space form $R^{n}(k)$ .
Sect’on 3 treats about surfaces which have asymptotic lines. In section 4 we look
for submanifolds (and especially surfaces) for which the first normal space is 1.
dimensional at each point. Finally, in section 5 we prove the main theorem: if a
connected n-dimensional submanifold $N$ of $R^{n}(k)$ has two independent asymptotic
distributions, which are respectively $n-1$ and l.dimensional, and if the first
normal space of $N$ has everywhere constant dimension $n_{1}(0\leqq n_{1}\leqq n-1)$ then $N$ is
contained in an $(n+n_{1})\cdot dimensiona1$ totally geodesic subspace of $R^{M}(k)$ .

A few special submanifolds are treated in this connection. Some of the
propositions and corollaries (and especially the main theorem) are extensions of
results which we gave in earlier Papers ([4], [5], [6] and [7]).

2. Preliminaries

We shall assume throughout that all manifolds, maps, vector fields, etc. . . .
are differentiable of class $C^{\infty}$ .

Let $N$ be an n-dimensional submanifold of an m.dimensional Riemannian
manifold $R^{m}$ . If $\overline{D}$ (resp. $D$) is the Riemannian connection of $R^{n}$ (resP. $N$ ) and if
$X$ and $Y$ are tangent vector fields of $N$, then we find by decomposing $\overline{D}_{X}Y$ into
a tangent and a normal component

$\overline{D}_{X}Y=D_{X}Y+V(X, Y)$ .
$V$ is a $2\cdot covariant$ symmetric vector.valued tensor field on $N$. A vector $Z$ of $N$ at
the point $p$ is called an asymptotic vector (and then determines an asymptotic
direction at $P$ if $Z\neq 0$) if $V(Z, Z)=0$ . A line on $N$ is an asymptotic line if the
tangent vector $T$ of the curve is at each point an asymptotic vector of $N$.
Remark that since we have in this case $\overline{D}_{r}T=D_{r}T$ , the first principal normal
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vector of an asymptotic line is at each point a vector of the tangent space of $N$ .
A distribution $\delta$ of $N$ is said to be asymptotic if at each point $P$ of $N$ each

vector of $\delta_{p}$ is an asymptotic vector of N. SuPpose again that $X$ is a vector field
of $N$. If $\xi$ is a normal vector field on $N$ , then we find the Weingarten equation
by decomposing $\overline{D}_{X}\xi$ into a tangent and a normal component:

$\overline{D}_{X}\xi=-A_{\xi}(X)+D_{x^{\perp}}\xi$ .
$A_{\epsilon}(X)$ is at a point $p$ of $N$ only dependent on $\xi_{p}$ and $X_{p}$ , and A. determines at
$p$ a self.adjoint linear map $N_{p}\rightarrow N_{p}$ . $D^{\perp}$ is a metric connection in the normal
bundle $N^{\perp}$ .

We also have, if $\langle, \rangle$ denotes the metric tensor of $R^{m}$ (we use the same
notation for the induced metric on $N$ ) and if $X$ and $Y$ are N.vector fields
(2.1) $\langle A_{e}(X), Y\rangle=\langle V(X, Y), \xi\rangle$ .
A normal vector field $\xi$ on $N$ is called parallel in the normal bundle $N^{\perp}$ if $D_{x^{\perp}}\xi=$

$0$ for each N-vector field $X$ . A subbundle $F$ of $N^{\perp}$ is said to be parallel in $N^{\perp}$ if
for each vector field $\eta$ of $F$ and each vector field $X$ of $N,$ $ D_{x^{\perp}}\eta$ is again a vector
field of $F$.

The first normal space $N_{1}$ of $N$ is by definition the subbundle of $N^{\perp}$ , at each
point $p$ given by the orthogonal complement in $N_{p}^{\perp}$ of

$\{\sigma\in N_{p}^{\perp}\Vert A_{o}=0\}$ .
The curvature tensor $K^{\perp}$ of the connection $D^{\perp}$ is given by

$K^{\perp}(X, Y)=D_{x^{1}}D_{r^{\perp}}-D_{r^{1}}D_{x^{\perp}}-D_{[X.Y]}^{\perp}$ .
If $K^{\perp}$ vanishes identically, then $N$ is said to have flat normal connection.

Suppose that $e_{1},$ $\cdots,$ $e_{n}$ is an orthonormal base field of $N$ and that $\xi_{1},$ $\cdots$ ,
$\xi_{m-n}$ is a normal orthonormal base field on $N$ in $R^{m}$ , then the mean curvature
vector field $H$ of $N$ is in the intersection of the domains of these base fields
given by

(2.2) $H=\frac{1}{n}\sum_{\ell=1}^{1}V(e, e_{l})=\frac{1}{n}\sum_{j=1}^{l*-\sim}(spA_{6_{j}})\xi_{j}$ .

If $H=0$ at each point of $N$, then $N$ is called minimal. If for each normal
vector field $\xi$ the maP $A_{\epsilon}$ is at each Point Proportional to the identity transfor.
mation, then $N$ is said to be totally umbilical.

Suppose that $\xi_{p}$ is a unit normal vector on $N$, then det $A_{\epsilon_{p}}$ is the Lipschitz-
Killing curvature of $N$ in $R^{m}$ in the direction of $\xi_{p}$ .
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From now on we assume that $N$ is a submanifold of a complete $simply\cdot con$ .
nected space form $R^{m}(k)$ with constant curvature $k$ ($k>0,$ $k=0$ or $k<0$). It is well
known that in this case the normal connection of $N$ is flat if and only if all the
second fundamental tensors $A_{\xi}$ are simultaneously diagonalizable (or for every

normal orthonormal base field $\xi_{1},$
$\cdots,$ $\xi_{m-n}$ on $N$, the linear maps $A_{\xi_{i}}$ must pair.

wise commute at each point of the domain of the base field).

If $X$ and $Y$ are unit orthogonal vectors of $N_{p}$ , then, from the Gauss equation,

we know that the Riemanncurvature $K(X, Y)$ of $N$ in the two.dimensional direc.
tion of $N_{p}$ spanned by $X$ and $Y$ , is given by

(2.3) $ K(X, Y)=k-\langle V(X, Y), V(X, Y)\rangle+\langle V(X, X), V(Y, Y)\rangle$ .

3. Surfaces with asymptotic directions in a space form $R^{m}(k)$

From now on we consider only submanifolds (and in this section especially
surfaces) which are minimal $(H=0ateachpointofN)$ or everywhere not minimal
($H\neq 0$ at each point of $N$). Moreover, from now on we consider only submani.
folds for which the first normal space $N_{1}$ has at each point constant dimension.

Theorem 1. SuPpose thatN is aconnected surface in $R^{m}(k)$ . If Nhas at each
point two different asymPtotic directions, then $N$ is a surface in a 3-dimendional
totally geodestic submanifold $R^{3}(k)$ of $R^{m}(k)$ .

Proof. Take an orthonormal base field $e_{1},$ $e_{2}$ of $N$ such that $e_{1}$ determines at
each point of the domain of the field an asymptotic direction of $N$ at that point.

Then we have $V(e_{1}, e_{1})=0$ . SuPpose that $x=ae_{1}+be_{2}$ is the vector field of $N$ which
gives at each point the other asymptotic direction of $N$ at that point, then
$V(x, x)=a^{2}V(e_{1}, e_{1})+2abV(e_{1}, e_{2})+b^{2}V(e_{2}, e_{2})=0$ or, since $b\neq 0$ , because the asymp-
totic directions are different at each point, $2aV(e_{1}, e_{2})+bV(e_{2}, e_{2})=0$ . This means
that $V(e_{1}, e_{2})$ and $V(e_{2}, e_{2})$ are linearly dependent.

There are three cases:
$t1)$ If $V(e_{1}, e_{2})=0$ at each point, then we must have that also $V(e_{2}, e_{2})=0$ at

each point, which gives that $N$ is totally geodesic in $R^{m}(k)$ .
(2) Suppose that $V(e_{1}, e_{2})\neq 0$ and $V(e_{2}, e_{2})=0$ at each point.

Then $N$ is a minimal surface of $R^{m}(k)$ , with at each point two orthogonal
asymptotic directions. It is clear that the first normal space $N_{1}$ of $N$ is spanned

by $V(e_{1}, e_{2})$ . So, $N_{1}$ is everywhere one-dimensional.
This means that $N$ has flat normal connection and it is known that a con.

nected minimal surface with flat normal connection in a space form $R^{m}(k)$ is con.
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tained in a $3\cdot dimensional$ totally geodesic submanifold of $R^{m}(k)$ (e.g. [1], p. 115
Remark 2.1.).

(3) Suppose that $V(e_{1}, e_{2})\neq 0$ and $V(e_{2}, e_{2})\neq 0$ at each point.
Then $N$ is not minimal. We must now have that $V(e_{1}, e_{2})//V(e_{2}, e_{2})$ . So, the

first normal space $N_{1}$ of $N$ is again one.dimensional. It follows that $N$ has flat
normal connection. Thus we can choose an orthonormal base field $e_{1}^{\prime},$ $e_{2}^{\prime}$ of $N$

$suchthatV(e_{1}^{\prime}, e_{2}^{\prime})=0ateachpoint$ . Take an orthonormal base field $\xi_{1},$
$\cdots,$ $\xi_{m-2}$

of $N^{\perp}$ such that $\xi_{1}$ spans at each point the first normal space. If we set
$ V(X, Y)=\sum_{=1}^{n-2}V(X, Y)\xi$ for each two N.vector fields $X$ and $Y$ , then we find

(3.1) $V^{2}(X, Y)=\cdots=V^{m-2}(X, Y)=0$ .
Since det $A_{\xi_{1}}\neq 0$ (because $V(e_{1},$ $e_{2})\neq 0$) at each point, we have that $V^{1}(e_{1}^{\prime}$ ,
$e_{1}^{\prime})V^{1}(e_{2}^{\prime}, e_{2}^{\prime})\neq 0$ and hence $V^{1}(e_{1}^{\prime}, e_{1}^{\prime})\neq 0$ and $V^{1}(e_{2}^{\prime}, e_{2}^{\prime})\neq 0$ at each point.

If $\overline{R}$ is the curvature tensor of $R^{m}(k)$ and if $X,$ $Y,$ $Z$ are N-vector fields, then
the Codazzi equation says

$(\overline{R}(X, Y)Z)^{\perp}=\sum_{i=1}^{n-2}\{(D_{X}V)(Y, Z)-(D_{r}V)(X, Z)\}\xi$

$+\sum_{\ell=1}^{m-2}V(Y, Z)D_{x^{1}}\xi_{i}-\sum_{i=1}^{n-2}V^{t}(X, Z)D_{r^{\perp}}\xi_{:}=0$ .

From (3.1), we have that

$(\overline{R}(e_{\ell}^{\prime\prime}e_{j})e^{\prime})^{\perp}=\{D_{e^{\prime}}V^{1})(eJ^{\prime\prime}e_{i})-(D_{e_{j^{\prime}}}V^{1})(e_{\ell}^{\prime}, e^{\prime})\}\xi_{1}$

$+V^{1}(e_{J^{\prime\prime}}, e_{i})D_{e_{i^{\prime}}}^{\perp}\xi_{1}-V^{1}(e_{:}^{\prime}, e_{i}^{\prime})D_{e_{j^{\prime}}}^{\perp}\xi_{1}=0$ $i,j=1,2$ $i\neq j$ .
But $V^{1}(e_{j}^{\prime}, e_{\ell}^{\prime})=0i\neq j$ , while $D_{e_{j^{\prime}}}^{\perp}\xi_{1}\perp\xi_{1}$ and $V^{1}(e^{\prime}, e_{i}^{\prime})\neq 0$ .

So we find

$D_{e_{j^{\prime}}}^{\perp}\xi_{1}=0$ $j=1,2,$ .
This tells us that $D_{z^{1}}\xi_{1}=0$ for each vector field $X$ of $N$, which means that $\xi_{1}$ and
thus also the first normal space $N_{1}$ (which is one-dimensional) of $N$ is parallel in
the normal bundle $N^{\perp}$ . This completes the Proof.

From part (2) of the proof of theorem 1, we have at once
Corollary 1. If $N$ is a connected minimal surface in $R^{m}(k)$ , with at each point

an asymptotic direction, then $N$ is a ninimal surface in an $R^{8}(k)$ .
From this corollary we find at once the known result that a minimal ruled

surface in the euclidiean space $E^{m}$ is necessarily a surface in an $E^{8}$ (thus a part of
a plane or an helicoid; see also [41).
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Corollary 2. If the connected surface $N$ of $R^{m}(k)$ has at each point an
asymptotic direction and if the Lipschjtz.Killing curvature of $N$ is at each Point non $\cdot$

zero minimal in the direction of the mean curvature vector $H\neq 0$ of $N$, then $N$ is a

surface in some $3\cdot dimensionat$ totally geodesic submanifold of $R^{M}(k)$ .
Proof. Take an orthonormal base field $e_{1},$ $e_{2}$ of $N$ such that $e_{1}$ determines

at each point of the domain of the field the given asymptotic direction of $N$,
i.e. $V(e_{1}, e_{1})=0$ . Since the Lipschitz-Killing curvature is not for every normal
zero, we have because of (2.1) that $V(e_{1}, e_{2})\neq 0$ . Now it is clear that if
$\xi_{1},$

$\cdots,$ $\xi_{m-2}$ is an orthonormal base field of $N^{\perp}$ such that $\xi_{1}//V(e_{1}, e_{2})$ , then
det $A_{\epsilon_{1}}<0$ and det $A_{\xi_{r}}=0r=2,$ $\cdots,$ $m-2$ . From this we get HllV $(e_{1}, e_{2})$ or,
since $2H=V(e_{1}, e_{1})+V(e_{2}, e_{2})$ , we find $V(e_{2}, e_{2})//V(e_{1}, e_{2})$ , which gives us the
situation of case (3) of the proof of Theorem 1.

Remark. The condition that the Lipschitz.Killing curvature is non.zero is
necessary: a non.trivial developable (i.e. flat) ruled surface in $E^{m}$ has for every

normal at each point Lipschitz.Killing curvature zero and can have arbitrary
codimension.

Consider on the surface $N$ of $R^{m}(k)$ a curve $\sigma$ with unit tangent vector
field $T$ . Recall that if $\sigma$ is a geodesic line of $R^{m}(k)$ , then $\overline{D}_{r}T=D_{r}T+V(T, T)=$

$0$ and hence $V(T, T)=0$ , which means that $\sigma$ is an asymptotic line of $N$. So
we have from theorem 1.

Corollary 3. If $N$ is a connected surface of $R^{m}(k)$ such that at each point

of $N$ there are two (different) geodesic lines of $R^{m}(k)$ through $p$ on $N$, then $N$

is necessarily a surface in a $3\cdot dimensional$ totally geodesic $submanif_{0}u$ of $R^{m}(k)$ .

If $k=0$ , then it is well.known that the one.sheet hyperboloids and the
hyperbolic paraboloids are the only non.trivial surfaces in $E^{m}$ with two different
families of straight lines on it.

4. Submanifolds in $R^{m}(k)$ with one-dimensional first normal space

Theorem 2. SuPpose that $N$ is an n-dimensional connected submanifold of
$R^{m}(k)(n\geqq 2)$ , for which the first normal space $N_{1}$ is everywhere one.dimensional.
If moreover the $Lipschitz\cdot Killing$ curvature of $N$ in the direction of $N_{1}$ is never
zero, then $N$ is contained in an $(n+1)$ -dimensional totally geodesic subsPace of
$R^{m}(k)$ .

Proof. In the same way as part (3) of the proof of theorem 1, we have
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here: since the first normal space is one.dimensional, $N$ has flat normal connec.
tion and so it is possible to choose an orthonormal base field $e_{1},$ $\cdots,$ $e_{n}$ of $N$

such that $V(e_{\ell}, e_{j})=0i\neq ji,$ $j=1,$ $\cdots,$ $n$ . Take an orthonormal base field $\xi_{1},$ $\cdots$ ,
$\xi_{m-n}$ of $N_{p^{1}}$ such that $\xi_{1}//N_{1}$ . Then we find now

(4. 1) $V^{2}(X, Y)=\cdots=V^{m-*}(X, Y)=0$

for each two N.vector fields $X$ and Y. Since the Lipschitz.Killing curvature
of $N$ in the direction of $N_{1}$ is not zero, we have

det $A_{\epsilon_{1}}=V^{1}(e_{1}, e_{1})\cdots V^{1}(e_{n}, e_{n})\neq 0$

at each point, and so
$V^{1}(e_{1}, e_{1})\neq 0,$ $\cdots,$ $V^{1}(e_{n}, e_{n})\neq 0$ .

If $\overline{R}$ is the curvature tensor of $R^{m}(k)$ , we find from the Codazzi equation and
from (4. 1)

$(\overline{R}(e, e_{j})e)^{\perp}=\{(D_{i}V^{1})(e_{j}, e_{\ell})-(D_{\ell}!V^{1})(e_{\ell}, e)\}\xi_{1}$

$+V^{1}(e_{j}, e)D_{l}^{\perp}i\xi_{1}-V^{1}(e_{t}, e_{i})D_{\epsilon_{j}}^{\perp}\xi_{1}=0$ ,

which gives for $i,$ $j=1,$ $\cdots,$ $ni\neq j$; since $V^{1}(e_{j}, e_{i})=0,$ $V^{1}(e_{i}, e_{i})\neq 0$ and $D_{e_{\dot{g}}}^{\perp}\xi_{1}\perp\xi_{1}$ ,

that $D_{e}^{\perp}j\xi_{1}=0j=1,$ $\cdots,$ $n$ . Thus $\xi_{1}$ and hence also the first normal space $N_{1}$ is
parallel in the normal bundle $N^{\perp}$ . This completes the proof.

Suppose that $N$ is a totally umbilical submanifold of $R^{m}(k)$ and that $\xi_{1}$ ,
..., $\xi_{m-n}$ is an orthonormal base field of $N^{\perp}$ . Then there exist functions $\lambda_{\ell}$

such that $A_{\xi_{\ell}}=\lambda_{\ell}Ii=1,$ $\cdots,$ $m-n$ where $I$ is the identity transformation. So,

from (2. 1) and (2. 2), we get

$ V(X, Y)=\sum_{i=1}^{n-n}\langle V(X, Y), \xi\rangle\xi=\langle X, Y\rangle\sum_{i=1}^{*-n}\lambda_{\ell}\xi$

$=\frac{1}{n}\langle X, Y\rangle\sum_{\ell=l}^{n-n}(trA_{\xi_{\ell}})\xi_{\ell}$

or
$V(X, Y)=\langle X, Y\rangle H$ .

This means that the first normal space is at most one.dimensional. If $H=0$ ,
then $N$ is totally geodesic and if $H\neq 0$ , then we find from theorem 2 the well-
known result that an n-dimensional totally umbilical submanifold is contained
in an $(n+1)$-dimensional totally geodesic subspace of $R^{m}(k)$ (e.g. see [11,

proposition 3.2).

Remark that theorem 2 is in fact an extension of theorem 1, because the
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assumptions of theorem 2 follow from these of theorem 1 in the case $n=2$ (and

$N$ not totally geodesic). Here again the non-zero condition for the Lipschitz-

Killing curvature is necessary: a not totally geodesic monosystem (i.e. a sub $\cdot$

manifold generated by a one-parameter family of linear spaces) in the euclidean

space $E^{m}$ , which is total developable (i.e. which is flat) has dim $N_{1}=1,$ Lipschitz $\cdot$

Killing curvature zero everywhere, and can have arbitrary codimension (e.g. the

osculating planes of any curve in $E^{m}(m>3)$ generate such $(3\cdot dimensional)$ total

developable monosystem).

Corollary 4. If a connected surface $N$ of $R^{m}(k)$ has everywhere non.zero
Lipschitz.Killing curvature in the direction of the mean curvature vector $H\neq 0$

and zero LiPschitz-Killing curvature in each normal direction orthogonal to $H$,

then $N$ is contained in an $R^{8}(k)$ .
Proof. Take an orthonormal base field $\xi_{1},$ $\cdots,$

$\xi_{m-2}$ of $N^{\perp}$ such that $\xi_{1}//H$.
Then $\det A_{\xi_{1}}\neq 0$ , while $\det A_{\text{\’{e}}},=0i=2,$ $\cdots,$ $m-2$ . But $trA_{\text{\’{e}}_{i}}=0$ and so $A_{\xi}=0$

$i=2,$ $\cdots,$ $m-2$ . We thus have dim $N_{1}=1$ and theorem 2 gives our result.

Remark. If a surface $N$ in $R^{m}(k)$ has flat normal connection and at each

point an asymptotic direction, then it is clear that $\dim N_{1}\leqq 1$ at each point.

Conversely, if dim $N_{1}=1$ at each point, then $N$ has flat normal connection and

if we choose an orthonormal base field $e_{1},$ $e_{2}$ such that $V(e_{1}, e_{2})=0$ , we find from

(2. 3) for the Gauss curvature $G$

$ G=k+\langle V(e_{1}, e_{1}), V(e_{2}, e_{2})\rangle$ .
But $V(e_{1}, e_{1})//V(e_{2}, e_{2})$ and so we have an asymptotic direction only in the

case $G\leqq k$ at each point of $N$. If always $G<k$ , then there are at each point

two distinct asymptotic directions and thus $N$ is a surface in an $R^{3}(k)$ . In

fact we have more:

Corollary 5. If a connected n-dimensional submanifold of $R^{m}(k)$ has at each

Point dim $N_{1}=1$ and nowhere Riemann curvature $k$ , then $N$ is a hypefsurface in

an $R^{+1}(k)$ . EsPecially, if a connected surface $N$ in $R^{m}(k)$ has everywhere $G\neq k$

and dim $N_{1}=1$ , then $N$ is contained in an $R^{\theta}(k)$ .
Proof. Use the same base field $e_{1},$ $\cdot\cdot ee$. as in the proof of theorem 2.

Since we have nowhere Riemann curvature $k$ , we see from (2. 3) that the

normal fields $V(e_{1}, e_{1}),$ $\cdots,$ $V(e,,, e_{n})$ are never zero. Thus the Lipschitz.Killing

curvature of $N$ in the direction of $N_{1}$ is always different from zero and theorem

2 completes the proof.
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Remarks.
1. If a connected surface $N$ in $R^{m}(k)$ has everywhere dim $N_{1}=1$ and lies not

entirely in an $R_{\theta}(k)$ , then there are points on it where $G=k$ .
2. A not totaly geodesic surface in $R^{m}(k)$ with constant curvature $k$ and with

flat normal connection can have arbitrary codimension, even if dim $N_{1}=1$ :
e.g. a not totally geodesic developable ruled surface in $E^{m}$ .

5. n-dimensional submanifolds in $R^{m}(k)$ with an $(n-1)$-dimensional asym $\cdot$

ptotic distribution

Lemma. SuPpose that $\delta$ is a l.dimensional asymptotic distnbution of the sub.

manifold $N$, then we have $V(X, Y)=0$ for each two vectors $X$ and $Y$ of $\delta_{p}$ at
each point $P$ of $N$.

Proof. Take an orthonormal base field $e_{1},$ $\cdots,$ $e_{n}$ of $N$ such that $\delta$ is in the
domain of the field determined by $e_{1},$ $\cdots,$ $e_{\ell}$ . Since $V$ is linear in his arguments,

it is sufficient to prove that $V(e, e_{j})=0i,$ $j=1,$ $\cdots,$ $li\neq j$ and this follows from
$O=V(e+e_{j}, e_{i}+e_{j})=V(e_{\ell}, e_{\ell})+V(e_{\ell}, e_{f})+V(ej, e_{i})+V(e_{j}, e_{j})=2V(e_{\ell}, e_{j})$ .

One can extend theorem 1 for n.dimensional submanifolds in the following

way.

Theorem 3. If the n.dimensional connected submanifold $N$ of $R^{m}(k)$ $(n\geqq 2)$

has two asymptotic distributions $\delta$ and $\sigma$ , respectively $n-1$ and l.dimensional,
which are independent (i.e. $\delta_{p}\oplus\sigma_{p}=N_{p},$ $\forall p\in N$) and if the first normal space
$N_{1}$ of $N$ has everywhere constant dimension $n_{1}(0\leqq n_{1}\leqq n-1)$ , then $N$ is contained
in an $(n+n_{1})\cdot dimensional$ totally geodesic subspace $R^{n+n_{1}}(k)$ of $R^{M}(k)$ .

Proof. If we choose a base field $e_{1}^{\prime},$

$\cdots,$
$e_{n}^{\prime}$ of $N$ such that $e_{1}^{\prime},$

$\cdots,$
$e_{n-1}^{\prime}$

determine at each point of the field the distribution $\delta$ and such that $e_{n}^{\prime}$ deter.
mines $\sigma$ , we see at once from the lemma that the first normal space $N_{1}$ of $N$

is spanned by $V(e_{1}^{\prime}, e_{n}^{\prime}),$
$\cdots,$

$V(e_{n-1}^{\prime}, e_{n}^{\prime})$ and hence is at most $(n-1)\cdot dimensional$ .
If $N_{1}$ is at each point O.dimensional, then $N$ is totally geodesic in $R^{m}(k)$ .

SuPpose that dim $N_{1}=n_{1}\neq 0(n_{1}\leqq n-1)$ at each point of $N$. Take an orthonormal
base field $e_{1},$ $\cdots,$ $e_{*}$ such that $e_{1},$ $\cdots,$ $e_{*-1}$ determine at each point of the domain
of the field the distribution $\delta$ . There are two cases:

(1) If $V(e_{n}, e_{n})=0$ at each point, then we may assume that $e_{n}$ determines
the distribution $\sigma$ (remark that $\sigma$ is not necessarily unique; see also theorem 4)

and moreover $N$ is minimal.
(2) If $V(e., e.)\neq 0$ then there exist functions $\lambda_{1},$

$\cdots,$
$\lambda_{n}$ such that $V(\lambda_{1}e_{1}+$
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$...+\lambda_{n}e_{n},$ $\lambda_{1}e_{1}+\cdots+\lambda_{n}e_{n}$) $=\sum_{\ell=1}^{n-1}2\lambda_{i}\lambda_{n}V(e_{\ell}, e_{n})+\lambda_{n}^{2}V(e_{n}, e_{n})=0$ , with $\lambda_{n}\neq 0$ at each
point because $\delta$ and $\sigma$ are independent. Thus

$\sum_{i=1}^{f1-1}2\lambda V(e, e_{n})+\lambda,,V(e,, e_{n})=0$ $\lambda,,\neq 0$ ,

and this means that $V(e_{n}, e_{n})$ is a linear combination of $V(e_{1}, e_{n}),$ $\cdots,$ $V(e_{n-1}, e_{n})$ .
So, in both cases we have that the first normal space $N_{1}$ is spanned by $V(e_{1}, e_{n})$ ,

’
$V(e_{n-1}, e_{n})$ .
Consider an orthonormal base field $\xi_{1},$

$\cdots,$ $\xi_{m-n}$ of $N^{\perp}$ such that $\xi_{1},$
$\ldots,$ $\text{\’{e}}_{n_{1}}$

is a base field of the normal subbundle $N_{1}$ . If we set $ V(X, Y)=\sum_{t=1}^{n-\hslash}V^{\iota}(X, Y)\xi$

for each two N.vector fields $X$ and $Y$ , then it is clear that

(4.1) $V^{n_{1}+1}(X, Y)=\cdots=V^{m-n}(X, Y)=0$ at each point.

Suppose that $\overline{R}$ is the curvature tensor of $R^{m}(k)$ , then we have for three $N$.
vector fields $X,$ $Y,$ $Z$ the Codazzi equation

(4.2) $(R(X, Y)Z)^{\perp}=\sum_{\ell=1}^{*-*}\{(D_{X}V^{\ell})(Y, Z)-(D_{Y}V^{t})(X, Z)\}\xi_{t}$

$+\sum_{t=1}^{n-n}V^{\iota}(Y, Z)D_{x^{\perp}}\xi_{\iota}-\sum_{\ell=1}^{*-\hslash}V^{\iota}(X, Z)D_{r^{\perp}}\xi_{\iota}=0$ .

In the intersection of the domains of the fields $e_{1},$ $\cdots,$ $e_{n}$ and $\xi_{1},$
$\cdots,$ $\xi_{m-n}$ , we

put

(4.3) $D_{e_{r}}^{\perp}\xi.=\sum_{h=1}^{n_{1}}B^{h}.\xi_{h}+\sum_{q=n_{1}+1}^{n-\prime}B_{r}^{q}.\xi_{q}$ $r=1,$ $\cdots,$ $n$ ; $s=1,$ $\ldots,$ $n_{1}$ .

From (4. 1) and (4. 2) we have

(4.4) $(\overline{R}(e, e_{n})e_{j})^{\perp}=\sum_{=1}^{\prime_{1}}\{\cdots\}\xi.+\sum_{=1}^{1}V^{\iota}(e_{n}, e_{j})D_{\epsilon_{1}}^{\perp}\xi\sim$.
$-\sum_{\iota=1}^{1}V(e_{\ell}, e_{j})D_{\epsilon_{n}}^{\perp}\xi.=0\prime\prime$

$i,$ $j=1,$ $\ldots,$ $n-1$ .
But $V(e, e_{j})=0$ $i,$ $j=1,$ $\cdots,$ $n-1$ and so we find from (4. 3) and (4. 4)

(4.5) $\sum_{\iota=1}^{1}V(e_{n}, e_{j})B^{q_{2}}=0$ $i,$ $j=1,$ $\cdots,$ $n-1$ ; $q=n_{1}+1,$ $\ldots,$ $m-n$ .
For each fixed $i(i=1, \cdots, n-1)$ and $q(q=n_{1}+1, \cdots, m-n),$ $(4.5)$ gives for $j=$

$1,$
$\ldots,$ $n-1$ a system of $n-1$ homogeneous linear equations with $n_{1}$ unknowns

$B^{q_{l}}(s=1, \cdots, n_{1})$ . But, since the first normal space $N_{1}$ is spanned by $V(e_{1}, e_{n})$ ,..., $V(e_{n-1}, e,,)$ , the rank of the matrix
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$[$ V(e $e)]_{=1n_{\underline{1}}};;::$:
is at each point equal to $n_{1}$ . So, from (4. 5) we find at once

(4.6) $Bt_{1}=0$ $i=1,$ $\cdots,$ $n-1$ ; $q=n_{1}+1,$ $\cdots,$ $m-n$ ; $s=1,$ $\cdots,$ $n_{1}$ .
We also have

$(\overline{R}(e_{n}, e_{\ell})e_{n})^{\perp}=\sum_{=1}^{n_{t}}\{\cdots\}\xi.+\sum_{l=1}^{n_{1}}V^{\iota}(e, e_{n})D_{\epsilon_{\hslash}}^{\perp}\xi$.
$-\sum_{\epsilon=1}^{1}V(e_{n}, e_{n})D_{\epsilon\ell}^{\perp}\xi.=0$ $i=1,$ $\cdots,$ $n-1$ .

But because of (4. 6) we see that $ D_{e_{i}}^{\perp}\xi$ . $i=1,$ $\cdots,$ $n-1,$ $s=1,$ $\cdots,$ $n_{1}$ has no
component in the complementary subbundle $N_{1}^{\perp}$ of $N_{1}$ in $N^{\perp}$ . So, from the
last equation we find

$\sum_{=1}^{n_{1}}V^{\iota}(e_{\ell}, e.)B_{n}^{q}.=0$ $i=1,$ $\cdots,$ $n-1$ ; $q=n_{1}+1,$ $\cdots,$ $m-n$ .
This gives in the same way

(4.7) $B_{n\iota}^{q}=0$ $q=n+1,$ $\cdots,$ $m-n$ ; $s=1,$ $\cdots\prime n_{1}$ .
From (4. 3), (4. 6) and (4. 7) we see that the first normal space is parallel in
the normal bundle $N^{\perp}$ and this completes the proof.

Corollary 6. If a connected minimal n-dimensional submanifold $N$ of $R^{M}(k)$

$(n\geqq 2)$ has an $(n-1)$-dimensional asymptotic distribution and if the first normal
space $N_{1}$ has constant dimension $n_{1},$ $(0\leqq n_{1}\leqq n-1)$ , then $N$ is a submantfold of
an $R^{n+n_{1}}(k)$ .

Proof. Since $N$ is minimal, we must have, if we use the same base field
$e_{1},$ $\cdots,$ $e_{n}$ as in the proof of theorem 3, $V(e_{n}, e_{n})=0$ and this gives us the
situation of case (1) of the proof of theorem 3.

We can say more about the codimension than in the statement of theorem
3. In fact we have:

Theorem 4. If the connected $n\cdot dimensional$ submanifold $N$ of $R^{m}(k)$ $(n\geqq 2)$ ,
with constant dimensional first normal space $N_{1}$ , has an $(n-1)\cdot dimensional$

asymptotic distribution $\delta$ and an l-dimensional asymptotic distribution $\sigma(l\geqq 1)$ ,
which span the tangent $sPaces$ (i.e. $\delta_{p}+\sigma_{p}=N_{p},$ $\forall peN$ ), then $N$ is contained in
$a(2n-l)\cdot dimensional$ totally geodesic subspace of $R^{m}(k)$ . Especially, if $N$ contains
two (at each point) different $(n-1)$-dimensional asymptotic distributions, then $N$ is
a hypersurface in an $R^{n+1}(k)$ .
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Proof. Suppose that $e_{1},$ $\cdots,$ $e_{n}$ is a (not necessarily orthonormal) base
field such that $e_{1},$ $\cdots,$ $e_{n-1}$ determine $\delta$ at each point of the domain of the base
field and that $e_{n}$ gives an asymptotic vector of $\sigma$ (which do not belong to $\delta$

since $e_{1},$ $\cdots,$ $e_{n}$ are linearly independent) at each point. If there is an other
asymptotic vector field given by $e=\sum_{\ell=1}\lambda_{\ell}e_{\ell}$

(not belonging to $\delta$ and different
from $e_{n}$ at each $point)_{\wedge}^{*}then$ we must have, since $\lambda_{n}\neq 0$

(4.8) $\lambda_{1}V(e_{1}, e_{n})+\cdots+\lambda_{m1}V(e_{n-1}, e_{n})=0$ .
Remark that if such field $e$ exists, then each vector of the vectorplanes $ae+$

$\beta e_{n},$
$\alpha,$ $\beta\in R$ is an asymptotic vector. If $\xi_{1},$

$\cdots,$ $\xi_{m-n}$ is an orthonormal base
field of $N^{\perp}$ such that $\xi_{1},$

$\cdots,$ $\xi_{n_{1}}$ span $N_{1}$ at each point and if we set again
$V(X, Y)=\sum_{\ell=1}^{n-r}V^{t}(X, Y)\xi_{t}$ , then we find from (4. 8)

$\sum_{J=1}^{n-1}\lambda_{f}\sum_{=1}^{n_{1}}V(e_{f}, e_{n})\xi.=0$

or
$\sum_{j=1}^{*-1}\lambda_{f}V(e_{j}, e_{n})=0$ $s=1,$ $\cdots,$ $n_{1}$ .

This gives us a system of $n_{1}$ homogeneous linear equations with $n-1$ unknowns
$\lambda_{1},$

$\cdots,$
$\lambda_{n-1}$ . Moreover, since the first normal space is spanned by $V(e_{1}, e_{n}),$ $\cdots$ ,

$V(e_{n-1}, e_{n})$ , we have that

rank $[V(e_{j}, e_{n})]_{l=1.\cdot.n_{\underline{1}}j=1^{\int}.\prime}\prime n1=n_{1}$ at each point.

From all this we get (if we assume that $\sigma$ is not a subdistribution of a higher.
dimensional asymptotic distribution)

(4.9) dim $\sigma=l=n-n_{1}$ or dim $\sigma+\dim N_{1}=n$ $0\leqq n_{1}\leqq n-1$ .
(Remark: consider at each point $p$ the linear transformation $ f:N_{p}\rightarrow N_{p}^{\perp};x\rightarrow$

$V(x, (e.)_{p})$ . The second equality of (4. 9) is in fact nothing else than the rela.
tion: $nullity+rank=\dim N_{p}=n$ for $f$ at each point of $N$).

Theorem 3 together with (4. 9) completes the proof.

Remark. If under the assumption of theorem 3 (or 4), $N$ has constant
curvature and $n>2$ , then $N$ is totally geodesic in $R^{m}(k)$ : to see this, use the
same base field $e_{1},$ $eeee$. as in the proof of theorem 3, then, because of (2. 3),
we get at once that $N$ must have constant curvature $k$ and that $V(e_{1}, e_{n})=\cdots=$

$V(e_{n-1}, e_{n})=0$ . Since there is at each point $p$ an asymptotic vector which is
not a linear combination of $(e_{1})_{p},$

$\cdots,$ $(e_{n-1})_{p}$ , we find immediately that $V(e_{i}, e_{j})=0$

$i,$ $j=1,$ $\ldots,$ $n$ and hence $N$ is totally geodesic.
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Example. Suppose that the n.dimensional submanifold $N(n\geqq 3)$ of $R^{M}(k)$

is foliated by $(n-1)\cdot dimensional$ totally geodesic submanifolds of $R^{m}(k)$ . If $\overline{D}$ ,
$D$ and $D^{\prime}$ are respectively the Riemannian connections of $R^{m}(k),$ $N$ and the

leave $B_{p}$ through the point $p$ of $N$ and if $X$ and $Y$ are vector fields which are
tangent to $B_{p}$ , then we get

$\overline{D}_{X}Y=D_{X}Y+V(X, Y)$ and $\overline{D}_{X}Y=D_{X}^{\prime}Y$

and so we have $V(X, Y)=0$ . This means that the tangent spaces of the leaves

of such totally geodesic foliation determine an $(n-1)\cdot dimensional$ asymptotic

distribution on $N$ and thus we can aPply theorems 3 and 4. Especially corollary

6 gives a strong reduction of the codimension in the minimal case (see also [51,

[6] and [81).

We find from theorem 4:

Corollary 7. Assume that $N$ is an n.dimensional connected submanifold of
$R^{m}(k)$ $(n\geqq 2)$ with constant dimensional first normal space. If we have through

each Point $P$ of $N$ an $(n-1)\cdot dimensional$ totally geodesic submanifold $B_{p}$ of $R^{n}(k)$

and an l-dimensional $(l\geqq 1)$ totally geodesic submanifold $C_{p}$ of $R^{m}(k)$ , which lie
entirely on $N$ and such that $C_{p}$ is not contained in $B_{p}$ , then $N$ is a submanifou
of an $R^{2n-\ell}(k)$ . Especially $\iota fN$ is doubly foliated by $(n-1)\cdot dimensional$ totally

geodesic $subman\ell folds$ (which are at each Point different) of $R^{m}(k)$ , then $N$ is a
hypersurface in an $R^{n+1}(k)$ .

In fact the proof of theorem 3 remains valid for $n=2$ . But we prefer to

treat the case $n=2$ separately, because then the surface $N$ has flat normal con-
nection and this is not always the case for n.dimensional submanifolds $(n>2)$

under the assumption of theorem 3. In this connection we have:

Theorem 5. An n.dimensional submanifold $N$ of $R^{m}(k)(n\geqq 2)$ with an $(n-1)$ .
dimensional asymptotic distribution and with flat normal connection has dim $N_{1}\leqq 1$

at each point. If moreover $N$ is connected and has nowhere constant curvature $k$ ,

then $N$ is a hypersurface in an $R^{n+1}(k)$ .
Proof. Take an orthonormal base field $e_{1},$ $\cdots,$ $e_{n}$ of $N$, such that $e_{1},$ $\cdots,$ $e_{n-1}$

determine the $(n-1)\cdot dimensional$ asymptotic distribution, and an orthonormal
base field $\xi_{1},$

$\cdots,$
$\xi_{m-n}$ of $N^{\perp}$ . Only the elements on the nth column and nth

row of the matrices of $A_{\epsilon}$, $i=1,$ $\cdots,$ $m-n$ with respect to $e_{1},$ $\cdots,$ $e_{n}$ can be dif.

ferent from zero. Since $N$ has flat normal connection, all these matrices must

pairwise commute. This is only possible if we have one of the following situa.
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tlons at each point of $N$: all the matrices (of) $A_{\xi}$ are zero except one or
$V(e_{1}, e_{n})=\cdots=V(e_{n-1}, e_{n})=0$ i.e. all the matrices (of) $A_{\text{\’{e}}\ell}$ are diagonal. In both
cases we find that dim $N_{1}\leqq 1$ at each point. If we have at each point of $N$

the second possbility, then it is easy to see that $N$ has constant curvature $k$ .
If $N$ has at each point not constant curvature $k$ , then we must have at

each point of $N$ the first possibility and moreover, not all the fields $V(e_{1}, e_{*})$ ,..., $V(e_{n-1}, e_{n})$ are zero. So, in this case we have that the first normal space
$N_{1}$ (which is everywhere one.dimensional) is spanned by $V(e_{1}, e_{n}),$

$\cdots,$ $V(e_{n-1}, e_{n})$

and thus we find in the same way as in the proof of theorem 3 that $N_{1}$ is
parallel in the normal bundle. Ths completes the proof.

Remark. From corollary 6 and theorem 5 we have: a minimal $n\cdot dimensional$

connected submanifold $N$ of $R^{m}(k)$ with an $(n-1)\cdot dimensional$ asymptotic
distribution and with flat normal connection is either totally geodesic or a
minimal hypersuface in an $R^{n+1}(k)$ .
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