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Introduction

As in [1] and [2], a meromorphic function $h(z)=f(g(z))$ is said to have $f(z)$ and
$g(z)$ as left and right factors respectively, provided that $f(z)$ is nonlinear and
meromorphic and $g(z)$ is nonlinear and entire ($g$ may be meromorphic when $f(z)$ is
a rational function). The first author showed in [2] that a meromorphic function
$F$ and its derivative $F^{\prime}$ cannot have a common right factor other than one of the
form $e^{cs+b}+d$ , where $c,$

$b$ and $d$ are constants.
It is natural to ask what one can say about common right factors of a

meromorphic function and its second derivative. This question leads to the
rather difficult problem of fiinding meromorphic solutions $f,$ $g$ and $l$ of the equa.
tion

$(g^{\prime})^{2}f^{\prime\prime}(g)+g^{\prime\prime}f(g)=t(g)$ .
Though the authors do have some partial results on this question the general

problem remains open.
Thus, the problem of finding common meromorphic factors for $F$ and $F^{\prime\prime}$

seems to be quite difficult. It is natural, therefore to look at the simpler problem
of finding common right meromorphic factors of $F,$ $F^{\prime\prime}$ and $F^{(*)}$ , where $n>2$ .
For $n=3$ , the answer follows immediately from the result stated in the first
Paragraph for $F$ and $F^{\prime}$ . Simply replace $F$ by $F^{\prime\prime}$ so that $F$ ii and $F^{\prime\prime\prime}$ have a
common right meromorphic factor $g$ . Then $g=e^{e\cdot+b}+d$ , where $b,$ $c$ , and $d$ are
constants.

Our main result in this paper is the solution of this problem for $n=4$ . Before
proceeding further, we shall define two functions $g_{1}$ and $g_{2}$ to be equivalent if and
only if there exists a linear transformation $L(z)$ such that $g_{1}(z)=L(g_{2}(z))$ or $g_{2}(z)=$

$L^{-1}(g_{1}(z))$ .
We Prove the following

Theorem 1. Let $F$ be a meromorphic function. If $F,$ $F^{\prime\prime}$ and $F^{(4)}$ have the
same right meromorphic factor $g$ , then $g$ is equivalent to one of the Junctions
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(i) $az^{2}+bz+c$ . For instance: $F(z)=f(z^{2}+c)$ ( $f$ : an entire function),

(ii) $(az^{2}+bz+c)^{-1}$ . For instance: $F(z)=f(1/z^{2})$ ,
(iii) $ae^{b*}+c$ . For instance: $F(z)=f(e^{ll})$ ,
(iv) $(ae^{b\iota}+c)^{-1}$ . For instance: $F(z)=f(1/(e^{u}+c))$ ,
(v) (a cos $(bz+c)+d$). For instance: $F(z)=f(\cos z)$ ,
(vi) $(a$ cos $(bz+c)+d)^{-1}$ . For instance: $F(z)=R(1/(\cos z+d))$

($R$ is a rational function),

$or$

(vii) An elliPtic functnoi of order two. For instance: $F(z)=R(h)$

( $h$ is Wierstnss elliPtic function).

Here $a,$ $b,$ $c,$ $d$ are constants.

Before proceeding with the proof of the theorem, we shall prove the following

Lemma. Let $G$ and $H$ be two nonlinear meromorphic functions with $G\neq aH+b$ ,
where $a$ and $b$ are constants. If $G,$ $G^{\prime\prime},$ $H$ and $H^{\prime\prime}$ have a common right meromor.
Phic factor $g$ , then $g$ has one of the forms $(i)-(vii)$ in Theorem 1.

Proof. Suppose that

(1) $G=p_{1}(g)$ and $G^{\prime\prime}=p_{2}tg$ )

and

(2) $H=q_{1}(g)$ and $H^{\prime\prime}=q_{2}(g)$ ,

where $p$ and $q$ are meromorphic for $i=1$ and 2 and $g$ is entire or $P$ and $q_{\ell}$ are
rational and $g$ is meromorphic.

From equations (1) and (2) we have

(3) $p_{2}tg$ ) $=p_{1}^{\prime\prime}tg$ ) $(g^{\prime})^{g}+p_{1}^{\prime}(g)g^{\prime\prime}$

and

(4) $q_{2}(g)=q_{1}^{\prime\prime}(g)(g^{\prime})^{2}+q_{1}^{\prime}(g)g^{\prime\prime}$ .
Since $G$ and $H$ are linearly dependent one can eliminate $g^{\prime\prime}$ from equations (3)

and (4) and obtain the equation

$t5)$ $(g^{\prime})^{2}=R(g)$

where
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If $R(g)$ is transcendental, then it follows using a result of Clunie ([5], p. 54)

and an argument of Briot and Bouquet ([3], p. 286) that $R(z)$ must be a rational
function.

We now consider several cases.
If $g$ is a polynomial, one readily verifies from equation (5) that $g$ is of second

degree. SuPpose now that $g(z)$ is $a$ . rational function, i.e., $g(z)=g_{1}(z)/g_{2}(z)$ , where
$g_{1}(z)$ and $g_{2}(z)$ are polynomials and $g_{2}(z)$ is not a constant, then either $R(z)$ is a
Polynomial or $R(z)=S_{1}(z)/S_{2}(z)$ , where $S_{\ell}$ are Polynomials for $i=1,2$ and $S_{2}(z)=$

$(z-a)$“ ($n$ a positIve integer) and $g(z)-a$ different from zero. In other words,
either $R(z)$ is a Polynomial or $g(z)=a+1/t(z)$ , where $t(z)$ is a polynomial. If $R(z)$

is a polynomial, we count the poles of $g$ and $g^{\prime}$ and conclude from this count that
$R(z)$ is either of degree 3 or 4. Hence we may write

$R(z)=(z-a_{i})^{k_{1}}(z-a_{2})^{k_{2}}(z-a_{8})^{k_{3}}(z-a_{4})^{k_{4}}$

with $k_{1}+k_{2}+k_{3}+k_{4}\leqq 4$ .
We may assume at this point without any loss of generality, that the degree

of $g_{1}$ is not equal to the degree of $g_{2}$ . The orders of the zeros of $g(z)-a$ for $i=$

$1,2,3,4$ indicate that either $k_{1}=1$ or $g(z)-a_{l}\neq 0$ for $i=1,2,3,4$ . If we now replace
$g$ in equation (5) by $g_{1}/g_{2}$ we find by a simple degree argument that $k=1$ for at
most one $i$ and in fact $g(z)-a_{\ell}\neq 0$ . Thus, in any case $g(z)$ has the form $g(z)=$

$a+1/t(z)$ .
Using equation (5) once more, we readily conclude that $t(z)$ is a polynomial of

degree two.
This completes our discussion for the case when $g(z)$ is a rational function.
We now assume that $g(z)$ is transcendental. Then we have

$R(g)=\frac{Q_{1}(g)}{Q(g)}$ ,

where $Q_{1}$ and $Q_{2}$ are relatively prime polynomials. If $Q_{2}$ is nonconstant, then $g$

must omit some value, say $a$ , so that $1/(g-a)$ is entire. Thus, we may assume
without any loss of generality that $g$ is an entire function. Thus, we have

$(g^{\prime})^{2}Q_{2}(g)=Q_{1}(g)$ .
Hence, $g$ is entire and has at least one finite Picard exceptional value and at

least one other completely ramified value. Thus, $g$ must be a constant, which of
course is not the case. It follows that $Q_{2}$ must be a constant and $R(z)$ must be a
polynomial. Since $g$ cannot have more than four completely ramified values, it
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follows further that the degree of $R$ is at most 4. Also, if $g$ has a pole, one
easily verifies that the degree of $R$ is greater than two, and if it is entire, it

follows from a result of Wittich [41 that the degree of $R(z)=2$ . When $R$ is of

degree 3 or 4, one concludes from (5) that $g$ is an elliptic function of second

order. When $R$ is of degree 2, we have

$(g^{\prime})^{2}=a(g-b)^{2}+c$

and consequently that
$g=a^{\prime}$ cos $(b^{\prime}z+c^{\prime})+d$

or
$g=a^{\prime}e^{e^{\prime}*}+d$ ,

where $a,$ $b,$ $c,$
$a^{\prime},$ $b^{\prime},$

$c^{\prime}$ and $d$ are constants. This completes the $pr\ovalbox{\tt\small REJECT} f$ of the

lemma.
We now proceed with the proof of Theorem 1.

Proof. We set $G=F$ and $H=F^{\prime\prime}$ . Suppose that $G=aH+b$ , where $a$ and $b$ are
constants and $a\neq 0$ , then we have $F=aF^{\prime/}+b$ , so $F$ is entire and has the form

$a_{0}+b{}_{1}P1^{\cdot}+b_{2}e^{a_{2^{*}}}$ , $a_{1}=\pm a_{2}$ $(a\neq 0, i=1,2)$ .
Hence,

$F^{\prime\prime}=b_{f}e^{u_{1}}+b_{4}e^{a_{2}}$ and $F^{(4)}=b_{5}e^{a_{1}}+b_{0}e^{\alpha_{2}}$ ,

where $a’ s$ and $b’ s$ are constants.
By virtue of an earlier result of the first author [21, $F,$ $F^{\prime\prime}$ and $F^{()}$ are pseudo.

prime. Thus, either the left factors are rational functions or the right factors are

polynomials. In the former case we have

(6) $F^{\prime\prime}=R_{1}(g)=b_{f}e^{a_{1^{*}}}+b_{4}e^{a_{2^{*}}}$ ,

and
(7) $F^{(4)}=R_{2}(g)=b_{5}e^{a_{1}}+b_{6}e^{a_{2}}$ ,

where $R_{1}$ and $R_{2}$ are rational functions. Solving the system (6), (7) for $p_{1^{\iota}}$ we

get

(8) $p_{1}\cdot=R,(g)$ ,

where $R_{8}$ is a rational function. Since $F$ is entire, one may assume without any

loss of generality that $g$ is also entire. Thus, it is easy to conclude that

$g=a+be^{\iota*}$ ,

where $a,$
$b$ and $c$ are constants.
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Suppose now that the right factors are polynomials. Then it follows from [61

that the polynomials must be of degree two. This completes the discussion of the

case $F=aF^{\prime\prime}+b$ The case where this equality does not hold follows from the

Lemma and the proof of our Theorem is complete.

For $n\geqq 5$ , the problem remains unsolved. It is worth remarking that while

the general problem of finding common right factors of $F$ and $F^{\prime\prime}$ is a difficult
one, one can obtain several interesting results when certain assumptions are made

about the corresponding left factors. For example, by an argument somewhat
more cumbersome than the one used to prove Theorem 1, one can prove

Theorem 2. Let $F$ be a nonlinear meromorphic function. There do not exist
meromorphic functions $P$ and $g$ with $g$ not identically constant such that $F=P(g)$

and $F^{\prime\prime}=p^{\prime}tg$ ) where $P$ and $P^{\prime}$ are nonlinear.

A similar result can be proven with $p^{\prime\prime}$ replacing $p$ in Theorem 2.
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