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1. Introduction. Let {X,, —co<n<oo} be a strictly stationary process.
Denote by S, the sum X, +X,+---+X, (S,=0), and by S} the maximum partial
sumorsn_ax S;. If EX,=0, then, as is well-known, asymptotic behaviors of S, and
S* are Jdéifferent. But, if EX,; =u>0, then asymptotic behaviors of S} are very simi-
lar to the ones of S,.

In the case where {X,} is an independent sequence with EX;=pu>0, Rogozin
and Ahmad proved the speed of convergence of the distribution of (S¥ —npu)/
\/n to the normal distribution. In this note, we shall prove three theorems for Sy
under the condition EX,=pu>0 without the assumption of independence. The

first theorem is related to the speed of convergence of the distribution of (S} —nu)/

J/n to the normal distribution (Theorem 1). The second is the weak convergence
to the Wiener process on [0, 1] (Theorem 2). And the last is a functional law of
the iterated logarithm (Theorem 3).

Remark. In the first manuscript of this note, the author obtained the same
conclusions as ones of and 3 under more restrictive conditions by a
different method from the present one. The present method proving and
3 was suggested by Professor T. Mori. '

Acknowledgement. The author would like to thank Professor T. Mori for his
useful comments on the first manuscript.

2. Preliminaries and results. Let {X,, —co<n<oo} be a strictly stationary
process with EX,=u>0 and a finite variance E(X,;—p)*<co. In what follows,
o denotes a positive constant. .

Now introduce the following notation:
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and

4k =sup

x

P(if—\};:ﬂ <x)-8(x)|
where S,’}‘=0n§1?§ns ; and &(x)= ﬁ Siw e 324y,

Theorem 1. Suppose that for some >0 and K >0,
2.1) E|S,—np|?* < Kn(2+9)/2
for all n. Then we have
2.2) 4% =0(max {4,, n~%/(4+20})

Define two processes X,(f) and X*(t), 0<t<1 as follows

2.3) X0 G-I, 0stst

and

| X30= 5 G-, 01

where [x] denotes the integer part of a nonnegative number x.

Theorem 2. If X,(-) converges in distribution to the Wiener process W on
[0, 1] in the Skorohod J,-topology, then X*(-) converges in distribution to W in
the Skorohod J-topology.

For each w € Q, define the functions h,(t, ®) and h*(t, w) (n=3) in C=C[0, 1]
as follows
(Sy(w)—kw)/x(n) for t=k/n, k=0,1,...,n

@) hGw={ "
linearly interpolated for t e [k/n, (k+1)/n] k=0, 1,...,n—1

and

(SHw)—kw)x(n)  for t=k/n, k=0, 1,..., n

h: t = { . "
(¢ @) linearly interpolated for t € [k/n, (k+1)/n] k=0, 1,...,n—1

where y(n)=(20%nloglog n)'/2. _
We denote by K the subset of C consisting of all functions h(t) absolutely
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1
continuous with respect to Lebesgue measure such thatS h()?dt<1, where h(t)
0o

stands for the Radon-Nikodym derivative of h. We say that a process g,(t, ®),
0<t<1,n=1,2,... in C obeys Strassen’s law of the iterated logarithm (SLIL) if,
for almost every w € Q, the sequence of functions g,(t, w) is precompact in C with
supremum norm and its derived set is the set K.

Theorem 3. If h,(t, w) obeys SLIL, then h}(t, w) also obeys SLIL.

3. Proofs.
Lemma 3.1. Suppose that, for some >0 and K>0,
(3.1) E|S,—nu[?*9 < Kn(2+9/2
for all n. Then for e>0, we have
(3.2) P(S¥—S,2e0y/n)=0((e/n)*?).
Proof. It is easily seen that, if S} —S,>0, then

Sp—S,= max {(—X;,)+(—X;s5)+ +(=X,)}.
0jsn-1

So we have

P(S*—S,Ze0/n)< jﬁ: P((= X4 )+ +(—X,)Z60./n)

S 5 P(=Xpa )4+ (= X+ (= zooy/+ (=)

"l E|lXj o+ X, — (n—j)p|**? ] )
< J+1 n JI1 by the Markov inequalit
- Jgo (eo/ n+(n—j)p)?+s y q y
_ E|S;—jp** N
= & Go \/Jn T by stationarity of {X,}
<k 3 408 by th t
< mption
=K 2 Golnrim y the assump
<K jirosz n 1
- lrél:l?gn (eoy/ n+ju)t*e2 f=1 (eo )/ n+ju)t*o/2
<K' ¥ 1 =0((e/7)*7).

=1 (o) n+ju)t+ei2

Proof of Theorem 1. Since, for any two random variables X and Y and any
£>0,
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sup |P(X + Y S x)— d(x)|
<sup |P(X <x)— &(x)| + —\715;—8+P(|Y|ge),

putting X =(S,—nu)/o/n and Y=(S*-S,)/a./n, we have

Ay =sup |P(S} —nu =0/ nx)—&(x)|
=sup |P(S,—nu+S¥—S,<06,/ nx)—&(x)|

<sup |P(S,—nu<0y/ nx)—®(x)|+ \/137{ e+P(S¥—S,2¢0./n).
If we set e=n~9%/(4+2%) we have, by [(3.2),

4A¥=0(4,)+ O0(n=4/4+28)) 4 O(n~9/4+28))
This completes the proof of Theorem 1.

and 3 can be proved as immediate consequences of a series of lemmas
that follows.

Introduce two sets {f,} and {F,} of mappings of C=C[0, 1] with uniform
metric to itself as follows: for an x e C, '

f”(X)(t)__-oiug (X(S)—a(n)(t—S)) Oétéls n=1’ 25--'
and
F,,(x)(t)=ossu;; (x(s)—b(n)(t—s)) 0=ZLt<1,n=3,4,...
SsSt
where a(n)=./nu/oc and b(n)=./np/\/20*loglogn. Let us denote by d (,) the
metric on C.

Lemma 3.2. Forall x, yeC,
(3.3) A(fu(x), () =d(x, y) and d(F,(x), F,(y)<d(x, y)
for all n.

Proof. We prove only the former inequality.

A(fu(X)s Su (D) =1£u(X) (1)) = £u(3) (1)) 0=t =1 (say)
=x(s1)—a(n) (to —51)— (¥(s2) —a(n) (to —5,))

‘where f,(x)(to) =x(sy) —a(n)(to —s,) and f,(y)(to)=y(s;)—a(n)(to—s;) (0=sy, s,

<t,). Hence we have
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A(fu(x), f{Y) = x(sy)—a(n) (to— 81) —((s)—a(n)(to—sy)
=x(s1)—y(s)=d(x, y).

Lemma 3.3. Let K be a precompact set in C. Then, for any £>0, there
exists a positive integer N, such that, for all n=ZN,,

(3.4) sug d(f(x), x)£e and supd(F,(x), x)<e.
x€ xeK
Proof. We give the proof for f,. The other can be proved by the same way.
Since K is precompact, there exists a positive number M such that

sup sup |x()|=M,
1

xeK 0S5t

and for given ¢>0, there exists 6 >0 such that for all xe K
|x(s)—x(t)|<e if [s—t]<d.

We choose an integer N, (20) such that a(N,)622M. Then by an easy considera-
tion we have

LX) @®= sup (x(s)—a(n)(t—s) 0=t=1
OV(t—8)=Ssst
and |
x()+ez2fi(x)(OZx() 0=t=1

for all n=N,, where Ov (t—3) denotes max {0, (t—3)}. Thus if n=N,, we have
d(f(x), x)<e for all xe K.

For each integer n, denote by X, (resp. X*) the polygonal function that is
linear on each of the subintervals [(i—1)/n, i/n], i=1, 2,..., n, and has the value

(S;—ip)/o\/n (resp. (S* —ip)/o\/n) at the point i/n.

Lemma 3.4. For any ¢>0, as n— o0,
(3.5) P( sup |X,(t)—X,()|=Ze) — 0.

0sts1

The same result remains valid for X* and X*.

Proof. We show only.

P( sup |X, (- X, (0| 2e)S 3 P(X;—ul2eo/n)
0sts1 =1

=nP(|X,—ul2e0./n) by stationarity of {X,}

X — 2 —
<n IO BE X —pizeoyn |

1 —
= gtz EUX, =% 1X, —plZeoJm) — 0 (n~o0).
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Proof of By [Lemma 3.2, f,’s are continuous mapping from C into
C, by Lemma 3.3, for any x € C, d(f,(x), x)—0 as n— 0, and by direct calculations,
we have f,(X,)=X3} for all n. Hence, by Theorem 5.5[2] and the fact that, by
X,—2, W in D with Skorohod J,-topology implies X, —2- W in C,
we have X* 2, Win C. On the other hand, by X*_2, Win Cim-
plies X} -2, Win D. Hence we have the conclusion of Theorem 2.

Proof of follows immediately from and
the equality F,(h,)(t, w)=h*(t, w).

4. Remarks. The moment condition in Theorem 1 is satisfied by a wide
class of weakly dependent strictly stationary processes, for examples, Markov
processes satisfying Doeblin’s condition [3], ¢-mixing or strong mixing sequences

[6] etc.
From we have the asymptotic normality of S* for a class of sta-

tionary processes {X,} assuming only E|X; —pu|2<oco. For example, see [2].
Sufficient conditions which assure SLIL for h,(, w) are found, for example, in

[4].
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