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1. Introduction. The purpose of this paper is to study the Jacobson radical
of a finite dimensional Lie triple system. Let $T$ be a Lie triple system (L.t. $s.$) over
a field of characteristic $0$ . For an ideal $A$ of $T$, we put $A^{(1)}=[TAA]$ and $A^{(k)}$

$=[TA^{\langle k-1)}A^{\langle k-1)}](k\geqq 2)$ . An ideal $A$ is to be called solvable if there is a positive
integer $k$ such that $A^{(k)}=0$ . If $T$ is finite dimensional, then it contains the unique
maximal solvable ideal $R(T)$ , which is called the radical of $T$. On the other hand,
the Jacobson radical $J_{R}(T)$ of $T$ is defined by intersection of all maximal ideals of
$T$. Then we have the following theorem.

Theorem A. $J_{R}(T)=[TTT]\cap R(T)$ .
Next, let $L$ be the standard imbedding Lie algebra of $T$, i.e. $L=L(T, T)\oplus T$, and
let Rad $L$ (resp. $J_{R}(L)$) be the solvable radical (resp. Jacobson radical) of $L$ . Then
we obtain the following theorem.

Theorem B. $J_{R}(L)=L(T, R(T))\oplus J_{R}(T)$ .

2. Proof of Theorems.

Lemma. $J_{R}(T)\underline{\subseteq}[TTT]$ .

Proof. In the case T$=[TTT]$ , this is trivial. $SowemayassumeT\fallingdotseq[TTT]$ .
If $x\not\in[TTT]$ , then there is a subspace $M$ of $T$ which is complementary to the
subspace $\langle x\rangle$ spanned by $x$ and contains $[TTT]$ . Then $M$ is a maximal ideal of
$T$. Since $J_{R}(T)\underline{\subseteq}M,$ $x\not\in J_{R}(T)$ . Therefore $J_{R}(T)\subsetneqq[TTT]$ .

Proof of Theorem A. If $I$ is a maximal ideal of $T$, then the factor triple system
$T/Iissimpleor(T/I)^{\langle 1)}=0$ . In the former case, $sinceT/Iissimple$ , Imust contain
$R(T)$ . From [1. Theorem 2.21], $T$ is decomposed to $T=B_{0}\oplus R(T)(B_{0}$ is a semi-
simple subtriple system of $T$). Hence $I$ is of the form $M+R(T)$ , where $M$ is a
maximal ideal of $B_{0}$ . Since the semisimple subtriple system $B_{0}$ can be expressed as
the direct sum of simple ideals [1. Theorem 2.9], the Jacobson radical of $B_{0}$ is $0$ .
Hence the intersection of all such maximal ideals of $T$ equals to $R(T)$ . In the latter
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case, since $(T/I)^{(1)}=0,$ $I$ must contain $T^{(1)}$ . Hence the intersection of all such
maximal ideals of $T$ contains $T^{(1)}$ . Considering two case, we have

$T^{(1)}\cap R(T)\underline{\subseteq}J_{R}(T)\underline{\subseteq}R(T)$ .
Since $J_{R}(T)\subseteqq T^{(1)}$ by Lemma, we obtain

$J_{R}(T)=[TTT]\cap R(T)$ .
Corollary. If $T$ is a perfect (i.e. $T=[TTT]$) L. $t.s.$ , then $J_{R}(T)=R(T)$ . In

particular, if $T$ is a semisimple, then $J_{R}(T)=0$ .

Corollary. If $T$ is a solvable L.t.s., then $J_{R}(T)=[TTT]$ .
Proof of Theorem B. In [2] and [3], it is proved that

Rad $L=L(T, R(T))\oplus R(T)$ , (1)

$J_{R}(L)=$ [$L$ , Rad $L$] $=[L, L]\cap$ Rad L. (2)

Hence, we have

$J_{R}(L)=$ [$L$, Rad $L$]

$=[L(T, T)\oplus T, L(T, R(T))\oplus R(T)]$

$=([L(T, T), L(T, R(T))]+L(T, R(T)))$

$\oplus(L(T, T)R(T)-L(T, R(T))T)$

$\underline{\subseteq}L(T, R(T))\oplus([TTT]\cap R(T))$

$=L(T, R(T))\oplus J_{R}(T)$ . (3)

On the other hand, from (1) and Theorem $A$ , we have

$(R(T)\cap[TTT])\oplus L(T, R(T))\subseteqq RadL$

and $J_{R}(T)\oplus L(T, R(T))\subseteqq Rad$ L. (4)

Since $L=L(T, T)\oplus T$,

$[L, L]=[L(T, T)\oplus T, L(T, T)\oplus T]$

$=L(T, T)\oplus L(T, T)T$

2 $L(T, R(T))\oplus(R(T)\cap[TTT])$

$=L(T, R(T))\oplus J_{R}(T)$ . (5)

Therefore by (2), (4) and (5), we have

$J_{R}(L)=RadL\cap[L, L]$

$\supseteqq L(T, R(T))\oplus J_{R}(T)$ . (6)
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From (3) and (6), the theorem is proved.

Corollary. If $T$ is a perfect L.t.s. and $J_{R}(T)=0$, then $J_{R}(L)=0$ .
Corollary. If $T$ is a perfect L.t.s., then $J_{R}(L)=RadL$ .
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