# ON THE JACOBSON RADICALS OF LIE TRIPLE SYSTEMS 

By<br>Noriaki Kamiya<br>(Received Feb. 1, 1980)

1. Introduction. The purpose of this paper is to study the Jacobson radical of a finite dimensional Lie triple system. Let $T$ be a Lie triple system (L.t.s.) over a field of characteristic 0 . For an ideal $A$ of $T$, we put $A^{(1)}=[T A A]$ and $A^{(k)}$ $=\left[T A^{(k-1)} A^{(k-1)}\right](k \geqq 2)$. An ideal $A$ is to be called solvable if there is a positive integer $k$ such that $A^{(k)}=0$. If $T$ is finite dimensional, then it contains the unique maximal solvable ideal $R(T)$, which is called the radical of $T$. On the other hand, the Jacobson radical $J_{R}(T)$ of $T$ is defined by intersection of all maximal ideals of T. Then we have the following theorem.

Theorem A. $\quad J_{R}(T)=[T T T] \cap R(T)$.
Next, let $L$ be the standard imbedding Lie algebra of $T$, i.e. $L=L(T, T) \oplus T$, and let $\operatorname{Rad} L$ (resp. $J_{R}(L)$ ) be the solvable radical (resp. Jacobson radical) of $L$. Then we obtain the following theorem.

Theorem B. $\quad J_{R}(L)=L(T, R(T)) \oplus J_{R}(T)$.

## 2. Proof of Theorems.

Lemma. $\quad J_{R}(T) \subseteq[T T T]$.
Proof. In the case $T=\left[\begin{array}{c}T\end{array} T\right]$, this is trivial. So we may assume $T \neq[T T T]$. If $x \notin[T T T]$, then there is a subspace $M$ of $T$ which is complementary to the subspace $\langle x\rangle$ spanned by $x$ and contains [TTT]. Then $M$ is a maximal ideal of $T$. Since $J_{R}(T) \cong M, x \notin J_{R}(T)$. Therefore $J_{R}(T) \subseteq[T T T]$.

Proof of Theorem A. If $I$ is a maximal ideal of $T$, then the factor triple system $T / I$ is simple or $(T / I)^{(1)}=0$. In the former case, since $T / I$ is simple, $I$ must contain $R(T)$. From [1. Theorem 2.21], $T$ is decomposed to $T=B_{0} \oplus R(T)$ ( $B_{0}$ is a semisimple subtriple system of $T$ ). Hence $I$ is of the form $M+R(T)$, where $M$ is a maximal ideal of $B_{0}$. Since the semisimple subtriple system $B_{0}$ can be expressed as the direct sum of simple ideals [1. Theorem 2.9], the Jacobson radical of $B_{0}$ is 0 . Hence the intersection of all such maximal ideals of $T$ equals to $R(T)$. In the latter
case, since $(T / I)^{(1)}=0, I$ must contain $T^{(1)}$. Hence the intersection of all such maximal ideals of $T$ contains $T^{(1)}$. Considering two case, we have

$$
T^{(1)} \cap R(T) \cong J_{R}(T) \cong R(T) .
$$

Since $J_{R}(T) \subseteq T^{(1)}$ by Lemma, we obtain

$$
J_{R}(T)=[T T T] \cap R(T)
$$

Corollary. If $T$ is a perfect (i.e. $T=[T T T]$ ) L.t.s., then $J_{R}(T)=R(T)$. In particular, if $T$ is a semisimple, then $J_{R}(T)=0$.

Corollary. If $T$ is a solvable L.t.s., then $J_{R}(T)=[T T T]$.
Proof of Theorem B. In [2] and [3], it is proved that

$$
\begin{align*}
& \operatorname{Rad} L=L(T, R(T)) \oplus R(T),  \tag{1}\\
& J_{R}(L)=[L, \operatorname{Rad} L]=[L, L] \cap \operatorname{Rad} L . \tag{2}
\end{align*}
$$

Hence, we have

$$
\begin{align*}
J_{R}(L)= & {[L, \operatorname{Rad} L] } \\
= & {[L(T, T) \oplus T, L(T, R(T)) \oplus R(T)] } \\
= & ([L(T, T), L(T, R(T))]+L(T, R(T))) \\
& \oplus(L(T, T) R(T)-L(T, R(T)) T) \\
\cong & L(T, R(T)) \oplus([T T T] \cap R(T)) \\
= & L(T, R(T)) \oplus J_{R}(T) . \tag{3}
\end{align*}
$$

On the other hand, from (1) and Theorem A, we have

$$
\begin{align*}
& (R(T) \cap[T T T]) \oplus L(T, R(T)) \cong \operatorname{Rad} L \\
& J_{R}(T) \oplus L(T, R(T)) \cong \operatorname{Rad} L . \tag{4}
\end{align*}
$$

and
Since $L=L(T, T) \oplus T$,

$$
\begin{align*}
{[L, L] } & =[L(T, T) \oplus T, L(T, T) \oplus T] \\
& =L(T, T) \oplus L(T, T) T \\
& \supseteqq L(T, R(T)) \oplus(R(T) \cap[T T T]) \\
& =L(T, R(T)) \oplus J_{R}(T) . \tag{5}
\end{align*}
$$

Therefore by (2), (4) and (5), we have

$$
\begin{align*}
J_{R}(L) & =\operatorname{Rad} L \cap[L, L] \\
& \supseteqq L(T, R(T)) \oplus J_{R}(T) . \tag{6}
\end{align*}
$$

From (3) and (6), the theorem is proved.
Corollary. If $T$ is a perfect L.t.s. and $J_{R}(T)=0$, then $J_{R}(L)=0$.
Corollary. If $T$ is a perfect L.t.s., then $J_{R}(L)=\operatorname{Rad} L$.

## References

[1] W. G. Lister: A structure theory of Lie triple systems. Trans. Amer. Math. Soc., 72, 217-242 (1952).
[2] K. Meyberg: Lecture on Algebras and triple systems. The University of Virginia, (1972).
[3] N. Kamiya: On the Jacobson Radicals of Infinite Dimensional Lie Algebras. Hiroshima Math. Journal., 9, 37-40 (1979).

