Yokohama Mathematical Journal Vol. 28, 1980

ON THE JACOBSON RADICALS OF LIE TRIPLE SYSTEMS

By

Noriaki Kamiya

(Received Feb. 1, 1980)

1. Introduction. The purpose of this paper is to study the Jacobson radical of a finite dimensional Lie triple system. Let T be a Lie triple system (L.t.s.) over a field of characteristic 0. For an ideal A of T, we put $A^{(1)} = [T A A]$ and $A^{(k)} = [T A^{(k-1)} A^{(k-1)}]$ ($k \ge 2$). An ideal A is to be called solvable if there is a positive integer k such that $A^{(k)} = 0$. If T is finite dimensional, then it contains the unique maximal solvable ideal R(T), which is called the radical of T. On the other hand, the Jacobson radical $J_R(T)$ of T is defined by intersection of all maximal ideals of T. Then we have the following theorem.

Theorem A. $J_R(T) = [T T T] \cap R(T)$.

Next, let L be the standard imbedding Lie algebra of T, i.e. $L = L(T, T) \oplus T$, and let Rad L (resp. $J_R(L)$) be the solvable radical (resp. Jacobson radical) of L. Then we obtain the following theorem.

Theorem B. $J_R(L) = L(T, R(T)) \oplus J_R(T)$.

2. Proof of Theorems.

Lemma. $J_R(T) \subseteq [T T T]$.

Proof. In the case T = [T T T], this is trivial. So we may assume $T \neq [T T T]$. If $x \in [T T T]$, then there is a subspace M of T which is complementary to the subspace $\langle x \rangle$ spanned by x and contains [T T T]. Then M is a maximal ideal of T. Since $J_R(T) \subseteq M$, $x \in J_R(T)$. Therefore $J_R(T) \subseteq [T T T]$.

Proof of Theorem A. If I is a maximal ideal of T, then the factor triple system T/I is simple or $(T/I)^{(1)} = 0$. In the former case, since T/I is simple, I must contain R(T). From [1. Theorem 2.21], T is decomposed to $T=B_0 \oplus R(T)$ (B_0 is a semisimple subtriple system of T). Hence I is of the form M+R(T), where M is a maximal ideal of B_0 . Since the semisimple subtriple system B_0 can be expressed as the direct sum of simple ideals [1. Theorem 2.9], the Jacobson radical of B_0 is 0. Hence the intersection of all such maximal ideals of T equals to R(T). In the latter

NORIAKI KAMIYA

case, since $(T/I)^{(1)} = 0$, I must contain $T^{(1)}$. Hence the intersection of all such maximal ideals of T contains $T^{(1)}$. Considering two case, we have

 $T^{(1)} \cap R(T) \subseteq J_R(T) \subseteq R(T).$

Since $J_R(T) \subseteq T^{(1)}$ by Lemma, we obtain

$$J_R(T) = [T T T] \cap R(T).$$

Corollary. If T is a perfect (i.e. T = [T T T]) L.t.s., then $J_R(T) = R(T)$. In particular, if T is a semisimple, then $J_R(T)=0$.

Corollary. If T is a solvable L.t.s., then $J_R(T) = [T T T]$.

Proof of Theorem B. In [2] and [3], it is proved that

$$\operatorname{Rad} L = L(T, R(T)) \oplus R(T), \tag{1}$$

$$J_R(L) = [L, \operatorname{Rad} L] = [L, L] \cap \operatorname{Rad} L.$$
(2)

Hence, we have

$$J_{R}(L) = [L, \operatorname{Rad} L]$$

$$= [L(T, T) \oplus T, L(T, R(T)) \oplus R(T)]$$

$$= ([L(T, T), L(T, R(T))] + L(T, R(T)))$$

$$\oplus (L(T, T)R(T) - L(T, R(T))T)$$

$$\subseteq L(T, R(T)) \oplus ([T T T] \cap R(T))$$

$$= L(T, R(T)) \oplus J_{R}(T).$$
(3)

On the other hand, from (1) and Theorem A, we have

$$(R(T) \cap [T T T]) \oplus L(T, R(T)) \subseteq \text{Rad } L$$

$$J_R(T) \oplus L(T, R(T)) \subseteq \text{Rad } L.$$
(4)

and

(4)

(6)

Since $L = L(T, T) \oplus T$,

$$[L, L] = [L(T, T) \oplus T, L(T, T) \oplus T]$$

= $L(T, T) \oplus L(T, T)T$
 $\supseteq L(T, R(T)) \oplus (R(T) \cap [T T T])$
= $L(T, R(T)) \oplus J_R(T).$ (5)

Therefore by (2), (4) and (5), we have

$$J_R(L) = \operatorname{Rad} L \cap [L, L]$$

$$\supseteq L(T, R(T)) \oplus J_R(T).$$

108

From (3) and (6), the theorem is proved.

Corollary. If T is a perfect L.t.s. and $J_R(T)=0$, then $J_R(L)=0$.

Corollary. If T is a perfect L.t.s., then $J_R(L) = \text{Rad } L$.

References

- [1] W. G. Lister: A structure theory of Lie triple systems. Trans. Amer. Math. Soc., 72, 217–242 (1952).
- [2] K. Meyberg: Lecture on Algebras and triple systems. The University of Virginia, (1972).
- [3] N. Kamiya: On the Jacobson Radicals of Infinite Dimensional Lie Algebras. Hiroshima Math. Journal., 9, 37-40 (1979).

23–11 Saiwai-cho Chigasaki, 253 Japan