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ABSTRACT: Some results on the nonuniform bound for the distance between the
distribution of normalized partial sums of i.i.d. random variables and a Chebyshev series,
are given.

1. Introduction and results

Let {X,, k=1, 2,...} be a sequence of independent and identically distributed
random variables with EX,=0, EX?=1 and distribution function F(x). F,(x)
denotes the distribution function of the normalized partial sum n~1/2S,, where
S,=X;+X,+--+X,, and &(x) denotes the standard normal distribution function.
Let p=0 be an integer. Write

Rnp(x) = IFn(x) - an(x)l s
where G,o(x)=®(x) and for p=>1

Gop() = B(x)+ @r) 12712 3 n320(x).

Jj=1

Here Q;(x) are polynomials of degree 3j—1 defined by Ibragimov without pre-

-supposing the existence of moments of higher order than the second. That is, on

the basis of a given arbitrary numerical sequence g, =0, f,=1, B3, Ba4,..., we form
polynomials Q(x) in such a way that their coefficients are expressed in terms of f,,
Bzs--.» Bj+2 In the same way as the coefficients of the classical polynomials Q;(x) in
the Chebyshev series corresponding to the n~1/2S, are expressed in terms of the
cumulants k4, K5,..., K;+, of the X; (see Section 38). Let o, =0, ay,=1, a3,
04,... be the ““‘moment” sequence corresponding to the ‘‘cumulant™ sequence f,=0,

B2=1, B3, Bss-... (See also [8].

When we consider the case p=1, we further suppose Cramér condition
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© 11m 1 Sup Lf(Hl<1

to be satlsﬁed where f(®)=Eei*Xs,
It has been shown that in order that for 0<d< 1,

~1+(p+8)/2 +2
(1.1) ,Ex" P sup(1+|x|)" R, (x)< 00,

it is sufficient that

EIX,JP**0 <0 for 0<d<1,
(1.2) EIX,|**2log(1+|X,)<c0  for 8=0,
«;=EX{, j=1,2,...,p+2,

under Cramér condition (C) for p=1. (Thc case p=0 is due to Heyde [7] and the
case p=1 due to the author [11]) [(1.2) is also necessary for [(1.1) to hold, when

p=0 ([5D or when p=1 and 0<d<1 ( -
On the other hand, the conditions for

(1.3) sup (1+|x|)P*2+¢ R, (x)=0O(n~(»+12)

are known. (See [2], and [10].) But it is easily shown that the nonuniformity
of (1.3) cannot be improved in the sense that the power of (1+|x|) cannot be re-
placed by a higher one, under E|X,|P*?*4<c0. (See[11].)

Now, in connection with [(1.1) and [(1.3), it seems natural to ask whether

Ms

(1.4)

BT P2 sup (14 |x[)*2HO R, (x)

converges for 0<é<1 under E|X,|P*2*4< 00, or not. So far as the author knows,
this is not yet solved. This paper is concerned with this convergence problem.
We recall here that, if =0, then converges under E|X,[P*2]log(1+|X,|)< o,
as we have seen in |(1.1).

Let L(x) be a slowly varying function which is continuous and eventually non-
decreasing.

We state our theorems.

Theorem 1. Let p be a nonnegative integer and 0<é<1. If E|X,[P+2+%< o0,
«;=EX{, j=1,2,..., p+2, and, for p21 if Cramér condition (C) is satisfied, then

(L.5) 5, WAL eI R, (L)) < oo,

Jfor all ¢>0.
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This theorem says that if we put x=c¢(L(n))!/2 instead of taking suprimum of x
in then this series converges. This result is related to Theorem 1 of Michel
[12], which is concerned with probabilities of moderate deviations.

Furthermore we have the following.

Theorem 2. Let p be a nonnegative integer and 0<d<1. In order that

e 2]

(1.6) nmIH 4912 (log n)i+(+ 912 R, (c(log n)!1?) < oo,

n=1

Jor all ¢>0, it is necessary and for p=0 or for distributions satisfying (C) also
sufficient that

E|X1|p+2+6< e
and
a;=EX{, j=1,2,..,p+2.
Instead of we can easily prove the following.

Theorem 3. Let p be a nonnegative integer and 0<d<1. In order that
a0
(1.7) sup (1+|x[)p*+2+8 3% p~1+(p+9I2 R, (x)< 0,
x n=1

it is necessary and for p=0 or for distributions satisfying (C) also sufficient that
CE|X, Pt < oo
and
a;=EX{, j=1,2,.., p+2.
Finally, we shall show a simple result related to [Theorem 2.
Theorem 4. Let p be a nonnegative integer and 0<8<1. In order that
(1.8) (log !+ @972 R, (c(log n)!/2) =O(n~#+012),

for each ¢>0, it is necessary and for p=0 or for distributions satisfying (C) also
sufficient that

(1.9) P(|X{|>z)=0(z"(p*2+8)) g5 z—o00,
which is equivalent to

(1.10) | sup (1+ |x|)P+2+8 R, (x) = O(n=@+)/2),
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2, Proof of Theorem 1

In the following, we shall use C as a positive constant which may depend on p
and differ from one expression to another.

First, we show some properties concerning the eventually nondecreasing slowly
varying function L(x).

We fix ¢>0in in Theorem 1, and define a(m) by

(2.1) m=c2a(m)L(a(m)),

namely, n=a(m) is an inverse function of m=c2nL(n). Without loss of generality,
we suppose L(x)=1, then

nL(n)=n
so that
m=c2a(m)L(a(m)) = c2a(m).

By the monotoneness of L(x) for large x,
L(m)= L(c*a(m))= -é— L(a(m)) for all large m.

Therefore
2.2) a(m)=m/(c*L(a(m))) = Cm/L(m) for all large m.
By Theorem 1.5 of Seneta [15],

L(m) = CL(m/L(m)) = CL(Ca(m)) < CL(a(m)),
because of Hence
2.3) a(m)=m/(c*L(a(m))) £ Cm/L(m) for all large m.

Now we proceed to the proof of Theorem 1. Without loss of generality, we
assume c=1. We use here the following nonuniform estimates in the central limit °
theorem:

n o+
s )5 C T T by 472 4E9)
n +
(2'4) + (n1/2(1+lxl))p+3 S|a|§nl/2(1+|x|) Iulp 3dF(u)

1\ n(p+2)(p+3)/2}
+4y (s0p |71+ 25) T e
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under E|X,|P*2< oo for some integer p=>0, where A,=0 or 1 according as p=0 or
p21, and r=(15E|X|3)~!. The case p=0 is given by Bikelis [1] and the case
p=1 due to Osipov [14].

By

El n—1+(p+6)/2(L(n))1+(p+6)/2Rnp((L(n))1/2)
<c¥ {n‘”"”(L(n))"/ZS |u|P*2d F(u)
n=1 |“l>n“2(l+(L(n))”2)

+nm3/2+8/2(, (n))—1/2+a/2g |u|P+3dF(u)}~

ul Sn1/2(1+ (L(n)4/2)
+CA, S ni+erez (L (n))—1/2+a/2( sup | £(0)| + L)",,(p+z)(p+3)/2
Pa=r ED 2n
EII +12+I3 ’ .

say. Under Cramér condition (C), I; <oco is trivial. Now,

I;=C 3 w2 (L)% e lulP2dFw)

n=1 lu|>n1/2(1+(L(n))1/2)

sc g wnramr 5 julP*2dF(w)
n=1 ) m=[nL(n)] Jm<u2S(m+1) .
© la(m)+11

SC Y mPrd2P(m<Xis (m+1)) 21 n~1*%12(L(n))%/2,
m=1 n=

where a(m) is the one defined in (2.1) and [¢] is the integer part of . From
[cm/L(m)1+1

LEC 3 merd2P(m<X3s(m+1)) 8 no1+32(L(n))*2
m=1 n=1

A

C § mODI2P(m< X3S (m+1)) (L(Cm]L(m)))"*(Cra] L(m))*?

IA

cmi M+ D12 P(m< X2 < (m+1))

where we have used Theorem 1.5 of Seneta [15] again, so that

I, <CE|X,|P*?***< 0.

AS to Iz,
n=1 |u| Sn1/2 (1+(L(n))1/2)
SC 3 meI2P(m—1)<X2<m) 3  n-¥2+3I2(L(n))-1/2+32
m=1 n=[a(m)]

and by
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I2§C i m(P+3)/2P((m—l)<X§§m) f: n—3/2+6/2(L(n))—1/2+,)/2
m=1 n=[CmIL(m)]

SC 3 merIP(m-1)<XiSm)
X (L(Cm|L(m)))~1/2*%/2(Cm/|L(m))~1/2+%/2
<c mﬁl mE+¥2+912 P((m—1) < X2 < m)
SCE|X P+ <00,
which completes the proof of the theorem.
3. Proof of Theorem 2

The sufficiency part is a special case of Theorem 1, so we need only show the
necessity part. However, it is easily seen that

(3.1) 1—G,(c(log n)!/%)+ G, — c(log n)'/2) =O(n~<*/2Q((log n)'/2)),

where Q(x) is a polynomial of at most degree 3p—1. Therefore, if c¢>(p+8)!/3,
then

"21 n-1+@+8)/2(log ﬁ)l+(p+6)/2{1 — G, (c(log m)!/2) + G, ( — c(log m)!/2)} < oo,

so that from
(3.2) ;‘; n-1+ @+ 81 2(log n)t+®+H/2P(|S,| > c(n log n)!/2) < oo

for all ¢c>(p+0)!/2. Hence, we can see E|X,|P*2*%< o0 by of Davis
41

4. Proof of Theorem 3
We first show the sufficiency part. From we have

o]
(1 + |x|)p+2+6 ngl n'—l+(p+6)/2R"p(x)

sc{a+ixns £ mreor julP*2dF(a)

lu| <nl/2(14|x])

1 i p-3/2+3/2

p+3 F
+(1+IXI)1— n=1 $|u|§n“2ﬂ+|xl)lul d (u)

A & 1\
N —1+(p+a)/z( _) (P+2)(p+3)/2 }
A+ xPr? 2 n |§}1_zg- |l fDI+ 5, ) n

n=1

EJ1+J2+13 ’



NONUNIFORM RATE OF CONVERGENCE 103

say. J;<oo is also trivial under Cramér condition (C). Furthermore,

JLSC(1+|x])? 3 n1+er2 |u|P+2dF (u)
n=1

m=[n(1+]x])?] Sm<u2§(m+1)

X [m/(1+1x1)23+1
SC(1+|x])? X me*D2P(m< X} < (m+1)) 3 p1+9/2
m=1 .

n=1

° é/2
<C(1+|x])* m“’“”zP(m<Xf§(’”+1))((_1w:nF|)—2>

=1
S CE|X,|P***0 <00,

and

[n(1+1x])21+1
J,< ____Q_m_ < n32+8/2 " ﬁ S
= (1+|x]) n=1 m=1 m<u? S(m+1)

C 2 x® _
S g 2 mPYI2ZP(m< X3S (m+1 n-3/2+8/2
= (I+]xp*=? m2=:1 ( i=( ) n=[m/(>1:+|x|)=]

< __<c f: me+N2Pp(m< X2 < (m+1))<__’__’_"____)_”2+6/2
= (A+xD? m = (1 +]x1)?

< CE|X,|Pt?*0 < .

|ulp*3dF(u)

We now proceed to prove'the necessity part. According to Heyde-Leslie
we write

FY(x)=F(x)*(1 = F,(—x—0))
and

G:p(x) = an(x)*(l - an( - x)) s
where * means a convolution. Then implies

@.1) sup 3% niHEOR|FH() — Gh ()| < 0.
Here we show that [(1.7) implies E|X,|?*2<co0. It follows from that

(7 a+ixpee (£ nrveronR,, ()

®© dx

since 6>0. Therefore,
$ oo (T (14 xR, (0dx <oo

and so
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Sw (L +|x])P*1R,(x)dx < c0 for some n=m, m+1.
Hence, keeping in mind the form of G,,(x), we have
S°° (4P {1 —F (x)+F(—x)}dx<oo  for n=m, m+1,
V]

which implies E|X[P*2<oco. Therefore, we can use the same argument as in

Heyde-Leslie [8].
Letting f,(¢) =S e'** dF (x) and g,,,,(t)=g e'** dG,,(x), we have

S wreor|(” (1,012 19,0 e |

n=1
=@nyz § wrvoror | (7 (5 () -Gl () xedx |
n=1 —-00

[+ ]

s@n {7 (& n e RE )~ Gl e adx
n=

—a0

S@Osup (T mOIRIRN ) ~ Gl (x))) <0
because of (4.1). Hence, we have also in our case
(4.2) S o l{” (f@R =g 0P| <o,
and it is shown in Heyde-Leslie that implies E|X,|P*?*% < 0.

S. Proof of Theorem 4
Note that is equivalent to

(5.1) S.u.” (ulP*2dF (u) =0(z"%),

which was shown by Bikelis for p=0 and by Karoblis for p=1, respectively.
Also, it is shown in Michel that [(1.9) and [(5.1) are equivalent. Therefore, the
equivalency of and is given. Furthermore, follows from [(1.10),

so that the sufficiency part is shown.
It remains to prove the necessity part. First we suppose that X, is symmetric.

From and (3.1),

P(IS,| > c(n log n)!/2) = O(n=0+9)/2(log n)1-+0)12),

if c>(p+0)/2. For symmetric random variables,
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P(IS,|>a,) = 4 P( max [X,>a,)~ — nP(X,|>a,).
2 1=5k=sn 2 ’

Therefore,

P(1X | > (nlog n)1/2)=0((n log n)~(#+2+)/2)

as n— o0, which is

P(1X|>2)=0(z"*2%%)

as z— 0.

Relaxing the restriction of the symmetricity of X, will be handled by the ordi-

nary argument such as, for example, in Heyde-Leslie [8].
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