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§0. Introduction

A real submanifold M of a complex manifold generically inherits what is called
a Cauchy-Riemann (or CR-) structure; that is, there is a subbundle HM of holo-
morphic tangent vectors of the tangent bundle of M having a complex vector space
structure in each fibre H oM for pe M. When M is a real hypersurface with non-
degenerate Levi form, this CR-structure is called a pseudo-conformal structure.
(See [13].)

Pseudo-conformal structures are developed by Burns-Diederich-Shnider [2],
Burns-Shnider [3] [4], Chern-Moser [5], Tanaka [11], Webster
and so on. ’ '

S. Ishihara [6] studied the manifold of dimension 2n+1 (=3) endowed with
(2, J) where 2 is the subbundle of rank 2n (of the tangent bundle TM) with com-
plex structure J. The method of his school ([6], depends on an almost contact
structure (f, &, 0) associated with 2. Inthe point of view from a foliated structure,
the vector field ¢ defines a 1-dimensional foliation, so we shall have some similar
results using a connection analogous to the Vaisman’s second connection on
a Riemannian foliated manifold.

In § 1, we review the facts which was studied in [6], and in § 2, we construct the
connection.

The author wishes to express his hearty thanks to Professor S. Ishihara who
has given many valuable suggestions on the CR-manifolds.

§1. Preliminaries

Let M be a connected differentiable manifold of dimension 2n+1 (= 3) admitting
with (2, J) where 2 is the subbundle of rank 2n of the tangent bundle TM of M
with complex structure J. The pair (2, J) or 2, is called a hyperdistribution with
complex structure J. Let (f, & 0) be an almost contact structure associated with
2, that is, (f, &, 0) is an almost contact structure such that the 1-form 0 anihilates
2 and the restriction of fto 2 coincides with J, Note that there are many choices
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of &, butif [£, I'(2)]=I'(2)and dO is non-degenerate on 2, £ is uniquely determined
such that 8(&)=1. A tensor field S of type (1, 2) is defined by

SX, V)=0LfX, fYI-fLfX, Y1-f[X, fYI+f?[X, Y]+2d0(X, Y)¢,
for X, YeI'(TM), where I'(TM) denotes the set of cross-sections of TM. Note that

for X, YeI'(2). 2 is called torsionless if S(X, Y)=0 for any X, YeI'(2). Set
w=—2d0, and G(X, Y)=w(fX, Y) for X, YeI'(TM). G is called the Levi tensor.
Then, if 2 is torsionless, we have

G(X, Y)=G(Y, X) and G(JX,JY)=G(X,Y),
for any X, YeI'(2). In fact, using the formula (see [6])
G(X, Y)—G(Y, X)=6(S(fX, 6(Y)+S(X, fY)),
the equality G(X, Y)— G(Y, X)=0 follows from S(X, Y)=0 and 6(Y)=0. And,

GUJX, JY)=—2d0(J(JX), JY)=—2d0(— X, JY)
= —2d0(JY, X)=G(Y, X)=G(X, Y).

We denotes the restriction of G to 2 by g. 2 is called to be non-degenerate
if g is non-degenerate.

Almost contact structures (f, &, 6) and (f’, &, ') associated with 2 are said
to be equivalent to each other if there ex1st a non-vanishing function « and vector

field A e I'(2) such that f'=f—0®A, &= (5 —£(A4)) and @’ =aé.

Remark 1. Let (f, & 0) be an almost contact structure associated with 2.
If 2 is torsionless and non-degenerate, there exists an almost contact structure
(f’, &, 0) such that [¢&, I'(2)]=I'(2) associated with 2 which is equivalent to
(f, & 0) (see [9]). Note that [£, I'(2)]<I'(2) is equivalent to .£,0=0 or w({, X)
=0 for any X € I'(2), where ¥ denotes the Lie derivative operator.

In [6], S. Ishihara proved the following theorem.

Theorem. Let M be a 2n+1 (2 3) dimensional manifold admlttlng a hyper-
distribution 2 with complex structure J. Then 2 determmes a pseudo-conformal
structure in M if it is torsionless and non-degenerate.

From now on, we consider only manifolds (M; 2, J) such that 2 is tors1onless
and non-degenerate, and assume that [¢, I'(2)]<I'(2).
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§2. Construction of Connections

In the first, we shall recall the second connection of Vaisman on a Riemannian
foliated manifold (see Vaisman [12]). Let (N, h) be a Riemannian foliated mani-
fold with a Riemannian metric h and an integrable subbundle D;. In this case, there
is the subbundle D, of the subspaces of the tangent space of N which are orthogonal
to those of D, with respect to h. Then Vaisman showed that there is a connection
F uniquely defined by the conditions:

(a) if YeI'(D)), then F yYe I'(D;) for every X € I'(TN);

(b) if X, Y, ZeI(D,), then (Fxh)(Y, Z)=0;

(¢) T(X, Y)=0 if at least one of the arguments is in I'(D;), where T; is the

D;component of the torsion of V (i=1, 2).

Now, we consider (M; 2, J) as above. Let £ be the subbundle of rank one

defined by (. We define h by

hX, Y)=g(X,, Y5)+0(X)0(Y),

for X, YeI'(TM), where Z, denotes the 2-component of ZeI'(TM). Since M
is a foliated manifold, there exists a local coordinate system {U, (x° x!,..., x2")}
such that

(i) |x4Z1, A=0, 1,..., 2n; _

(ii) the integral manifolds of = are given locally by x!=cl,..., x?*=c?" for
constants ¢ satisfying |c?| <1, a=1,..., 2n (cf. [8].

Then {6, dx!,..., dx?"} and {8/0x°, v,,..., v,,} are dual bases for the cotangent
and tangent spaces at each point of U. Here 0=dx°+ %1 t,dx® and v,=0/0x®—

t,-0/0x° e I'(2|U) for suitably chosen functions ¢, (a=1f., 2n). With respect to
such a basis {0/0x°, v,,..., v;,}, we have

1
(hAB)A,B=O,1 ..... 2n = ( 0 g(:,,)

where g,,=g(v,, vy), (a, b=1,..., 2n).
Since h(I'(2), I'(E))=0, we have that TM=2@Z. By this decomposition,
we denote the 2-component (resp. E-component) of Z e I'(TM) by Z, (resp. Zz).

Proposition 1. There exists a connection V uniquely defined by the con-
ditions:
(1) PyYel(2) and VyVeIl(E), for any YeI(2), any Vel(Z) and any
 Xel(TM); Do
(2) (Pxh)(Y, Z)=0 forany X, Y, ZeI'(2) or I'(Z),
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(3) 15(X, Y)=0, if XeI'(2) or YeI'(2), and (X, Y)=0, if Xel(E) or
YeI'(E), where t is the torsion tensor of connection V.

Proof. If there exists a connection 7 satisfying (1), (2) and (3), then, because
of the linearity of / yY in its two arguments, it suffices to obtain the covariant deriva-
tive only when X and Y belong either to I'(2) or I'(%), or X eI'(2), YeI'(E), or,
finally X e I'(Z), Ye I'(2).

Let XeI'(2) and VeI'(E). We have

X, V)=V xV-FyX—-[X, V], —-[X, V]s,
whence, with (1) and (2),
O=1:(X, V)=FP4V-[X, V];,
which defines the value of FyV. Similarly, we have
0=14(X, V)=—F,X—[X, V],,
which defines the value of 7, X.
Next, let X, Y, ZeI'(2). Condition (2) gives
0= 1) (Y, 2)=X -g(Y, Z)— (7 Y, Z)g(¥, 7 x2).

By the same procedure as the construction of Levi-Civita connection and using (3),
we get

29(P xY, 2)=X-g(Y, 2)+ Y-9(X, 2)-Z-9(X, Y)
—g(X’[Ys Z]9)+g(Y3 [Zs X]9)+g(zs [Xs Y]Q)’

whence, taking into account the condition (1), 7 xY is defined.

In the same way, we have VU for V, UeI'(E). Hence the given conditions
define the connection uniquely.

Remark 2. Note that 7 ,£=0. In fact,
0=(V:h) (&, O)=2h(F &, &)=20(F i).
On the other hand, 7 ,£ belongs to I'(Z), hence ¥ £=0.
Now, we define a connection D by

DxZ=VxZ, DyU=F,U and DVX=VVX—%J((VVJ)X)

for any X e I'(2), any U, Ve I'(E) and any Z e I'(TM), where F is the connection in
[Proposition 1. Then, we have
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Lemma. The connection D satisfies the following properties:
(1) DI (2)cI'(2) forany ZeI(TM);
(2) the tensor fields &, J and w are all parallel;
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(3) the torsion tensor T of D satisfies the equalities T(X, Y)= —w(X, Y)¢,

T, JX)=—-J(T(, X)) for any X, YeI'(2).
Proof. (1) and D¢=0 are trivial. For any X e I'(2), we have that
(D)X =D(JX)—J(D:X)
=P IX) = L IW DIX) = IP X+ 5T D)X)
=PV (JX)=J(F X)+ IV X)—V (I X)
=0,
hence D.J=0. To prove that DyJ =0 for any X € I'(2), we note that
2g((Dx))Y, Z)=2g(Dx(JY), Z)—29(J(DxY), Z)
=2g(F x(JY), Z)—29(J(F xY), Z)
=29(F x(JY), 2)+29(V Y, JZ),
for any X, Y, ZeI'(2). By the definition of the connection V, we have
29(P Y, Z)=X -w(JY, 2)+Y-0o(JX, Z)-Z -0(JX, Y)
—o(fLY, Z], X)+o(f[Z, X], V)+o(f[X, Y], Z),
because of the equalities

g(X’ Y)=(O(JX, Y)’ [X’ Y]9=[X’ Y]—e([X’ Y])é:
fIX, Y1=J([X, Y]-6([X, YDE),
and so on. Using the formula
3do(X, Y, Z)=X-o(Y, Z)+Y-o(Z, X)+Z- (X, Y)
we have that _
29((Dx))Y, Z)=3dw(X, JY, JZ)-3d(X, Y, )+ o(S(Y, 2), X)
' +o(X, Z) -, Y)—o(X, Y) o, Z)
+a(X, JY) (¢, JZ)—a(X, JZ)- (&, TY).

On the other hand, dw= —2d20=0 and S(Y, Z)=0 because 2 is torsionless.

Fur-
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ther, w(¢, X) vanishes for any X e I'(2) (see Remark 1). Therefore, we obtain
that g((DxJ)Y, Z)=0. Since g is non-degenerate, we have DyJ =0.

To prove that Dw=0, we note that w(¢, X)=0 for any X eI'(2). Then, for
any X, Y, ZeI'(2) and any We I'(TM), we have

Dyw) (&, X)=W-w(¢, X)—a(Dyé, X)—o(§, DyX)
=0, (From (1) and D¢=0.)

and  (Dxw)(Y, Z)=X- (Y, Z)~w(DxY, Z)~ (Y, DxZ)

=X-9(=JY, Z)—g(Dx(—JY), Z)~g(—JY, DyZ)
, (From DJ=0.)
=—(Dxg)(VY, 2)
=—Fx9)(VY, Z)
=0. (From F xg=0.)

Noting that D,X = V,:X—%J((V‘,J)X)=%([f, X]-J[¢ JX]) and o(JX,JY)=
(X, Y) for any X, Ye I'(2), we have that for any X, Ye I'(2),
(D) (X, Y)=¢- (X, Y)— (DX, Y)— (X, D,Y)
=& (X, V)= 5 {o(& X1, +o(X, [£ Y]
—w(JL¢, JX], Y) - o(X, J[E JYD)}
=5 {&-0X, -, X1, V)-oX, [¢, YD}

+ 5 & oUX, V)= a([E, IX], JV) - (X, [&, JYD}

= T (L) (X, V) +(L)(JX, JY)}
=0, (From that Z.w=—2d.2,0=0.)
For any X, YeI'(2), we have that

T(X, Y)=DyY—DyX —[X, Y],—[X, Y1z
=Ts(X, V)-[X, Y];
=—0([X, Y]}
=—-o(X, Y)¢,

and
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T(¢, JX)=DyJX) D¢ —[¢, JX]
=[& JX1=- 5 I D)X~ [&, IX]

= 5 UL& X1-[¢, JXT),
—J(T(, X))=—J(D;X — Dyl ~[&, X1)= —J(DX —[&, X])
= —J(I& X1- L 51, IX1-J18 XD~ XD

= 2 WI& X1-[¢, JXD).
Thus (3) is proved.

Remark 3. The conditions (1) and (2) in lemma imply that g and 6 are parallel.
Because, for any X € I'(2) and Z € I'(TM), we have that

(D) (E)=Z-0(§)—6(D;£)=0,  (From D¢=0 and 6(¢)=1)
D0)(X)=Z-0(X)—6(D,X)=0, (From (1) and 6(X)=0)
whence 0 is parallel.
For any X, YeI'(2) and Z e I'(TM), we have
Dz9)(X, V)=Z-0(JX, Y)—w(J(D;X), Y)—w(JX, D;Y)
=Z-o(JX, Y)—w(Dz(JX), Y)—w(JX, D;Y) (From DJ=0)
=(Dzw)(JX, Y)
=0,
whence g is parallel.

Theorem. There exists a unique connection D on M satisfying the conditions
(a), (b) and (¢):
(@) DiI(2)cI(2) forany ZeI(TM);
(b) J, ¢ and w are all parallel;
(¢) the torsion tensor T of D satisfies the equalities T(X, Y)=—w(X, Y)¢,
T, JIX)=—-J(T(, X)), forany X, YeI(2).

Proof. The existence of such a connection D is proved in above. We assume
that there exist two connections D and D’ satisfying (a), (b) and (c). Let T (resp. T")
be the torsion tensor of D (resp. D’). From (b) and Remark 3, we have that

(Dx9)(Y, Z)=0=(Dxg)(Y, Z), forany X,Y,Zel(2)

and from (c), we have that
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T,(X, Y)=0=T,(X,Y) forany X, YeI(2).

By those facts and (a) and non-degeneracy of g, we have DyY=D%Y for any X,
YeI'(2). 1t is evident that D,V=D,V for any ZeI'(TM) and VeI(Z), from
DE=0=D’¢é. For any X € I'(2), we have that

DX =Dyl +[&, X1+ T, X)=[¢, X1+ T(, X),
and
| DX =—JD(JX)=—J[¢, JX]-J(T(, JX))
=—J[, JX]-T(, X),

whence D X = —é—([é, X]—-J[¢, JX]). Thus we have D.X =D;X for any X e ['(2).

Therefore we complete the proof.

We shall give a geometric interpretation of the vanishing of the torsion of D.
We recall the concept of pseudo-conformal vector fields (see [6]).

A transformation ¢ of M is called a pseudo-conformal mapping if ¢ satisfies
that ¢,(X) belongs to I'(2) for any X e I'(2) and ¢,J =J¢,, where ¢, denotes the
differential mapping of ¢. A vector field X is called a pseudo-conformal vector field
if any local transformation ¢, of M generated by X is always a pseudo-conformal
transformation. By definition, X is a pseudo-conformal vector field if and only if
Lyx0=ab and £yJ =0 where « is a function.

Proposition 2 (see [13]). The vector field ¢ is a pseudo-conformal vector field
if and only if T(£, X)=0 for any X € I'(2).

Proof. We have £,0=0 and (£ J)(X)=[¢, JX]—J[¢, X] for any X e I'(2).
On the other hand, we have

T(¢, X)=DgX —Dy&—[¢, X]
=[¢ X1- 5 J([& JX1- I XD—[& X]

J([E, IX]-JIE, XD).

Nlr—

Thus T(&, X) vanishes if and only if (#£,J)(X) vanishes. Therefore we have the
assertion.
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