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ABSTRACT: We introduce a new invariant I'(a), a closed subsemigroup of the dual of
G, of a C*-dynamical system (a, G, a) where a is a C*-algebra, and G is a locally compact
abelian group with an action a on a. We show that the crossed product a X G is simple
if and only if a is a-simple (i.e. a does not have any non-trivial a-invariant ideals) and f’(a)
equals the dual of G. We discuss some cases where f(a) coincides with the Connes spec-
trum I'(a). Finally we give examples of simple crossed products of Cuntz algebras by
locally compact abelian groups.

§1. Introduction

In a paper by D. Olesen and G. K. Pedersen the Connes spectrum I'(x)
[6] of a C*-dynamical system (a, G, «), with a locally compact abelian group G,
plays an important role in characterizing primeness of the crossed product a X 4 G.
We introduce a new invariant [(«), which is a closed subsemigroup of I'(«), and show
that I(e) is relevant in characterizing simplicity of ax,G. After I'(«) being intro-
duced, our results and methods are quite similar to the prime case above-mentioned.

By using a characterization of [(«) in terms of ideals of the crossed product
and the dual action on it, we show that [(«) coincides with I'(x) in some cases, in
particular, when G is discrete and a is a-simple.

Unfortunately I(«) seems to be hard to compute, at least, directly from its
definition. Hence our examples of simple crossed products could be given inde-
pendently of the above-mentioned general theory. We show that the crossed product
of a Cuntz algebra O, [3] by a so-called quasi-free automorphism group cor-
responding to a unitary representation u, on the n-dimensional Hilbert space, of a
locally compact abelian group G, is simple if and only if the closed subsemigroup
generated by Spu and — p equals the dual of G, for any pe Spu if n< oo, and for
p=0if n=0c0. Insome of those C*-dynamical systems we can compute ().

We refer the reader to for our terminology, definition and notation. But
we denote the crossed product by a x , G rather than G x ,a.
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§2. P(a)

Let G be a locally compact abelian group with its dual I" and let (a, G, «) be a
C*-dynamical system, i.e. « is a homomorphism of G into the automorphism group
of a such that t—a,(x) is norm-continuous for any xea. For fe LY(G, dt) with a
Haar measure dt, the map a, on a is defined by

)= { FO G0t
The a-spectrum, Sp,(x), of x € a is defined as n {z(f): a(x)=0} where
z(f)={pel:f(p)=0}.

The spectral subspace a*(£2) corresponding to a closed subset Q of I' is {x € a: Sp,(x)
<=Q}. The spectrum of a, Sp «, is the set of p € I' such that for any closed neighbour-
hood 2 of p, a%(Q) is non-zero. See, for detail, e.g. [2].

We define the strong spectrum of «, Sp (%), as the set of p such that for any
closed neighbourhood €2 of p, a(2)=a, where a(€) is the closed linear span of a*()* -
a-a%(Q2), which is, in general, a hereditary C*-subalgebra of a.

We denote by s#%(a) the set of non-zero, a-invariant hereditary C*-subalgebras
of a. We define the strong Connes spectrum of «, (), by

F(@)=nSp(2|B), Bes#a).
The -Connes spectrum I'(«) is just defined without tildes in the above formula [6].

Our first proposition is quite obvious:

Proposition 2.1. (i) Oe Sp () =Sp () and Sp () is a closed subsemigroup of
r,

(i) Oel(x)cI'(x) and [(«) is a closed subsemigroup of T.

For a subset H of I' we denote by S(H) the largest closed subsemigroup satisfy-
ing H+S(H)<H, i.e.

SH)=NH-p
peH
when H is closed (c.f. [6]). We characterize I'(«) by using covariant representations

(7, u) of (a, G, a):

Proposition 2.2.

Fa)= n N S(Sp ue
( ) (7, u) Be X *(a),n(B)#(0) ( p n(B))
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where e, p, is the identity of the weak closure n(B)* of n(B).

Proof. A hereditary C*-subalgebra B of a is of the form eae n a by using an
open projection e in a** and satisfies B** =ea**e. e, is the image of e under the
extension 7 of 7 to a**, and commutes with u(G) if B is a-invariant. From now on
we denote e, g, by e.

If peSp («| B), then n(B*(p+ Q))y =+ (0) for any non-zero ¥ € es#, and for any
compact neighbourhood © of 0. This implies that Sp ue+p<=Spue, i.e. Spue+
§p (a| B) = Sp ue.

Conversely let pesSp («| B) with Be #*(a) and let Q be a compact neighbour-
hood of p such that B(Q)+B. Since B and B(Q) are a-invariant, we regard Bx ,G
and B(Q2) x,G as C*-subalgebras of ax,G and we have that B(Q)x,GEBx,G<
ax,G (Lemma 2.10in [7]). Let ¢ be a pure state of B x, G such that ¢ | B(Q) x ,G
=0 and let @ be its (unique) extension to a state of ax,G. We now have the co-
variant representation (z, u) of (a, G, ) associated with @, e.g., u()=n5At)) teG
where A(-) is the natural unitary group which implements « in the multiplier algebra
M(ax,G)of ax,G. Let e (resp. e;) be the identity of n(B), the same as the one of
ng(Bx ,G)*, (resp. the identity of n(B(Q))*). Then e, e; €u(G) and eZe,. Let
g€ Spu(e—ey) and let Q, be a compact neighbourhood of g. With e(Q,) being the
spectral projection of u(e—e;) corresponding to Q,, we have

[r(@)e(Q))#,]=5#"

since the projection onto the left hand side is in 7(a)’ N u(G)’. Since

e[m(a)e(2,)5# ;] =[n(B)e(2,)5# ]
[(B*(Q)e(R4)5#,]=(0)

for any compact neighbourhood Q; of g, we can easily conclude that Spue=p+q.
q.e.d.

Remark 2.3. The intersection over the covariant representations can be re-
stricted to the irreducible covariant representations (=, u), i.e. the ones with n(a)’ n
u(G)'=C.1, in the above proposition.

Remark 2.4. If [(«)+ I, it follows easily that a x , G is not simple (c.f. o).

We may consider the invariant in von Neumann algebra case corresponding
to I¥, but it turns out to be the Connes spectrum. Hence I* can be considered as
another version of the Connes spectrum (originally defined for von Neumann
algebras). o
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§3. Simple crossed products

Let (a, G, ) be a C*-dynamical system with a locally compact abelian group
G. Let K=C(L?*(G)) be the algebra of all compact operators on L2(G) and A the
regular representation of G on L*(G). Let a=a®K and éd=a®Ad A an action of
G on a.

Lemma 3.1. [(&)=I(x).

Proof. Suppose pé&[i(x). Then there are a covariant representation (r, u)
and B e s#%(a) such that Sp ue>0 and Sp ue p where e is the identity of n(B)* (the
assumption Sp ue3 0 is always achieved by multiplying u by some character of G).

We construct a covariant representation (&, #) of (@, G, &) by simply tensoring
the identity representation of (K, G, Ad A), e.g.

M) =u()QAM(1), teG.

Let © be a compact neighbourhood of 0 such that p—Qc(Sp ue)c and let e,
be the spectral projection of A corresponding to Q. Set D=e,;Ke;. Then De
#4424 (K) and BQD € s#%d) and e®e, is the identity of Z(B®D)*. We have that
Spii-(e®e;)®p since

Spii-(e®e;)=Spue+Sp le;=Spue+Q.

Since Sp i - (e®e;) 3 0, we can conclude that (@)% p.
Suppose p&I'(&@). Then there are a covariant representation (7, u) of (&, G, &)
and B e s#%(&) such that Spue>0 and Sp ue® p where e is the identity of n(B)».
First we assert that B can be chosen to satisfy that B> C*(G)B C*(G), where
C*(G) is identified with 1® C*(G) in M(&). Set

L={xed: n(x)u(f)=0; Y fe L\(G), suppf n Spue=¢},

where u( f)=S f(®u(t)dt. Then L is an d-invariant closed left ideal of & containing

B. Since 7(C*(G))<u(G)’, we have that LC*(G)cL. Set B,=LnL* Then
B, € 5#%(@) and B, satisfies the above assertion.

Now we assume that B> C*(G)BC*(G). Hence eefi(C*(G)). Let Q be a
compact neighbourhood of 0 such that p+Q—Q<c(Spue)°. Let e(q) be the spectral
projection of A corresponding to g—€, in particular e(q) e M(d). Since the su-
premum of e(q), g €I', in M(@) is 1, there is g, € I satisfying Sp ue 7i(e(q,))20. Let
D=e(qy)Ke(q,) € #4944 (K) and now we restrict the representation to e(qo)de(qo) =~
a® D e s#%(d) with the representation space " = 7i(e(qq))# ..
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We define the following unitary representation 4 on X:
a0 =u(®)TAM(—1))<t, g0y, te€G.
Then ## commutes with 7(D), Ad 4(t) (f(a)) = 7oa,(a) for a e a, and
Sptien Q+#4¢,
Sp fiecSpue—Sp Ae(qo)+go=Spue+Qc(p+Q)°.
Set
L={xea®D: n(x)a(f)=0, VfeL!, suppfcp+Q}

Then L is an a®id.-invariant closed left ideal of a®D containing e(q,)Be(q,).
Further LD L. Hence L is of the form L, ®D where L, is an a-invariant closed
left ideal of a. Set B;=L, n L%, and let e, be the identity of @(B;). Then Sp fie, =
(p+Q)° and Spfie; N Q#¢. Thus peSp fie, —q for geSpfie, N Q, i.e. p&(w).

Now we consider the dual system (ax ,G, I', &) and characterize G(&), similarly
to in [7];

Lemma 3.2.
G@)={teG: aI)c=I for any ideal I of a}.

Proof. Let I be an ideal of a and let te G. Suppose that a(I)& 1.
Let (22,) be a net of compact neighbourhoods of 0 such that n 2,=(0). Let

I_Q= N Ots(l) .
sefN

We assert that \U, I, is dense in I. For let xel be positive and find positive
elements e, and x, in the C*-subalgebra generated by x such that

€nXp = Xp, ”x_xn“SI/n°

Then by in there is Q, such that a(x,) el for se —Q,. Thus x,€e
I,,. Hence the closure of \U, I, contains x.

Suppose that I, _o ca_(I,) for any . Since U Io,_go, is also dense in I,
this would imply that I <a_/(I), a contradiction. Thus there is ¢ such that I, _g
GZ“—:(I:)‘)- '

Let J=1I,,_g,. Then since the ideal Vg, a(J) generated by ay(J), seQ, is
contained in I, , we have that '

JZ V a,_[J).
SEN, :
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Let B=J-ax,G-Je#*ax,G) and let 2=Q,. Then Bt—Q) is the closed
linear span of

xA(f)y, x,yed, feL'nL? with suppfct—Q.

Hence the hereditary *-algebra generated by elements of the form y*A(f)*x*xA(f)y
is dense in B(t— Q).

a=y*A(f)*x*xA(f)y is @-integrable, i.e. there is a positive I(a) in M(ax ,G)
(in fact in ac M(a x ,G)) such that

dU@)= | @ andp
for every ¢ e(ax ,G)*. Explicitly

1@=( FORY*a_ *0yds e Va, (D=J,.

Since B(t— ) is @-invariant, it follows that I(a) € B(t—Q)**. Hence the hereditary
»-algebra generated by elements of the form I(a) is contained in B(t — Q) and of course
is dense in B(t—£). Hence

Bt—-Q)<cJ,-ax,G-J,.

Since J, S J, B(t— Q)+ B, i.e. t&G(8).

Suppose that t&G(&). Then there are a covariant representation (7, u) of
(ax,G, I', &) and Be #%ax,G) such that Spue30 and Sp ue®t where e is the
identity of n(B)*. Let Q be a compact neighbourhood of 0 € G such that t+Q—Q
=(Spue)c. Then for any xe B and se€ Q,

n(X)F(As)u(f)=0, feL'(I') with suppfct+Q.
Let L be the left ideal of a x ,G with B=Ln L*. Then from the above calcu-
lation, the left ideal L, generated by
U LA(f), feLYG) with suppfc<Q,
satisfies that for xe L,,
n(x)u(f)=0, feL ) with suppfct+Q. (%)

Set B, =L, n L%} € ##%(a x,G) and let e, be the identity of n(B,)*. Then Spue, 30
and Sp ue, #1.

The positive cone of B, has a total set of &-integrable elements of the form
a=Af)*x*x/(f), xe B, fe L' n L? with suppf<Q. Let J be the ideal of a gener-
ated by elements I(a) with all such a. Then B,cJ-ax,G-J. Since J-ax,G-J
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is generated by elements of the form x,I(a,)yl(a,)x, with x;ea, yeax,G and
since I(ay)yl(a,) € B,, we have that J-ax ,G-J=JB,J.

Set B,=J-ax,G-Jes?ax,G). Then xeB, satisfies (*) since 7(a) com-
mutes with u(I"). Hence there is a compact neighbourhood 2, of ¢ such that B,(2,)
% B,.

Since B4(Q,) is the closed linear span of

xA(f)y, x, yeJ, feLtnL? with suppfcQ,,

similarly to the first part of the proof, B,(£2,) is the hereditary C*-subalgebra gener-
ated by elements of the form

I A x*xA(fy)= S |f(®Py*a_(x*x)yds.

Hence B,(2,)>a_,(J)J-ax,G-a_/ (J)J, which implies that J& a_,(J). q.e.d.

Here we give a comment. Our reference on &-integrability [2.4, 7] contains
an error in the definition of I. The correct form should be the one given in the
above proof (otherwise Lemma 2.6 in would fail), i.e. a e M(B), is B-integrable
if there is a (necessarily unique) I(a) € M(B) such that

dU@)= | g adp

for every ¢ € B¥, where B=ax,G and =4 in this case. Here p—¢of,(a) is con-
tinuous.

To prove that the B-integrable elements are hereditary, we adopt an argument
similar to the one in [2.4, 7] by using, e.g., Lemma 2.1 in [1], although this fact is
not quite necessary in the above proof, because we have considered only elements of
the form A(f)*x*xA(f) (or y*A(f)*x*xA(f)y if &,(y)=y, peI') as integrable ele-
ments, which is justified by Proposition 2.8 in [7].

Lemma 3.3 [10]. The C*-dynamical system (ax,Gx,I', G, &) is covariantly
isomorphic to (6, G, &).

Lemma 3.4.
F()={perl: a,(I)cI for any ideal I of ax,G}

Proof. It follows from Lemmas 3.2 and 3.3.
By the above lemma and in [7] we have

Theorem 3.5. Let (a, G, a) be as above. The following conditions are equiva-
lent:
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(i) ax,G is simple;
(i) a is a-simple and ['(0)=T.
As a corollary to we give

Proposition 3.6. Let (a, G, «) be as above. Suppose that there is another
C*-dynamical system (B, G, B) which is exteriorly equivalent to (a, G, o). Then
Fo)=T(p).

Proof. (ax,G, I, 8) is covariantly isomorphic to (Bx ; G, I, B). q.e.d.

It seems more difficult to compute ['(«) than I'(a) in most of cases. But some-
times [(a) coincides with I'(@). We shall show some of these cases.
The following lemma can be found, e.g. in [11, Lemma 22]:

Lemma 3.7. Suppose that a is a-simple and that G/G; is compact for any
primitive ideal I of a, where

G, ={teG:a(D)=I}.

Then the primitive ideal space of a with the transposed action of G is isomorphic
to G/G, with the action of G by translations, where G,=G, for any primitive
ideal I.

Proof. Let I be a primitive ideal, and let (2,) be a net of compact neighbour-
hoods of 0e€ G/G; such that n Q,=(0). Since a(I)=a I) if t and s in G have the
same image {=35 in G/G,, we can define

IG+Q)= N o (D).

There is a finite set S, of G/G,; such that
U ges, §+2,)=G/G;.
Since a is a-simple, we have
Nges, I3+ 2,)=(0).

Let J be a primitive ideal. Since Ny, I(§+Q,)<J, there is an $, €S, such
that
I5,+Q2)<=J.
Since G/G, is compact, we may suppose that §, converges, say to §. Then

$+Q, 2 §; for sufficiently large j>:. Hence §+Q,+Q,535;+Q; which implies
I+Q2,+Q2)<J.
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We have that a(I)<J, since \U, I(§+ 2, +Q,) is dense in ay(I), as shown from
the first part of the proof of and the fact that the quotient map G—G/G,
is open. Similarly we get that «,(J)<=1I for some t€ G, i.e.

%) cafD=J.

Since G/G, is compact, we can conclude that a,, (J)=J. Thus a(I)=J.

Hence the set of primitive ideals is {x(I): i€ G/G,}, i.e. there is a one-one
correspondence between the primitive ideal space and G/G,, by choosing one primi-
tive ideal I of a, which obviously preserves the actions of G. For any subset S of
G/Gy, we have )

N afD)=Nayl).
seS seS '

By the same argument as above,

N o) =al(l)
seS

implies that /e S. Hence the closure operations coincide through the correspond-
ence. q.e.d.

Proposition 3.8. Let (a, G, o) be a C*-dynamical system where G is a discrete
abelian group and a is a-simple. Then I'(a)=TI(c).

Proof. We apply to the dual system (ax,G, I', &), where now I’
is compact, and use the formula for I(a) in and the one for I'(a) in
Corollary 5.4 in [7].

Proposition 3.9. Let (a, G, ) be a separable C*-dynamical system (i.e. both
a and G are separable). Suppose that G, is discrete for any primitive ideal I of a
where

G={teG: a()=1I}.

If a is a-simple, then the primitive ideal space of a x ,G with the transposed action
of & of T is isomorphic to I'|[H (with action of I') for some closed subgroup H of G
such that I'H is compact, in particular ['(0)=I'(e}) (= H). :

Proof. (c.f. [8, Theorem 3.1]) By [5, Corollary 3.2], for any primitive ideal
I, I'|l'; is compact. Apply Lemma 3.7. For the last statement, see the proof of
[Proposition 3.8|.

For applications of the above proposition we refer the reader to [8].
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§4. Crossed products of O,

Let 5#, be an n-dimensional Hilbert space (2<n< ), and let F(s#,) be the
Fock Hilbert space over s#,. For each fe s#,, O(f) is a bounded operator defined
by

0(f)9:1® - ®g,=f®g R g,
oNR=f

where  is the vacuum vector in F(s#,). If || fl =1, O(f) is an isometry. We de-
note by O(s#,) the C*-algebra generated by O(f), fe +#,.

If n is finite, the Cuntz algebra O, [3] is isomorphic to the quotient of O(s#,)
by the compact operator algebra on F(s#,) and if n= o0, O, is isomorphic to O(s#,).
Each unitary u on s#, induces an automorphism of 0, through that of O(s#,) defined
by

O(f) — O(uf), fest,.

We call quasi-free those automorphisms of O, obtained in this way. See, for the
detail, Evance [4].

From now on we assume that n is finite.

Let G be a locally compact abelian group with its dual I', as before, and let u
be a continuous unitary representation of G on s#,. By thinking of elements of the
form

O(f1)---0(f,)O(g1)*:--O(gm)*,
it is clear that Sp « is the closed subgroup of I' generated by Sp u.

Lemma 4.1. Let (O,, G, @) be as above. Then I'(e)=Sp a.

Proof. Let (¢,)%=; be an orthonormal system in 5, such that u,¢,=<t, p)>¢,
with p,eI’. Let S; be the image of O(¢;) into O,,.

Set for each k=1, 2,...

) — S*
Si ”:l(%::k S,S;S¥,

where the summation is taken over all the words u of {1,..., n} with length l(u)=k,
and Sy, . 4y =Si S, (cf. [3]. All S{¥ are isometries and satisfy that lim ||[[S{*,
x]|l=0 for any x € F*< O, where F" is the algebra of fixed points under the gauge
automorphism group 7y, i.e. the quasi-free automorphism group induced by {z-1;
|z|=1} on 47,
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Let v be an infinite aperiodic sequence of letters {1,..., n} (c.f. Lemma 1.8 in
{3]) and let v,, be the restriction of v to the first m letters. Set

On= 2 S,5,.5% Sk.

wl(u)=m
Then {Q,,} are y- and a-invariant projections and satisfy
lim {|Q,,e(x)Qp — QX Qpl| =0
lim [|Q,xQ, [l = |le(x)]

where e(x)=§ 7{(x)dt is the projection of O, onto F” (c.f. Proposition 1.7 in [3]).
Then for any positive x € 0,,

lim lim [|Q,,xQ,,Si*’x| =lim lim | 5§ Q,,2(x)Qx|

=lim |Q,.e(x)Qpx[ > lle(x)II* .

Let Be »#%(0,) and Q a compact neighbourhood of 0. Then there is a non-
zero positive x € B with Sp,(x)=Q. It follows from the above calculation that there
are m and k such that xQ,,S{*’x>0. This implies that

Spa|BNn(p+R2+Q)=x4¢

Since Q and B are arbitrary, we can conclude that I'(e)3 p;, Thus I'(x) =Sp o since
I'(2) is a closed subgroup [6].

We denote by 7 the extension of the gauge action y to an action on O, x,G.
This is possible because y commutes with «. In the following we denote by H the
intersection of the closed subsemigroups of I' generated by Spu and —p, with
PESpu.

Lemma 4.2. Let (0,, G, @) be as above. Then H> [(a).

Proof. We construct certain a«-invariant states of 0,. For i=l1,...,,n and
k=1, 2,..., set

P{) = SkS¥k

Then {P{¥},-,,,,.. is a decreasing sequence of y-invariant projections. Let ¢, be a
y-invariant state satisfying

Pix)=¢(P{FxP}), xe€0, k=1,2,...

Then it is shown that ¢; is a-invariant (and in fact unique) and that the continuous -
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functions on G 3 t— ¢(xa,(y)) for x, y € 0, are contained in the closed algebra gener-
ated by characters py,..., p, and —p;, e.g.

¢i(xa(S,S¥)={t, pj,+ -+ D}, = Px,—*** = Pr,) Pi(xS,S%)
is non-zero only if v={k,,..., k,,}={i,..., i}, where u={ji,..., j.t- This implies
that in the GNS representation associated with ¢;, the canonical representation U
of G defined by
U, 7t4,(X)Q4, = Ty,00(x)Qy,, x€O0,

has spectrum in the closed subsemigroup H; generated by p,,..., p,, and —p;. By
[Proposition 2.2 we have that ['(«)c H,.

Lemma 4.3. Let (0,, G, a) be as above. Then for any j-invariant ideal I of
0,% .G, it follows that &, (I)<I for pe H.

Proof. Let p be a representation of O, x,G whose kernel is y-invariant. Let
x€0!x,G=(0,%x,G)? or be of the form Y a,® f; with a;€ 0}, f,e C*(G). Then
since lim ||S{V* xS — &, (x)|| =0, we have

lim [|p(S*xS() | = | pot ()] -

The left hand side equals

lilltn loG)p(SEST*)||
since S{'S{¥* asymptotically commutes with x. Further since S{*'S{¥* are projec-
tions and 3,;S{¥S{* =1, we have

oG = 1| pot, (X

o)l =max | ot (X))l (%)

For a fixed x€ O} x,G we can find an infinite sequence {i,} of {l,..., n} such
that

oG = 198, +... 4 py, ()] (%)

for all k=1, 2,.... There is an ie{l, 2,..., n} which infinitely often appears in
{ir}. For such an i we have

oG = | po8np (X

for n=1, 2,..., since for any subset J of {1,..., k}, (**) is less than or equal to
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I P°&<.>:Jp,,)(x)ll <l -

Let pe H. By the assumption there is a sequence in the subsemigroup gener-
ated by {py,..., p,» —p;} Which converges to p, i.e. there is a sequence

9=2 P, —m®p,—p, i 20, mH 20
which converges to zero in I'.  Then
1% =&, 2 | P81 p (X) — Pott 5P py - py )]
= [lp(X) = | pot - p(x)
which implies that ||po@_ (x)[| > [|p(x)|. Hence
()N0ix,GeInO0}x,G

where I is the kernel of p. Since I is generated by I n 0 x,G, we can conclude
that & (I)<=1. q.e.d.

Theorem 4.4. Let (0,, G, ®) be as above. The crossed product O,x,G is
simple if and only if the closed subsemigroup of I' generated by Spu and —p is I’
itself for any pe Sp u.

Proof. Since H> [(a) by Lemma 4.2, if H+T, 0,%,G is not simple by Theo-
rem 3.5. ‘

Suppose H=I. Then implies that any j-invariant ideal is &-
invariant. Since O, is simple [3], there are not any non-trivial &-invariant ideals of
0,%x,G. Thus O,%,G is j-simple. Since O,x,G is prime by and
[7, Theorem 5.8], it follows from [7, Lemma 6.4] (or that 0,%x,G is
simple.

Proposition 4.5. Let (O,, G, ) be as above and suppose that «(G) contains
the gauge automorphism group y. Then ['(a) is the intersection of the closed sub-
semigroups of I' generated by Spu and — p, with pe Sp u.

Proof. Since 7 is inner under the above assumption, any ideal of O,x ,G is
J-invariant. The rest of the proof follows from Lemmas 4.2}, 4.3 and g.e.d.
§5. Crossed products of O,

In this section we consider the case n=o00. As in Section 4, let u be a weakly
continuous unitary representation of a locally compact group G on a separable
infinite-dimensional Hilbert space s# and let a be the corresponding quasi-free
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action on 0,=0(s#). It is immediate that Sp a is the closed subgroup generated
by Sp u.

Let F=F(s#)=Y.3$s#®" be the Fock space and n; the Fock representation of
O, on F [4]. Let Uy be the canonical representation of G on the Fock space, i.e.

Ur() | 72" =u,®---®u, (n-tuples)=u,®".

It is clear that Sp Uy is the closed subsemigroup H generated by Spu. The
pair (np, Uy) gives a representation np X Up of O, % ,G in an obvious way. If
H=T, np x Ug is not faithful, in particular O, %, G is not simple (c.f. [9]).

Theorem 5.1. Let (O, G, a) be as above. The crossed product O, x,G is
simple if and only if the closed subsemigroup H generated by Spu is I'.

Proof. We have shown that if HxT, then O, % ,G is not simple. Hence we
now assume that H=1T".

First we want to show that ng x U is faithful. Since np x Uy is irreducible,
this in particular implies that O, x ,G is prime.

For each n=1, 2,..., there is a natural unitary map W, from F®as®" onto
> @ #® = F, such that W,(Y®¢)=X3 ¥, ®¢ where y =X gy, with ¥, € s#®* and
Vi ®¢ € 5#®*+n, Note that

W, Up()@uP"=U()W,.

In the following, however, we omit W,.

Let (©2,) be a decreasing sequence of compact neighbourhoods of 0 in I such that
n 2,=(0). There are p,e Spu and ¢, € 5# with ||¢,|| =1 such that Sp,¢,<p,+2Q,
and ¢, tends to zero weakly.

Let peI’. Then, since Sp Up=I due to the assumption, there are positive
integers m, and ¥, € #®™ with ||y, || =1 such that Sp,_ ¥, cp—p,+Q,.

Let x=Y a,® f, € O, x,G where g, are monomials (i.e. of the type O(f,)--
0(f)0*(g,)---0*(g)) and f, € L'(G).

Note that for any Y € F,

tim | {£OUOW®8.0v)dt={ 1,0) <t B> U@ .8, dt| =0
lim [[np(a) (Y @, ¥ ,)— (np(a)Y) @, @Y, | =0.

Hence we have that

lim [[(mp X Up) (x) (Y @, ®Y,)—((nr x Up)(@,(x)¥)) @, 8Y,[| =0.
Since Y € F is arbitrary, we have that |np x Up(x)|| 2 [|(mF X Up)o@,(x)|l, which in
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turn implies, since p is arbitrary,
(e x Up)e@(X)| =ll(mp x Ug)(X)l, peT.

Since O, is simple [3], we can conclude that ny x U is faithful.

Now let #x U be any irreducible representation of O, x,G. By a similar
reason as given in the proof of it suffices to show that ker (z x U) n
0% x ,G=(0).

Let (f) be a complete orthonormal system of 5. Then n(O(f,)O*(f)) are
mutually orthogonal projections. Let

P= i* 2(O(f)0*(f).

P is a projection in U(G)’ which is independent from choice of (f).

First suppose that P+1. Let e be a projection in U(G)’ suchthat O0+e<1—P.
Then by the irreducibility, we have that [n(0y)es#,]=5¢,. But (1—P) [7(0y)es#,]
=es, i.e. |—P=e. Hence 1—P is one-dimensional. Now it is easily shown that
7 is equivalent to 7y and that U= pU, with some peI'. Hence the faithfulness of
X Uxnp X Ugel, follows from the above.

Suppose that P=1. Let peSpu+---+Spu (k terms). There is a sequence of
unit vectors ¥, ® - @y, € #®* such that Sp ;, (¥, @ QY )=p+Q, with Q,
given before. Now we define a family of isometries:

VO =m(0(1,)-0(.)
Vim=3 n(0(H)V"Vm(0*(f) .

Note that V™ does not depend on (f;).
Let x=3 a;,® f, € 0% x,G where g, are monomials, say, a;=0(g;)"--0(gy,,)*
O0*(h,y)---O*(h,,). For m=m, we have that

apVm =Vimn(a,)
lim |U,V™ —(t, pyV™U,|=0.
Thus, for m>max (m,)

lim [|(7 x U) (x) V™ — Vm(x x U)ol (x)] =0.

Since V™ are isometries, we have that |(z x U)(x)| > ||(m x U)e@,(x)||l. Since such
p is dense in I', we have '

l(mx U)()| = li(mx U)&y(x)l, Vpel.
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Since O, is simple, we know that (z x U)| 0% x , G is faithful.

Remark 5.2. If the set of elements of Sp Uy added by those of the essential
spectrum of u is equal to Sp Uy itself and if a(G) contains the gauge automorphism
group 7, then it follows from the above proof that I(x) equals Sp Ug. For example
Iy =Z,.

In passing we give a remark on a quasi-free automorphism a, of O, which is
induced by a unitary u on s# such that u” tends to zero weakly as n—>co. The
following proposition implies, in particular, that the Fock state is the only a,-invariant
state of O.

Proposition 5.3. Let «, be as above. Then for any x € O,
N
My(x)=@2N+1)™* PIREHC)
=

converges in norm to a multiple of the identity.

Proof. Suppose x=0(f,)--O(£)0*@g.)--0(gn)* Wwith n+m>1, and | f]
=-v=|gnll=1. Thenif n>1,

My()N|2 = | Mn(x)* My ()l

S@N+1 3 [y umf|

ym==

which implies that lim | My(x)[|2=0. Similarly we have the same in case m1.
The linear span of 1 and elements of the form O(f,):--0*(g,,) is dense in O, which
completes the proof.

With a little more care we can conclude that the system (O, Z, o) with a,=0o,n is
weakly asymptotically abelian.
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