SIMPLE CROSSED PRODUCTS OF C^{*}-ALGEBRAS BY LOCALLY COMPACT ABELIAN GROUPS

By
Akitaka Kishimoto

(Received Dec. 25, 1979)

Abstract

We introduce a new invariant $\tilde{\Gamma}(\alpha)$, a closed subsemigroup of the dual of G, of a C^{*}-dynamical system (\mathfrak{a}, G, α) where \mathfrak{a} is a C^{*}-algebra, and G is a locally compact abelian group with an action α on a. We show that the crossed product $\alpha \times{ }_{\alpha} G$ is simple if and only if \mathfrak{a} is α-simple (i.e. a does not have any non-trivial α-invariant ideals) and $\tilde{\Gamma}(\alpha)$ equals the dual of G. We discuss some cases where $\tilde{\Gamma}(\alpha)$ coincides with the Connes spectrum $\Gamma(\alpha)$. Finally we give examples of simple crossed products of Cuntz algebras by locally compact abelian groups.

§ 1. Introduction

In a paper [7] by D. Olesen and G. K. Pedersen the Connes spectrum $\Gamma(\alpha)$ [6] of a C^{*}-dynamical system (\mathfrak{a}, G, α), with a locally compact abelian group G, plays an important role in characterizing primeness of the crossed product $\mathfrak{a} \times{ }_{\alpha} G$. We introduce a new invariant $\tilde{\Gamma}(\alpha)$, which is a closed subsemigroup of $\Gamma(\alpha)$, and show that $\tilde{\Gamma}(\alpha)$ is relevant in characterizing simplicity of $\mathfrak{a} \times{ }_{\alpha} G$. After $\tilde{\Gamma}(\alpha)$ being introduced, our results and methods are quite similar to the prime case above-mentioned.

By using a characterization of $\tilde{\Gamma}(\alpha)$ in terms of ideals of the crossed product and the dual action on it, we show that $\Gamma(\alpha)$ coincides with $\Gamma(\alpha)$ in some cases, in particular, when G is discrete and \mathfrak{a} is α-simple.

Unfortunately $\tilde{\Gamma}(\alpha)$ seems to be hard to compute, at least, directly from its definition. Hence our examples of simple crossed products could be given independently of the above-mentioned general theory. We show that the crossed product of a Cuntz algebra O_{n} [3] by a so-called quasi-free automorphism group [4] corresponding to a unitary representation u, on the n-dimensional Hilbert space, of a locally compact abelian group G, is simple if and only if the closed subsemigroup generated by $\operatorname{Sp} u$ and $-p$ equals the dual of G, for any $p \in \operatorname{Sp} u$ if $n<\infty$, and for $p=0$ if $n=\infty$. In some of those C^{*}-dynamical systems we can compute $\tilde{\Gamma}(\alpha)$.

We refer the reader to [7] for our terminology, definition and notation. But we denote the crossed product by $\mathfrak{a} \times{ }_{\alpha} G$ rather than $G \times{ }_{\alpha} \mathfrak{a}$.

§2. $\boldsymbol{\Gamma}(\boldsymbol{\alpha})$

Let G be a locally compact abelian group with its dual Γ and let (a, G, α) be a C^{*}-dynamical system, i.e. α is a homomorphism of G into the automorphism group of \mathfrak{a} such that $t \rightarrow \alpha_{t}(x)$ is norm-continuous for any $x \in \mathfrak{a}$. For $f \in L^{1}(G, d t)$ with a Haar measure $d t$, the map α_{f} on \mathfrak{a} is defined by

$$
\alpha_{f}(x)=\int f(t) \alpha_{t}(x) d t
$$

The α-spectrum, $\operatorname{Sp}_{\alpha}(x)$, of $x \in \mathfrak{a}$ is defined as $\cap\left\{z(f): \alpha_{f}(x)=0\right\}$ where

$$
z(f)=\{p \in \Gamma: \hat{f}(p)=0\} .
$$

The spectral subspace $\mathfrak{a}^{\alpha}(\Omega)$ corresponding to a closed subset Ω of Γ is $\left\{x \in \mathfrak{a}: \operatorname{Sp}_{\alpha}(x)\right.$ $\subset \Omega\}$. The spectrum of $\alpha, \mathrm{Sp} \alpha$, is the set of $p \in \Gamma$ such that for any closed neighbourhood Ω of $p, \mathfrak{a}^{\alpha}(\Omega)$ is non-zero. See, for detail, e.g. [2].

We define the strong spectrum of $\alpha, \tilde{S p}(\alpha)$, as the set of p such that for any closed neighbourhood Ω of $p, \mathfrak{a}(\Omega)=\mathfrak{a}$, where $\mathfrak{a}(\Omega)$ is the closed linear span of $\mathfrak{a}^{\alpha}(\Omega)^{*}$. $\mathfrak{a} \cdot \mathfrak{a}^{\alpha}(\Omega)$, which is, in general, a hereditary C^{*}-subalgebra of \mathfrak{a}.

We denote by $\mathscr{H}^{\alpha}(\mathfrak{a})$ the set of non-zero, α-invariant hereditary C^{*}-subalgebras of \mathfrak{a}. We define the strong Connes spectrum of $\alpha, \Gamma(\alpha)$, by

$$
\tilde{\Gamma}(\alpha)=\cap \tilde{S} \mathrm{p}(\alpha \mid B), \quad B \in \mathscr{H}^{\alpha}(\mathfrak{a})
$$

The Connes spectrum $\Gamma(\alpha)$ is just defined without tildes in the above formula [6]. Our first proposition is quite obvious:

Proposition 2.1. (i) $0 \in \tilde{\mathrm{~S}} \mathrm{p}(\alpha) \subset \mathrm{Sp}(\alpha)$ and $\tilde{\mathrm{S}} \mathrm{p}(\alpha)$ is a closed subsemigroup of Γ,
(ii) $0 \in \tilde{\Gamma}(\alpha) \subset \Gamma(\alpha)$ and $\tilde{\Gamma}(\alpha)$ is a closed subsemigroup of Γ.

For a subset H of Γ we denote by $S(H)$ the largest closed subsemigroup satisfying $H+S(H) \subset H$, i.e.

$$
S(H)=\underset{p \in H}{\bigcap} H-p
$$

when H is closed (c.f. [6]). We characterize $\tilde{\Gamma}(\alpha)$ by using covariant representations (π, u) of $(\mathfrak{a}, G, \alpha)$:

Proposition 2.2.

$$
\tilde{\Gamma}(\alpha)=\bigcap_{(\pi, u) B \in \mathcal{P}^{\alpha}(a), \pi(B) \neq(0)} S\left(\mathrm{Sp} u e_{\pi(B)}\right)
$$

where $e_{\pi(B)}$ is the identity of the weak closure $\overline{\pi(B)}{ }^{w}$ of $\pi(B)$.
Proof. A hereditary C^{*}-subalgebra B of \mathfrak{a} is of the form eae $\cap \mathfrak{a}$ by using an open projection e in $\mathfrak{a}^{* *}$ and satisfies $B^{* *}=e a^{* *} e . \quad e_{\pi(B)}$ is the image of e under the extension $\bar{\pi}$ of π to $a^{* *}$, and commutes with $u(G)$ if B is α-invariant. From now on we denote $e_{\pi(B)}$ by e.

If $p \in \tilde{S} p(\alpha \mid B)$, then $\pi\left(B^{\alpha}(p+\Omega)\right) \psi \neq(0)$ for any non-zero $\psi \in e \mathscr{H}_{\pi}$ and for any compact neighbourhood Ω of 0 . This implies that $\operatorname{Sp} u e+p \subset \operatorname{Sp} u e$, i.e. $\mathrm{Sp} u e+$ $\tilde{S} p(\alpha \mid B) \subset S p u e$.

Conversely let $p \notin \tilde{S} p(\alpha \mid B)$ with $B \in \mathscr{H}^{\alpha}(\mathfrak{a})$ and let Ω be a compact neighbourhood of p such that $B(\Omega) \neq B$. Since B and $B(\Omega)$ are α-invariant, we regard $B \times{ }_{\alpha} G$ and $B(\Omega) \times{ }_{\alpha} G$ as C^{*}-subalgebras of $a \times{ }_{\alpha} G$ and we have that $B(\Omega) \times{ }_{\alpha} G \subseteq B \times{ }_{\alpha} G \subseteq$ $\mathfrak{a} \times{ }_{\alpha} G$ (Lemma 2.10 in [7]). Let ϕ be a pure state of $B \times{ }_{\alpha} G$ such that $\phi \mid B(\Omega) \times{ }_{\alpha} G$ $=0$ and let $\bar{\phi}$ be its (unique) extension to a state of $a \times{ }_{\alpha} G$. We now have the covariant representation (π, u) of (\mathfrak{a}, G, α) associated with $\bar{\phi}$, e.g., $u(t)=\bar{\pi}_{\bar{\phi}}(\lambda(t)) t \in G$ where $\lambda(\cdot)$ is the natural unitary group which implements α in the multiplier algebra $M\left(\mathfrak{a} \times{ }_{\alpha} G\right)$ of $\mathfrak{a} \times{ }_{\alpha} G$. Let e (resp. e_{1}) be the identity of $\overline{\pi(B)}$, the same as the one of
 $q \in \operatorname{Sp} u\left(e-e_{1}\right)$ and let Ω_{1} be a compact neighbourhood of q. With $e\left(\Omega_{1}\right)$ being the spectral projection of $u\left(e-e_{1}\right)$ corresponding to Ω_{1}, we have

$$
\left[\pi(\mathfrak{a}) e\left(\Omega_{1}\right) \mathscr{H}_{\pi}\right]=\mathscr{H}_{\pi}
$$

since the projection onto the left hand side is in $\pi(\mathfrak{a})^{\prime} \cap u(G)^{\prime}$. Since

$$
\begin{aligned}
& e\left[\pi(\mathfrak{a}) e\left(\Omega_{1}\right) \mathscr{H}_{\pi}\right]=\left[\pi(B) e\left(\Omega_{1}\right) \mathscr{H}_{\pi}\right] \\
& {\left[\pi\left(B^{\alpha}(\Omega)\right) e\left(\Omega_{1}\right) \mathscr{H}_{\pi}\right]=(0)}
\end{aligned}
$$

for any compact neighbourhood Ω_{1} of q, we can easily conclude that $\operatorname{Sp} u e \nexists p+q$.
q.e.d.

Remark 2.3. The intersection over the covariant representations can be restricted to the irreducible covariant representations (π, u), i.e. the ones with $\pi(a)^{\prime} \cap$ $u(G)^{\prime}=\mathbf{C} \cdot 1$, in the above proposition.

Remark 2.4. If $\tilde{\Gamma}(\alpha) \neq \Gamma$, it follows easily that $\mathfrak{a} \times{ }_{\alpha} G$ is not simple (c.f. [9]).
We may consider the invariant in von Neumann algebra case corresponding to $\tilde{\Gamma}$, but it turns out to be the Connes spectrum. Hence $\tilde{\Gamma}$ can be considered as another version of the Connes spectrum (originally defined for von Neumann algebras).

§3. Simple crossed products

Let (\mathfrak{a}, G, α) be a C^{*}-dynamical system with a locally compact abelian group G. Let $K \equiv C\left(L^{2}(G)\right)$ be the algebra of all compact operators on $L^{2}(G)$ and λ the regular representation of G on $L^{2}(G)$. Let $\tilde{\mathfrak{a}}=\mathfrak{a} \otimes K$ and $\tilde{\alpha}=\alpha \otimes \operatorname{Ad} \lambda$ an action of \boldsymbol{G} on $\tilde{\mathbf{a}}$.

Lemma 3.1. $\tilde{\Gamma}(\tilde{\alpha})=\tilde{\Gamma}(\alpha)$.
Proof. Suppose $p \notin \tilde{\Gamma}(\alpha)$. Then there are a covariant representation (π, u) and $B \in \mathscr{H}^{\alpha}(\mathfrak{a})$ such that $\mathrm{Sp} u e \ni 0$ and $\mathrm{Sp} u e \ni p$ where e is the identity of $\overline{\pi(B)}{ }^{w}$ (the assumption Sp ue \ni is always achieved by multiplying u by some character of G).

We construct a covariant representation ($\tilde{\pi}, \tilde{u}$) of ($\tilde{\mathfrak{a}}, G, \tilde{\alpha}$) by simply tensoring the identity representation of ($K, G, \operatorname{Ad} \lambda$), e.g.

$$
\tilde{u}(t)=u(t) \otimes \lambda(t), \quad t \in G .
$$

Let Ω be a compact neighbourhood of 0 such that $p-\Omega \subset(\operatorname{Sp} u e)^{c}$ and let e_{1} be the spectral projection of λ corresponding to Ω. Set $D=e_{1} K e_{1}$. Then $D \in$ $\mathscr{H}^{\mathrm{Ad} \mathrm{\lambda}}(K)$ and $B \otimes D \in \mathscr{H}^{\tilde{\alpha}}(\tilde{\mathfrak{a}})$ and $e \otimes e_{1}$ is the identity of $\overline{\tilde{\pi}(B \otimes D)^{w}}$. We have that $\mathrm{Sp} \tilde{u} \cdot\left(e \otimes e_{1}\right) \nRightarrow p$ since

$$
\operatorname{Sp} \tilde{u} \cdot\left(e \otimes e_{1}\right) \subset \operatorname{Sp} u e+\operatorname{Sp} \lambda e_{1}=\operatorname{Sp} u e+\Omega .
$$

Since $\operatorname{Sp} \tilde{u} \cdot\left(e \otimes e_{1}\right) \ni 0$, we can conclude that $\tilde{\Gamma}(\tilde{\alpha}) \nRightarrow p$.
Suppose $p \notin \tilde{\Gamma}(\tilde{\alpha})$. Then there are a covariant representation (π, u) of $(\tilde{\mathfrak{a}}, G, \tilde{\alpha})$ and $B \in \mathscr{H}^{\tilde{a}}(\tilde{\mathfrak{a}})$ such that $\operatorname{Sp} u e \ni 0$ and $\operatorname{Sp} u e \ni p$ where e is the identity of $\overline{\pi(B)}{ }^{w}$.

First we assert that B can be chosen to satisfy that $B \supset C^{*}(G) B C^{*}(G)$, where $C^{*}(G)$ is identified with $1 \otimes C^{*}(G)$ in $M(\tilde{\mathfrak{a}})$. Set

$$
L=\left\{x \in \tilde{\mathfrak{a}}: \pi(x) u(f)=0 ; \forall f \in L^{1}(G), \operatorname{supp} \hat{f} \cap \operatorname{Sp} u e=\phi\right\},
$$

where $u(f)=\int f(t) u(t) d t$. Then L is an $\tilde{\alpha}$-invariant closed left ideal of \tilde{a} containing B. Since $\bar{\pi}\left(C^{*}(G)\right) \subset u(G)^{\prime}$, we have that $L C^{*}(G) \subset L$. Set $B_{1}=L \cap L^{*}$. Then $B_{1} \in \mathscr{H}^{\tilde{a}}(\tilde{\mathfrak{a}})$ and B_{1} satisfies the above assertion.

Now we assume that $B \supset C^{*}(G) B C^{*}(G)$. Hence $e \in \bar{\pi}\left(C^{*}(G)\right)^{\prime}$. Let Ω be a compact neighbourhood of 0 such that $p+\Omega-\Omega \subset(\mathrm{Sp} u e)^{c}$. Let $e(q)$ be the spectral projection of λ corresponding to $q-\Omega$, in particular $e(q) \in M(\tilde{\mathfrak{a}})$. Since the supremum of $e(q), q \in \Gamma$, in $M(\tilde{\mathfrak{a}})$ is 1 , there is $q_{0} \in \Gamma$ satisfying Sp иe $\bar{\pi}\left(e\left(q_{0}\right)\right) \ni 0$. Let $D=e\left(q_{0}\right) K e\left(q_{0}\right) \in \mathscr{H}{ }^{\text {Add }}(K)$ and now we restrict the representation to $e\left(q_{0}\right) \tilde{a} e\left(q_{0}\right) \simeq$ $\mathfrak{a} \otimes D \in \mathscr{H}^{\tilde{\alpha}}(\tilde{\mathfrak{a}})$ with the representation space $\mathscr{K} \equiv \bar{\pi}\left(e\left(q_{0}\right)\right) \mathscr{H}_{\pi}$.

We define the following unitary representation \hat{u} on \mathscr{K} :

$$
\hat{u}(t)=u(t) \bar{\pi}(\lambda(-t))\left\langle t, q_{0}\right\rangle, \quad t \in G .
$$

Then \hat{u} commutes with $\bar{\pi}(D), \operatorname{Ad} \hat{u}(t)(\bar{\pi}(a))=\bar{\pi} \circ \alpha_{t}(a)$ for $a \in \mathfrak{a}$, and

$$
\begin{aligned}
& \operatorname{Sp} \hat{u} e \cap \Omega \neq \phi, \\
& \operatorname{Sp} \hat{u} e \subset \operatorname{Sp} u e-\operatorname{Sp} \lambda e\left(q_{0}\right)+q_{0} \subset \operatorname{Sp} u e+\Omega \subset(p+\Omega)^{c} .
\end{aligned}
$$

Set

$$
L=\left\{x \in \mathfrak{a} \otimes D: \pi(x) \hat{u}(f)=0, \quad \forall f \in L^{1}, \quad \operatorname{supp} \hat{f} \subset p+\Omega\right\}
$$

Then L is an $\alpha \otimes$ id.-invariant closed left ideal of $\mathfrak{a} \otimes D$ containing $e\left(q_{0}\right) \operatorname{Be}\left(q_{0}\right)$. Further $L D \subset L$. Hence L is of the form $L_{1} \otimes D$ where L_{1} is an α-invariant closed left ideal of \mathfrak{a}. Set $B_{1}=L_{1} \cap L_{1}^{*}$, and let e_{1} be the identity of $\bar{\pi}\left(B_{1}\right)$. Then $\operatorname{Sp} \hat{u} e_{1} \subset$ $(p+\Omega)^{c}$ and $\operatorname{Sp} \hat{u} e_{1} \cap \Omega \neq \phi$. Thus $p \notin \operatorname{Sp} \hat{u} e_{1}-q$ for $q \in \operatorname{Sp} \hat{u} e_{1} \cap \Omega$, i.e. $p \notin \tilde{\Gamma}(\alpha)$.

Now we consider the dual system ($\mathfrak{a} \times{ }_{\alpha} G, \Gamma, \hat{\alpha}$) and characterize $\widetilde{G}(\hat{\alpha})$, similarly to Lemma 3.2 in [7];

Lemma 3.2.

$$
\tilde{G}(\hat{\alpha})=\left\{t \in G: \alpha_{t}(I) \subset I \quad \text { for any ideal } I \text { of } \mathfrak{a}\right\} .
$$

Proof. Let I be an ideal of \mathfrak{a} and let $t \in G$. Suppose that $\alpha_{t}(I) \nleftarrow I$.
Let $\left(\Omega_{\imath}\right)$ be a net of compact neighbourhoods of 0 such that $\cap \Omega_{\imath}=(0)$. Let

$$
I_{\Omega}=\bigcap_{s \in \Omega} \alpha_{s}(I)
$$

We assert that $\cup_{\imath} I_{\Omega}$ is dense in I. For let $x \in I$ be positive and find positive elements e_{n} and x_{n} in the C^{*}-subalgebra generated by x such that

$$
e_{n} x_{n}=x_{n}, \quad\left\|x-x_{n}\right\| \leq 1 / n
$$

Then by Lemma 3.2 in [7] there is Ω_{\imath} such that $\alpha_{s}\left(x_{n}\right) \in I$ for $s \in-\Omega_{\imath}$. Thus $x_{n} \in$ I_{Ω}. Hence the closure of $\cup_{\imath} I_{\Omega^{\prime}}$ contains x.

Suppose that $I_{\Omega_{t}-\Omega_{t}} \subset \alpha_{-t}\left(I_{\Omega_{t}}\right)$ for any c. Since $\cup I_{\Omega_{t}-\Omega_{t}}$ is also dense in I, this would imply that $I \subset \alpha_{-t}(I)$, a contradiction. Thus there is ι such that $I_{\Omega_{\imath}-\Omega_{t}}$ $\phi \alpha_{-t}\left(I_{\Omega_{t}}\right)$.

Let $J=I_{\Omega_{t}-\Omega_{t}}$. Then since the ideal $\mathrm{V}_{s \in \Omega \iota} \alpha_{s}(J)$ generated by $\alpha_{s}(J), s \in \Omega_{،}$ is contained in $I_{\Omega_{c}}$, we have that

$$
J \not \subset V_{s \in \Omega_{t}} \alpha_{s-t}(J)
$$

Let $B=\overline{J \cdot a \times{ }_{\alpha} G \cdot J} \in \mathscr{H}^{\hat{\alpha}}\left(\mathfrak{a} \times{ }_{\alpha} G\right)$ and let $\Omega=\Omega_{\imath}$. Then $B^{\alpha}(t-\Omega)$ is the closed linear span of

$$
x \lambda(f) y, \quad x, y \in J, \quad f \in L^{1} \cap L^{2} \quad \text { with } \quad \operatorname{supp} f \subset t-\Omega .
$$

Hence the hereditary $*$-algebra generated by elements of the form $y^{*} \lambda(f)^{*} x^{*} x \lambda(f) y$ is dense in $B(t-\Omega)$.
$a \equiv y^{*} \lambda(f)^{*} x^{*} x \lambda(f) y$ is $\hat{\alpha}$-integrable, i.e. there is a positive $I(a)$ in $M\left(\mathfrak{a} \times{ }_{\alpha} G\right)$ (in fact in $\mathfrak{a} \subset M\left(\mathfrak{a} \times{ }_{\alpha} G\right)$) such that

$$
\phi(I(a))=\int_{\Gamma} \phi\left(\hat{\alpha}_{p}(a)\right) d p
$$

for every $\phi \in\left(\mathfrak{a} \times{ }_{\alpha} G\right)^{*}$. Explicitly

$$
I(a)=\int|f(s)|^{2} y^{*} \alpha_{-s}\left(x^{*} x\right) y d s \in J \cdot \underset{s \in \Omega}{V} \alpha_{s-t}(J) \equiv J_{1}
$$

Since $B(t-\Omega)$ is α-invariant, it follows that $I(a) \in B(t-\Omega)^{* *}$. Hence the hereditary *-algebra generated by elements of the form $I(a)$ is contained in $B(t-\Omega)$ and of course is dense in $B(t-\Omega)$. Hence

$$
B(t-\Omega) \subset \overline{J_{1} \cdot \mathfrak{a} \times_{\alpha} G \cdot J_{1}} .
$$

Since $J_{1} \subsetneq J, B(t-\Omega) \neq B$, i.e. $t \notin \tilde{G}(\hat{\alpha})$.
Suppose that $t \notin \tilde{G}(\hat{\alpha})$. Then there are a covariant representation (π, u) of $\left(\mathfrak{a} \times{ }_{\alpha} G, \Gamma, \hat{\alpha}\right)$ and $B \in \mathscr{H}^{\alpha}\left(\mathfrak{a} \times{ }_{\alpha} G\right)$ such that $\operatorname{Sp} u e \ni 0$ and $\operatorname{Sp} u e \supsetneqq t$ where e is the identity of $\overline{\pi(B)}{ }^{w}$. Let Ω be a compact neighbourhood of $0 \in G$ such that $t+\Omega-\Omega$ $\subset(\operatorname{Sp} u e)^{c}$. Then for any $x \in B$ and $s \in \Omega$,

$$
\pi(x) \bar{\pi}(\lambda(s)) u(f)=0, \quad f \in L^{1}(\Gamma) \quad \text { with } \quad \operatorname{supp} \hat{f} \subset t+\Omega .
$$

Let L be the left ideal of $\mathfrak{a} \times{ }_{\alpha} G$ with $B=L \cap L^{*}$. Then from the above calculation, the left ideal L_{1} generated by

$$
\cup L \lambda(f), \quad f \in L^{1}(G) \quad \text { with } \quad \operatorname{supp} f \subset \Omega
$$

satisfies that for $x \in L_{1}$,

$$
\begin{equation*}
\pi(x) u(f)=0, \quad f \in L^{1}(\Gamma) \quad \text { with } \quad \operatorname{supp} \hat{f} \subset t+\Omega . \tag{*}
\end{equation*}
$$

Set $B_{1}=L_{1} \cap L_{1}^{*} \in \mathscr{H}^{\alpha}\left(a \times{ }_{\alpha} G\right)$ and let e_{1} be the identity of $\overline{\pi\left(B_{1}\right)^{w}}$. Then $\operatorname{Sp} u e_{1} \ni 0$ and $\operatorname{Sp} u e_{1} \nexists t$.

The positive cone of B_{1} has a total set of \mathcal{Q}-integrable elements of the form $a=\lambda(f)^{*} x^{*} x \lambda(f), x \in B, f \in L^{1} \cap L^{2}$ with $\operatorname{supp} f \subset \Omega$. Let J be the ideal of a generated by elements $I(a)$ with all such a. Then $B_{1} \subset J \cdot \overline{\mathfrak{a} \times{ }_{\alpha} G \cdot J}$. Since $\overline{J \cdot \mathfrak{a} \times{ }_{\alpha} G \cdot J}$
is generated by elements of the form $x_{1} I\left(a_{1}\right) y I\left(a_{2}\right) x_{2}$ with $x_{i} \in \mathfrak{a}, y \in \mathfrak{a} \times_{\alpha} G$ and since $I\left(a_{1}\right) y I\left(a_{2}\right) \in B_{1}$, we have that $\overline{J \cdot a \times{ }_{\alpha} G \cdot J}=\overline{J B_{1} J}$.

Set $B_{2}=\overline{J \cdot \mathfrak{a} \times{ }_{\alpha} G \cdot J} \in \mathscr{H}^{\alpha}\left(\mathfrak{a} \times{ }_{\alpha} G\right)$. Then $x \in B_{2}$ satisfies (*) since $\bar{\pi}(\mathfrak{a})$ commutes with $u(\Gamma)$. Hence there is a compact neighbourhood Ω_{1} of t such that $B_{2}\left(\Omega_{1}\right)$ $\neq B_{2}$.

Since $B_{1}^{\hat{Q}}\left(\Omega_{1}\right)$ is the closed linear span of

$$
x \lambda(f) y, x, y \in J, f \in L^{1} \cap L^{2} \quad \text { with } \quad \operatorname{supp} f \subset \Omega_{1}
$$

similarly to the first part of the proof, $B_{2}\left(\Omega_{1}\right)$ is the hereditary C^{*}-subalgebra generated by elements of the form

$$
I\left(y^{*} \lambda(f)^{*} x^{*} x \lambda(f) y\right)=\int|f(s)|^{2} y^{*} \alpha_{-s}\left(x^{*} x\right) y d s
$$

Hence $B_{2}\left(\Omega_{1}\right) \supset \alpha_{-t}(J) J \cdot \mathfrak{a} \times_{\alpha} G \cdot \alpha_{-t}(J) J$, which implies that $J \not \subset \alpha_{-t}(J)$. q.e.d.
Here we give a comment. Our reference on α-integrability [2.4,7] contains an error in the definition of I. The correct form should be the one given in the above proof (otherwise Lemma 2.6 in [7] would fail), i.e. $a \in M(B)_{+}$is β-integrable if there is a (necessarily unique) $I(a) \in M(B)$ such that

$$
\phi(I(a))=\int_{\Gamma} \phi \circ \beta_{p}(a) d p
$$

for every $\phi \in B^{*}$, where $B=\mathfrak{a} \times{ }_{\alpha} G$ and $\beta=\hat{\alpha}$ in this case. Here $p \rightarrow \phi \circ \beta_{p}(a)$ is continuous.

To prove that the β-integrable elements are hereditary, we adopt an argument similar to the one in [2.4, 7] by using, e.g., Lemma 2.1 in [1], although this fact is not quite necessary in the above proof, because we have considered only elements of the form $\lambda(f)^{*} x^{*} x \lambda(f)$ (or $y^{*} \lambda(f)^{*} x^{*} x \lambda(f) y$ if $\hat{\alpha}_{p}(y)=y, p \in \Gamma$) as integrable elements, which is justified by Proposition 2.8 in [7].

Lemma 3.3 [10]. The C^{*}-dynamical system $\left(\mathfrak{a} \times{ }_{\alpha} G \times{ }_{\alpha} \Gamma, G, \hat{\alpha}\right)$ is covariantly isomorphic to $(\tilde{\mathbf{a}}, G, \tilde{\alpha})$.

Lemma 3.4.

$$
\tilde{\Gamma}(\alpha)=\left\{p \in \Gamma: \hat{\alpha}_{p}(I) \subset I \text { for any ideal } I \text { of } \mathfrak{a} \times{ }_{\alpha} G\right\}
$$

Proof. It follows from Lemmas 3.2 and 3.3.
By the above lemma and Lemma 3.1 in [7] we have
Theorem 3.5. Let $(\mathfrak{a}, G, \alpha)$ be as above. The following conditions are equivalent:
(i) $\mathfrak{a} \times{ }_{\alpha} G$ is simple;
(ii) \mathfrak{a} is α-simple and $\tilde{\Gamma}(\alpha)=\Gamma$.

As a corollary to Lemma 3.4 we give
Proposition 3.6. Let $(\mathfrak{a}, G, \alpha)$ be as above. Suppose that there is another C^{*}-dynamical system (B, G, β) which is exteriorly equivalent to $(\mathfrak{a}, G, \alpha)$. Then $\tilde{\Gamma}(\alpha)=\tilde{\Gamma}(\beta)$.

Proof. $\quad\left(\mathfrak{a} \times{ }_{\alpha} G, \Gamma, \hat{\alpha}\right)$ is covariantly isomorphic to $\left(B \times{ }_{\beta} G, \Gamma, \hat{\beta}\right)$. q.e.d.
It seems more difficult to compute $\tilde{\Gamma}(\alpha)$ than $\Gamma(\alpha)$ in most of cases. But sometimes $\tilde{\Gamma}(\alpha)$ coincides with $\Gamma(\alpha)$. We shall show some of these cases.

The following lemma can be found, e.g. in [11, Lemma 22]:
Lemma 3.7. Suppose that \mathfrak{a} is α-simple and that G / G_{I} is compact for any primitive ideal I of \mathfrak{a}, where

$$
G_{I}=\left\{t \in G: \alpha_{t}(I)=I\right\} .
$$

Then the primitive ideal space of \mathfrak{a} with the transposed action of G is isomorphic to G / G_{0} with the action of G by translations, where $G_{0}=G_{I}$ for any primitive ideal I.

Proof. Let I be a primitive ideal, and let $\left(\Omega_{\imath}\right)$ be a net of compact neighbourhoods of $0 \in G / G_{I}$ such that $\cap \Omega_{\imath}=(0)$. Since $\alpha_{t}(I)=\alpha_{s}(I)$ if t and s in G have the same image $i=\dot{s}$ in G / G_{I}, we can define

$$
I\left(i+\Omega_{\iota}\right)=\bigcap_{s \in \Omega_{t}}^{\cap} \alpha_{t+s}(I)
$$

There is a finite set S c of G / G_{I} such that

$$
U_{s \in S_{t}}\left(\dot{s}+\Omega_{\imath}\right)=G / G_{I}
$$

Since \mathfrak{a} is α-simple, we have

$$
\cap_{\dot{s} \in S_{\imath}} I\left(\dot{s}+\Omega_{\imath}\right)=(0) .
$$

Let J be a primitive ideal. Since $\cap_{\dot{s} \in S_{\imath}} I\left(\dot{s}+\Omega_{\imath}\right) \subset J$, there is an $\dot{s}_{\imath} \in S_{\imath}$ such that

$$
I\left(\dot{s}_{\iota}+\Omega_{\imath}\right) \subset J .
$$

Since G / G_{I} is compact, we may suppose that \dot{s}_{\imath} converges, say to \dot{s}. Then $\dot{s}+\Omega_{\imath} \ni \dot{s}_{j}$ for sufficiently large $j \geq \iota$. Hence $\dot{s}+\Omega_{\imath}+\Omega_{\imath} \supset \dot{s}_{j}+\Omega_{j}$ which implies

$$
I\left(\dot{s}+\Omega_{\imath}+\Omega_{\imath}\right) \subset J .
$$

We have that $\alpha_{s}(I) \subset J$, since $\cup_{\imath} I\left(\dot{s}+\Omega_{\imath}+\Omega_{\imath}\right)$ is dense in $\alpha_{s}(I)$, as shown from the first part of the proof of Lemma 3.2 and the fact that the quotient map $G \rightarrow G / G_{I}$ is open. Similarly we get that $\alpha_{t}(J) \subset I$ for some $t \in G$, i.e.

$$
\alpha_{s+t}(J) \subset \alpha_{s}(I) \subset J
$$

Since G / G_{J} is compact, we can conclude that $\alpha_{s+t}(J)=J$. Thus $\alpha_{s}(I)=J$.
Hence the set of primitive ideals is $\left\{\alpha_{t}(I): i \in G / G_{I}\right\}$, i.e. there is a one-one correspondence between the primitive ideal space and G / G_{I}, by choosing one primitive ideal I of \mathfrak{a}, which obviously preserves the actions of G. For any subset S of $\boldsymbol{G} / \boldsymbol{G}_{I}$, we have

$$
\bigcap_{s \in S} \alpha_{s}(I)=\bigcap_{s \in S} \alpha_{s}(I) .
$$

By the same argument as above,

$$
\bigcap_{s \in S} \alpha_{s}(I) \subset \alpha_{t}(I)
$$

implies that $i \in \bar{S}$. Hence the closure operations coincide through the correspondence. q.e.d.

Proposition 3.8. Let $(\mathfrak{a}, G, \alpha)$ be a C^{*}-dynamical system where G is a discrete abelian group and \mathfrak{a} is α-simple. Then $\Gamma(\alpha)=\tilde{\Gamma}(\alpha)$.

Proof. We apply Lemma 3.7 to the dual system $\left(\mathfrak{a} \times{ }_{\alpha} G, \Gamma\right.$, $\hat{\alpha}$), where now Γ is compact, and use the formula for $\tilde{\Gamma}(\alpha)$ in Lemma 3.4 and the one for $\Gamma(\alpha)$ in Corollary 5.4 in [7].

Proposition 3.9. Let $(\mathfrak{a}, G, \alpha)$ be a separable C^{*}-dynamical system (i.e. both \mathfrak{a} and G are separable). Suppose that G_{I} is discrete for any primitive ideal I of \mathfrak{a} where

$$
G_{I}=\left\{t \in G: \alpha_{t}(I)=I\right\} .
$$

If \mathfrak{a} is α-simple, then the primitive ideal space of $\mathfrak{a} \times{ }_{\alpha} G$ with the transposed action of $\hat{\alpha}$ of Γ is isomorphic to Γ / H (with action of Γ) for some closed subgroup H of \hat{G} such that Γ / H is compact, in particular $\tilde{\Gamma}(\alpha)=\Gamma(\alpha)(=H)$.

Proof. (c.f. [8, Theorem 3.1]) By [5, Corollary 3.2], for any primitive ideal $I, \Gamma / \Gamma_{I}$ is compact. Apply Lemma 3.7. For the last statement, see the proof of Proposition 3.8.

For applications of the above proposition we refer the reader to [8].

§ 4. Crossed products of $\boldsymbol{O}_{\boldsymbol{n}}$

Let \mathscr{H}_{n} be an n-dimensional Hilbert space $(2 \leq n \leq \infty)$, and let $F\left(\mathscr{H}_{n}\right)$ be the Fock Hilbert space over \mathscr{H}_{n}. For each $f \in \mathscr{H}_{n}, O(f)$ is a bounded operator defined by

$$
\begin{aligned}
& O(f) g_{1} \otimes \cdots \otimes g_{n}=f \otimes g_{1} \otimes \cdots \otimes g_{n} \\
& O(f) \Omega=f
\end{aligned}
$$

where Ω is the vacuum vector in $F\left(\mathscr{H}_{n}\right)$. If $\|f\|=1, O(f)$ is an isometry. We denote by $O\left(\mathscr{H}_{n}\right)$ the C^{*}-algebra generated by $O(f), f \in \mathscr{H}_{n}$.

If n is finite, the Cuntz algebra O_{n} [3] is isomorphic to the quotient of $O\left(\mathscr{H}_{n}\right)$ by the compact operator algebra on $F\left(\mathscr{H}_{n}\right)$ and if $n=\infty, O_{n}$ is isomorphic to $O\left(\mathscr{H}_{n}\right)$. Each unitary u on \mathscr{H}_{n} induces an automorphism of O_{n} through that of $O\left(\mathscr{H}_{n}\right)$ defined by

$$
O(f) \longrightarrow O(u f), \quad f \in \mathscr{H}_{n}
$$

We call quasi-free those automorphisms of O_{n} obtained in this way. See, for the detail, Evance [4].

From now on we assume that n is finite.
Let G be a locally compact abelian group with its dual Γ, as before, and let u be a continuous unitary representation of G on \mathscr{H}_{n}. By thinking of elements of the form

$$
O\left(f_{1}\right) \cdots O\left(f_{n}\right) O\left(g_{1}\right)^{*} \cdots O\left(g_{m}\right)^{*}
$$

it is clear that $\mathrm{Sp} \alpha$ is the closed subgroup of Γ generated by $\operatorname{Sp} u$.
Lemma 4.1. Let $\left(O_{n}, G, \alpha\right)$ be as above. Then $\Gamma(\alpha)=\operatorname{Sp} \alpha$.
Proof. Let $\left(\phi_{i}\right)_{i=1}^{n}$ be an orthonormal system in \mathscr{H}_{n} such that $u_{t} \phi_{i}=\left\langle t, p_{i}\right\rangle \phi_{i}$ with $p_{i} \in \Gamma$. Let S_{i} be the image of $O\left(\phi_{i}\right)$ into O_{n}.

Set for each $k=1,2, \ldots$

$$
S_{i}^{(k)}=\sum_{\mu: l(\mu)=k} S_{\mu} S_{i} S_{\mu}^{*},
$$

where the summation is taken over all the words μ of $\{1, \ldots, n\}$ with length $l(\mu)=k$, and $S_{\left\{i_{1}, \ldots, i_{k}\right\}}=S_{i_{1}} \cdots S_{i_{k}}$ (c.f. [3]). All $S_{i}^{(k)}$ are isometries and satisfy that lim $\|\left[S_{i}^{(k)}\right.$, $x] \|=0$ for any $x \in F^{n} \subset O_{n}$ where F^{n} is the algebra of fixed points under the gauge automorphism group γ, i.e. the quasi-free automorphism group induced by $\{z \cdot 1$; $|z|=1\}$ on \mathscr{H}_{n}.

Let v be an infinite aperiodic sequence of letters $\{1, \ldots, n\}$ (c.f. Lemma 1.8 in [3]) and let v_{m} be the restriction of v to the first m letters. Set

$$
Q_{m}=\sum_{\mu, l(\mu)=m} S_{\mu} S_{v_{m}} S_{v_{m}}^{*} S_{\mu}^{*}
$$

Then $\left\{Q_{m}\right\}$ are γ - and α-invariant projections and satisfy

$$
\begin{aligned}
& \lim \left\|Q_{m} \varepsilon(x) Q_{m}-Q_{m} x Q_{m}\right\|=0 \\
& \lim \left\|Q_{m} x Q_{m}\right\|=\|\varepsilon(x)\|
\end{aligned}
$$

where $\varepsilon(x)=\int \gamma_{t}(x) d t$ is the projection of O_{n} onto F^{n} (c.f. Proposition 1.7 in [3]). Then for any positive $x \in O_{n}$,

$$
\begin{aligned}
& \lim _{m} \lim _{k}\left\|Q_{m} x Q_{m} S_{i}^{(k)} x\right\|=\lim \lim \left\|S_{i}^{(k)} Q_{m} \varepsilon(x) Q_{m} x\right\| \\
& \quad=\lim _{m}\left\|Q_{m} \varepsilon(x) Q_{m} x\right\| \geq\|\varepsilon(x)\|^{2}
\end{aligned}
$$

Let $B \in \mathscr{H}^{\alpha}\left(O_{n}\right)$ and Ω a compact neighbourhood of 0 . Then there is a nonzero positive $x \in B$ with $\mathrm{Sp}_{\alpha}(x) \subset \Omega$. It follows from the above calculation that there are m and k such that $x Q_{m} S_{i}^{(k)} x \neq 0$. This implies that

$$
\operatorname{Sp} \alpha \mid B \cap\left(p_{i}+\Omega+\Omega\right) \neq \phi
$$

Since Ω and B are arbitrary, we can conclude that $\Gamma(\alpha) \ni p_{i}$. Thus $\Gamma(\alpha)=\operatorname{Sp} \alpha$ since $\Gamma(\alpha)$ is a closed subgroup [6].

We denote by $\bar{\gamma}$ the extension of the gauge action γ to an action on $O_{n} \times{ }_{\alpha} G$. This is possible because γ commutes with α. In the following we denote by H the intersection of the closed subsemigroups of Γ generated by $\mathrm{Sp} u$ and $-p$, with $p \in \operatorname{Sp} u$.

Lemma 4.2. Let $\left(O_{n}, G, \alpha\right)$ be as above. Then $H \supset \tilde{\Gamma}(\alpha)$.
Proof. We construct certain α-invariant states of O_{n}. For $i=1, \ldots, n$ and $k=1,2, \ldots$, set

$$
P_{i}^{(k)}=S_{i}^{k} S_{i}^{* k}
$$

Then $\left\{P_{i}^{(k)}\right\}_{k=1,2, \ldots}$ is a decreasing sequence of γ-invariant projections. Let ϕ_{i} be a γ-invariant state satisfying

$$
\phi_{i}(x)=\phi_{i}\left(P_{i}^{(k)} x P_{i}^{(k)}\right), \quad x \in O_{n}, \quad k=1,2, \ldots
$$

Then it is shown that ϕ_{i} is α-invariant (and in fact unique) and that the continuous
functions on $G \ni t \rightarrow \phi\left(x \alpha_{t}(y)\right)$ for $x, y \in O_{n}$ are contained in the closed algebra generated by characters p_{1}, \ldots, p_{n} and $-p_{i}$, e.g.

$$
\phi_{i}\left(x \alpha_{t}\left(S_{\mu} S_{v}^{*}\right)\right)=\left\langle t, p_{j_{1}}+\cdots+p_{j_{m}}-p_{k_{1}}-\cdots-p_{k_{n}}\right\rangle \phi_{i}\left(x S_{\mu} S_{v}^{*}\right)
$$

is non-zero only if $v \equiv\left\{k_{1}, \ldots, k_{n}\right\}=\{i, \ldots, i\}$, where $\mu=\left\{j_{1}, \ldots, j_{m}\right\}$. This implies that in the GNS representation associated with ϕ_{i}, the canonical representation U of G defined by

$$
U_{t} \pi_{\phi_{i}}(x) \Omega_{\phi_{i}}=\pi_{\phi_{i}}{ }^{\circ} \alpha_{t}(x) \Omega_{\phi_{i}}, \quad x \in O_{n}
$$

has spectrum in the closed subsemigroup H_{i} generated by p_{1}, \ldots, p_{m} and $-p_{i}$. By Proposition 2.2 we have that $\tilde{\Gamma}(\alpha) \subset H_{i}$.

Lemma 4.3. Let $\left(O_{n}, G, \alpha\right)$ be as above. Then for any $\bar{\gamma}$-invariant ideal I of $O_{n} \times{ }_{\alpha} G$, it follows that $\hat{\alpha}_{p}(I) \subset I$ for $p \in H$.

Proof. Let ρ be a representation of $O_{n} \times{ }_{\alpha} G$ whose kernel is $\bar{\gamma}$-invariant. Let $x \in O_{n}^{\gamma} \times{ }_{\alpha} G \equiv\left(O_{n} \times{ }_{\alpha} G\right)^{\bar{\gamma}}$ or be of the form $\sum a_{i} \otimes f_{i}$ with $a_{i} \in O_{n}^{\gamma}, f_{i} \in C^{*}(G)$. Then since $\lim \left\|S_{i}^{(k) *} x S_{i}^{(k)}-\hat{\alpha}_{p_{i}}(x)\right\|=0$, we have

$$
\lim _{k}\left\|\rho\left(S_{i}^{(k) *} x S_{i}^{(k)}\right)\right\|=\left\|\rho \circ \hat{\alpha}_{p_{i}}(x)\right\| .
$$

The left hand side equals

$$
\lim _{k} \| \rho(x) \rho\left(S_{i}^{(k)} S_{i}^{(k) *)} \|\right.
$$

since $S_{i}^{(k)} S_{i}^{(k) *}$ asymptotically commutes with x. Further since $S_{i}^{(k)} S_{i}^{(k) *}$ are projections and $\sum_{i} S_{i}^{(k)} S_{i}^{(k) *}=1$, we have

$$
\begin{align*}
& \|\rho(x)\| \geq\left\|\rho \circ \hat{Q}_{p_{i}}(x)\right\| \\
& \|\rho(x)\|=\max _{i}\left\|\rho \circ \hat{Q}_{p_{i}}(x)\right\| \tag{*}
\end{align*}
$$

For a fixed $x \in O_{n}^{\gamma} \times{ }_{\alpha} G$ we can find an infinite sequence $\left\{i_{k}\right\}$ of $\{1, \ldots, n\}$ such that

$$
\begin{equation*}
\|\rho(x)\|=\left\|\rho \circ \hat{\alpha}_{p_{t_{1}}+\cdots+p_{t_{k}}}(x)\right\| \tag{**}
\end{equation*}
$$

for all $k=1,2, \ldots$. There is an $i \in\{1,2, \ldots, n\}$ which infinitely often appears in $\left\{i_{k}\right\}$. For such an i we have

$$
\|\rho(x)\|=\left\|\rho \circ \hat{\alpha}_{n p_{i}}(x)\right\|
$$

for $n=1,2, \ldots$, since for any subset J of $\{1, \ldots, k\},(* *)$ is less than or equal to

$$
\left\|\rho \circ \mathcal{Q}_{\left(\sum_{j \in J} p_{i j}\right)}(x)\right\| \leq\|\rho(x)\| .
$$

Let $p \in H$. By the assumption there is a sequence in the subsemigroup generated by $\left\{p_{1}, \ldots, p_{n},-p_{i}\right\}$ which converges to p, i.e. there is a sequence

$$
q_{l}=\sum_{k} n_{k}^{(l)} p_{k}-m^{(l)} p_{i}-p, n_{k}^{(l)} \geq 0, m^{(l)} \geq 0
$$

which converges to zero in Γ. Then

$$
\begin{aligned}
\left\|x-\hat{\alpha}_{q_{l}}(x)\right\| & \geq \| \rho \circ \hat{\alpha}_{m}(l) p_{t} \\
& \geq\|\rho(x)\|-\left\|\rho \circ \alpha_{\left(\sum n_{k}^{(l)} p_{k}-p\right)}(x)\right\| \\
& \left\|\rho \hat{\alpha}_{-p}(x)\right\|
\end{aligned}
$$

which implies that $\left\|\rho \circ \hat{\alpha}_{-p}(x)\right\| \geq\|\rho(x)\|$. Hence

$$
\hat{\alpha}_{p}(I) \cap O_{n}^{\gamma} \times{ }_{\alpha} G \subseteq I \cap O_{n}^{\gamma} \times{ }_{\alpha} G
$$

where I is the kernel of ρ. Since I is generated by $I \cap O_{n}^{\gamma} \times_{\alpha} G$, we can conclude that $\hat{\alpha}_{p}(I) \subset I$.
q.e.d.

Theorem 4.4. Let $\left(O_{n}, G, \alpha\right)$ be as above. The crossed product $O_{n} \times{ }_{\alpha} G$ is simple if and only if the closed subsemigroup of Γ generated by $\operatorname{Sp} u$ and $-p$ is Γ itself for any $p \in \operatorname{Sp} u$.

Proof. Since $H \supset \tilde{\Gamma}(\alpha)$ by Lemma 4.2, if $H \neq \Gamma, O_{n} \times{ }_{\alpha} G$ is not simple by Theorem 3.5.

Suppose $H=\Gamma$. Then Lemma 4.3 implies that any $\bar{\gamma}$-invariant ideal is \mathcal{Q} invariant. Since O_{n} is simple [3], there are not any non-trivial α-invariant ideals of $O_{n} \times{ }_{\alpha} G$. Thus $O_{n} \times{ }_{\alpha} G$ is $\bar{\gamma}$-simple. Since $O_{n} \times{ }_{\alpha} G$ is prime by Lemma 4.1 and [7, Theorem 5.8], it follows from [7, Lemma 6.4] (or Lemma 3.7) that $O_{n} \times{ }_{\alpha} G$ is simple.

Proposition 4.5. Let $\left(O_{n}, G, \alpha\right)$ be as above and suppose that $\alpha(G)$ contains the gauge automorphism group γ. Then $\tilde{\Gamma}(\alpha)$ is the intersection of the closed subsemigroups of Γ generated by $\mathrm{Sp} u$ and $-p$, with $p \in \operatorname{Sp} u$.

Proof. Since $\bar{\gamma}$ is inner under the above assumption, any ideal of $O_{n} \times{ }_{\alpha} G$ is $\bar{\gamma}$-invariant. The rest of the proof follows from Lemmas 4.2, 4.3 and 3.4. q.e.d.

§ 5. Crossed products of \boldsymbol{O}_{∞}

In this section we consider the case $n=\infty$. As in Section 4, let u be a weakly continuous unitary representation of a locally compact group G on a separable infinite-dimensional Hilbert space \mathscr{H} and let α be the corresponding quasi-free
action on $O_{\infty}=O(\mathscr{H})$. It is immediate that $\mathrm{Sp} \alpha$ is the closed subgroup generated by $\mathrm{Sp} u$.

Let $F=F(\mathscr{H})=\sum_{0}^{\infty} \mathscr{H}^{\otimes n}$ be the Fock space and π_{F} the Fock representation of O_{∞} on F [4]. Let U_{F} be the canonical representation of G on the Fock space, i.e.

$$
U_{F}(t) \mid \mathscr{H}^{\otimes n}=u_{t} \otimes \cdots \otimes u_{t} \text { (n-tuples) } \equiv u_{t}^{\otimes n} .
$$

It is clear that $\mathrm{Sp} U_{F}$ is the closed subsemigroup H generated by $\mathrm{Sp} u$. The pair (π_{F}, U_{F}) gives a representation $\pi_{F} \times U_{F}$ of $O_{\infty} \times{ }_{\alpha} G$ in an obvious way. If $H \neq \Gamma, \pi_{F} \times U_{F}$ is not faithful, in particular $O_{\infty} \times{ }_{\alpha} G$ is not simple (c.f. [9]).

Theorem 5.1. Let $\left(O_{\infty}, G, \alpha\right)$ be as above. The crossed product $O_{\infty} \times{ }_{\alpha} G$ is simple if and only if the closed subsemigroup H generated by $\operatorname{Sp} u$ is Γ.

Proof. We have shown that if $H \neq \Gamma$, then $O_{\infty} \times_{\alpha} G$ is not simple. Hence we now assume that $H=\Gamma$.

First we want to show that $\pi_{F} \times U_{F}$ is faithful. Since $\pi_{F} \times U_{F}$ is irreducible, this in particular implies that $O_{\infty} \times_{\alpha} G$ is prime.

For each $n=1,2, \ldots$, there is a natural unitary map W_{n} from $F \otimes \mathscr{H}^{\otimes n}$ onto $\sum_{n}^{\infty} \mathscr{H}^{\otimes k} \subset F$, such that $W_{n}(\psi \otimes \phi)=\sum_{0}^{\infty} \psi_{k} \otimes \phi$ where $\psi=\sum_{0}^{\infty} \psi_{k}$ with $\psi_{k} \in \mathscr{H}^{\otimes k}$ and $\psi_{k} \otimes \phi \in \mathscr{H}^{\otimes k+n}$. Note that

$$
W_{n} \cdot U_{F}(t) \otimes u_{t}^{\otimes n}=U_{F}(t) W_{n} .
$$

In the following, however, we omit W_{n}.
Let $\left(\Omega_{\imath}\right)$ be a decreasing sequence of compact neighbourhoods of 0 in Γ such that $\cap \Omega_{\imath}=(0)$. There are $p_{\imath} \in \operatorname{Sp} u$ and $\phi_{\iota} \in \mathscr{H}$ with $\left\|\phi_{\iota}\right\|=1$ such that $\operatorname{Sp}_{u} \phi_{\iota} \subset p_{\imath}+\Omega_{\iota}$ and ϕ_{l} tends to zero weakly.

Let $p \in \Gamma$. Then, since $\operatorname{Sp} U_{F}=\Gamma$ due to the assumption, there are positive integers m_{ι} and $\psi_{\iota} \in \mathscr{H}^{\otimes m_{t}}$ with $\left\|\psi_{\iota}\right\|=1$ such that $\mathrm{Sp}_{U_{F}} \psi_{\iota} \subset p-p_{\iota}+\Omega_{\iota}$.

Let $x=\sum a_{k} \otimes f_{k} \in O_{\infty} \times_{\alpha} G$ where a_{k} are monomials (i.e. of the type $O\left(f_{1}\right) \cdots$ $\left.O\left(f_{i}\right) O^{*}\left(g_{1}\right) \cdots O^{*}\left(g_{j}\right)\right)$ and $f_{k} \in L^{1}(G)$.

Note that for any $\psi \in F$,

$$
\begin{aligned}
& \lim \left\|\int f_{k}(t) U_{F}(t)\left(\psi \otimes \phi_{l} \otimes \psi_{\iota}\right) d t-\int f_{k}(t)\langle t, p\rangle\left(U_{F}(t) \psi\right) \otimes \phi_{l} \otimes \psi_{l} d t\right\|=0 \\
& \lim \left\|\pi_{F}\left(a_{k}\right)\left(\psi \otimes \phi_{l} \otimes \psi_{\imath}\right)-\left(\pi_{F}\left(a_{k}\right) \psi\right) \otimes \phi_{\iota} \otimes \psi_{\imath}\right\|=0 .
\end{aligned}
$$

Hence we have that

$$
\lim \left\|\left(\pi_{F} \times U_{F}\right)(x)\left(\psi \otimes \phi_{l} \otimes \psi_{\iota}\right)-\left(\left(\pi_{F} \times U_{F}\right) \circ\left({\hat{\alpha_{p}}}_{p}(x) \psi\right)\right) \otimes \phi_{\iota} \otimes \psi_{\iota}\right\|=0 .
$$

Since $\psi \in F$ is arbitrary, we have that $\left\|\pi_{F} \times U_{F}(x)\right\| \geqq\left\|\left(\pi_{F} \times U_{F}\right) \circ \otimes_{p}(x)\right\|$, which in
turn implies, since p is arbitrary,

$$
\left\|\left(\pi_{F} \times U_{F}\right) \circ \hat{\chi}_{p}(x)\right\|=\left\|\left(\pi_{F} \times U_{F}\right)(x)\right\|, \quad p \in \Gamma
$$

Since O_{∞} is simple [3], we can conclude that $\pi_{F} \times U_{F}$ is faithful.
Now let $\pi \times U$ be any irreducible representation of $O_{\infty} \times_{\alpha} G$. By a similar reason as given in the proof of Theorem 4.4 it suffices to show that $\operatorname{ker}(\pi \times U) \cap$ $O_{\infty}^{\gamma} \times_{\alpha} G=(0)$.

Let $\left(f_{i}\right)$ be a complete orthonormal system of \mathscr{H}. Then $\pi\left(O\left(f_{i}\right) O^{*}\left(f_{i}\right)\right)$ are mutually orthogonal projections. Let

$$
P=\sum_{i=1}^{\infty} \pi\left(O\left(f_{i}\right) O^{*}\left(f_{i}\right)\right)
$$

P is a projection in $U(G)^{\prime}$ which is independent from choice of $\left(f_{i}\right)$.
First suppose that $P \neq 1$. Let e be a projection in $U(G)^{\prime}$ such that $0 \neq e \leqq 1-P$. Then by the irreducibility, we have that $\left[\pi\left(O_{\infty}\right) e \mathscr{H}_{\pi}\right]=\mathscr{H}_{\pi}$. But $(1-P)\left[\pi\left(O_{\infty}\right) e \mathscr{H}_{\pi}\right]$ $=e \mathscr{H}_{\pi}$, i.e. $1-P=e$. Hence $1-P$ is one-dimensional. Now it is easily shown that π is equivalent to π_{F} and that $U=p U_{F}$ with some $p \in \Gamma$. Hence the faithfulness of $\pi \times U \simeq \pi_{F} \times U_{F} \circ \hat{Q}_{p}$ follows from the above.

Suppose that $P=1$. Let $p \in \mathrm{Sp} u+\cdots+\mathrm{Sp} u$ (k terms). There is a sequence of unit vectors $\psi_{1} \otimes \otimes \otimes \psi_{k \iota} \in \mathscr{H} \otimes k$ such that $\operatorname{Sp}_{U_{F}}\left(\psi_{1} \otimes \cdots \otimes \psi_{k \iota}\right) \subset p+\Omega_{\text {d }}$ with $\Omega_{\text {。 }}$ given before. Now we define a family of isometries:

$$
\begin{aligned}
& V_{t}^{(0)}=\pi\left(O\left(\psi_{1 t}\right) \cdots O\left(\psi_{k \iota}\right)\right) \\
& V_{t}^{(m)}=\sum \pi\left(O\left(f_{i}\right)\right) V_{i}^{(m-1)} \pi\left(O^{*}\left(f_{i}\right)\right) .
\end{aligned}
$$

Note that $V_{t}^{(m)}$ does not depend on $\left(f_{i}\right)$.
Let $x=\sum a_{k} \otimes f_{k} \in O_{\infty}^{y} \times_{\alpha} G$ where a_{k} are monomials, say, $a_{k}=O\left(g_{1}\right) \cdots O\left(g_{m_{k}}\right)$. $O^{*}\left(h_{1}\right) \cdots O^{*}\left(h_{m_{k}}\right)$. For $m \geqq m_{k}$ we have that

$$
\begin{aligned}
& \pi\left(a_{k}\right) V_{t}^{(m)}=V_{t}^{(m)} \pi\left(a_{k}\right) \\
& \lim \left\|U_{t} V_{t}^{(m)}-\langle t, p\rangle V_{t}^{(m)} U_{t}\right\|=0 .
\end{aligned}
$$

Thus, for $m \geq \max \left(m_{k}\right)$

$$
\lim \left\|(\pi \times U)(x) V_{t}^{(m)}-V_{t}^{(m)}(\pi \times U) \circ \hat{\chi}_{p}(x)\right\|=0
$$

Since $V_{t}^{(m)}$ are isometries, we have that $\|(\pi \times U)(x)\| \geq\left\|(\pi \times U) \circ \hat{\chi}_{p}(x)\right\|$. Since such p is dense in Γ, we have

$$
\|(\pi \times U)(x)\|=\left\|(\pi \times U) \circ \hat{Q}_{p}(x)\right\|, \quad \forall p \in \Gamma .
$$

Since O_{∞} is simple, we know that $(\pi \times U) \mid O_{\infty}^{y} \times{ }_{\alpha} G$ is faithful.
Remark 5.2. If the set of elements of $\operatorname{Sp} U_{F}$ added by those of the essential spectrum of u is equal to $\operatorname{Sp} U_{F}$ itself and if $\alpha(G)$ contains the gauge automorphism group γ, then it follows from the above proof that $\tilde{\Gamma}(\alpha)$ equals $\operatorname{Sp} U_{F}$. For example $\tilde{\Gamma}(\gamma)=Z_{+}$.

In passing we give a remark on a quasi-free automorphism α_{u} of O_{∞} which is induced by a unitary u on \mathscr{H} such that u^{n} tends to zero weakly as $n \rightarrow \infty$. The following proposition implies, in particular, that the Fock state is the only α_{u}-invariant state of O_{∞}.

Proposition 5.3. Let α_{u} be as above. Then for any $x \in O_{\infty}$,

$$
M_{N}(x) \equiv(2 N+1)^{-1} \sum_{n=-N}^{N} \alpha_{u}^{n}(x)
$$

converges in norm to a multiple of the identity.
Proof. Suppose $x=O\left(f_{1}\right) \cdots O\left(f_{n}\right) O^{*}\left(g_{1}\right) \cdots O\left(g_{m}\right)^{*}$ with $n+m \geq 1$, and $\left\|f_{1}\right\|$ $=\cdots=\left\|g_{m}\right\|=1$. Then if $n \geq 1$,

$$
\begin{aligned}
\left\|M_{N}(x)\right\|^{2} & =\left\|M_{N}(x)^{*} M_{N}(x)\right\| \\
& \leq(2 N+1)^{-2} \sum_{n, m=-N}^{N}\left|\left\langle u^{n} f_{1} u^{m} f_{1}\right\rangle\right|
\end{aligned}
$$

which implies that $\lim \left\|M_{N}(x)\right\|^{2}=0$. Similarly we have the same in case $m \geqq 1$. The linear span of 1 and elements of the form $O\left(f_{1}\right) \cdots O^{*}\left(g_{m}\right)$ is dense in O_{∞}, which completes the proof.

With a little more care we can conclude that the system ($\left.O_{\infty}, \mathbf{Z}, \alpha\right)$ with $\alpha_{n} \equiv \alpha_{\mu^{n}}$ is weakly asymptotically abelian.

Note and Acknowledgements

The problems treated in this note were brought up by H. Takai to a series of seminars, held in Tokyo, attended by A. Ikunishi and Y. Nakagami besides us. The basic ideas of Section 5 were obtained during the seminars, and those of Sections 2 and 3 are a result of many discussions with H. Takai during the summer in 1979.

I would like to thank the other members of the seminars and especially Dr. H. Takai for stimulating discussions. I am grateful to Professor D. W. Robinson for warm hospitality at the University of New South Wales, Sydney, Australia, where this was completed. I am also grateful to Dr. D. Olesen for a couple of comments.

References

[1] Akemann, C. A., Pedersen, G. K., Tomiyama, J.: Multipliers of C^{*}-algebras, J. Functional Analysis, 13, 277-301 (1973).
[2] Arveson, W. B.: On groups of automorphisms of operator algebras, J. Functional Analysis, 15, 217-243 (1974).
[3] Cuntz, J.: Simple C*-algebras generated by isometries, Commun. math. Phys. 57, 173185 (1977).
[4] Evance, D. E.: On O_{n} (preprint).
[5] Gootman, E. G., Rosenberg, J.: The structure of Crossed product C^{*}-algebras: A proof of the generalized Effros-Hahn conjecture, Invent. Math. 52, 283-298 (1979).
[6] Olesen, D.: Inner automorphisms of simple C*-algebras, Commun. math. Phys. 44, 175190 (1975).
[7] Olesen, D., Pedersen, G. K.: Applications of the Connes spectrum to C^{*}-dynamical systems. J. Functional Analysis 30, 179-197 (1978).
[8] Olesen, D., Pedersen, G. K.: Applications of the Connes spectrum to C^{*}-dynamical systems II (preprint).
[9] Pedersen, G. K., Takai, H.: Crossed products of C^{*}-algebras by approximately uniformly continuous actions, Math. Scand. 45, 282-288 (1979).
[10] Takai, H.: On a duality for crossed products of C^{*}-algebras, J. Functional Analysis 19, 25-39 (1975).
[11] Green, P.: The local structure of twisted covariance algebra. Acta Math. 140, 191-250 (1978).

Department of Mathematics
Yokohama City University
Yokohama, Japan

