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ABSTRACT: We introduce a new invariant $\tilde{\Gamma}(\alpha)$ , a closed subsemigroup of the dual of
$G$, of a $c*$-dynamical system $(\mathfrak{a}, G, \alpha)$ where $\mathfrak{a}$ is a $C^{*}$-algebra, and $G$ is a locally compact
abelian group with an action $\alpha$ on $\mathfrak{a}$ . We show that the crossed product $a\times.G$ is simple
if and only if $\mathfrak{a}$ is $\alpha$-simple (i.e. $\mathfrak{a}$ does not have any non-trivial a-invariant ideals) and $\tilde{\Gamma}(\alpha)$

equals the dual of $G$. We discuss some cases where $\tilde{\Gamma}(\alpha)$ coincides with the Connes spec-
trum $\Gamma(\alpha)$ . Finally we give examples of simple crossed products of Cuntz algebras by
locally compact abelian groups.

\S 1. Introduction

In a paper [7] by D. Olesen and G. K. Pedersen the Connes spectrum $\Gamma(\alpha)$

[6] of a $C^{*}$-dynamical system $(\mathfrak{a}, G, \alpha)$ , with a locally compact abelian group $G$,
plays an important role in characterizing primeness of the crossed product $\mathfrak{a}\times_{\alpha}G$ .
We introduoe a new invariant $F(\alpha)$ , which is a closed subsemigroup of $\Gamma(\alpha)$, and show
that $\tilde{\Gamma}(\alpha)$ is relevant in characterizing simplicity of $\mathfrak{a}\times_{\alpha}G$ . After $F(\alpha)$ being intro-
duced, our results and methods are quite similar to the prime case above-mentioned.

By using a characterization of $F(\alpha)$ in terms of ideals of the crossed product
and the dual action on it, we show that $F(\alpha)$ coincides with $\Gamma(\alpha)$ in some cases, in
particular, when $G$ is discrete and a is $\alpha$-simple.

Unfortunately $\tilde{\Gamma}(\alpha)$ seems to be hard to compute, at least, directly from its
definition. Hence our examples of simple crossed products could be given inde-
pendently of the above-mentioned general theory. We show that the crossed product
of a Cuntz algebra $O_{n}[3]$ by a so-called quasi-free automorphism group [4] cor-
responding to a unitary representation $u$ , on the n-dimensional Hilbert space, of a
locally compact abelian group $G$, is simple if and only if the closed subsemigroup
generated by Sp $u$ and $-p$ equals the dual of $G$ , for any $p\in Spu$ if $ n<\infty$ , and for
$ p=0ifn=\infty$ . $InsomeofthoseC^{*_{-}}dynamicalsystemswecanmputeF(\alpha)$ .

We refer the reader to [7] for our terminology, definition and notation. But
we denote the crossed product by $\mathfrak{a}\times_{\alpha}G$ rather than $G\times_{\alpha}\mathfrak{a}$ .
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\S 2. $\tilde{\Gamma}(a)$

Let $G$ be a locally compact abelian group with its dual $\Gamma$ and let $(\mathfrak{a}, G, \alpha)$ be a
$C^{*}$-dynamical system, i.e. $\alpha$ is a homomorphism of $G$ into the automorphism group
of $\mathfrak{a}$ such that $t\rightarrow\alpha_{t}(x)$ is norm-continuous for any $x\in \mathfrak{a}$ . For $f\in L^{1}(G, dt)$ with a
Haar measure $dt$ , the map $\alpha_{f}$ on $\mathfrak{a}$ is defined by

$\alpha_{f}(x)=\int f(t)\alpha_{t}(x)dt$ .

The $\alpha$-spectrum, $Sp_{\alpha}(x)$ , of $x\in a$ is defined as $\cap\{z(f):\alpha_{f}(x)=0\}$ where

$z(f)=\{p\in r;f(p)=0\}$ .

The spectral subspace $\mathfrak{a}^{\alpha}(\Omega)$ corresponding to a closed subset $\Omega$ of $\Gamma$ is $\{x\in \mathfrak{a}:Sp_{\alpha}(x)$

$\subset\Omega\}$ . The spectrum of $\alpha$ , Sp $\alpha$ , is the set of $ p\in\Gamma$ such that for any closed neighbour-
hood $\Omega$ of $p,$

$\mathfrak{a}^{\alpha}(\Omega)$ is non-zero. See, for detail, e.g. [2].

We define the strong spectrum of $\alpha,\tilde{S}p(\alpha)$ , as the set of $p$ such that for any
closed neighbourhood $\Omega$ of $p,$ $\mathfrak{a}(\Omega)=\mathfrak{a}$ , where $\mathfrak{a}(\Omega)$ is the closed linear span of $\mathfrak{a}^{\alpha}(\Omega)^{*}$ .
$\mathfrak{a}\cdot \mathfrak{a}^{\alpha}(\Omega)$ , which is, in general, a hereditary $C^{*}$-subalgebra of $\mathfrak{a}$ .

We denote by $\ovalbox{\tt\small REJECT}^{\alpha}(\mathfrak{a})$ the set of non-zero, $\alpha$-invariant hereditary $C^{*}$-subalgebras
of $\mathfrak{a}$ . We define the strong Connes spectrum of $\alpha,$

$\Gamma(\alpha)$ , by

$\tau_{(\alpha)=}\cap\tilde{S}p(\alpha|B)$ , $B\in\ovalbox{\tt\small REJECT}^{a}(\mathfrak{a})$ .
The Connes spectrum $\Gamma(\alpha)$ is just defined without tildes in the above formula [6].

Our first proposition is quite obvious:

Proposition 2.1. (i) $ 0\in$ Sp $(\alpha)\subset Sp(\alpha)$ and $\tilde{S}p(\alpha)$ is a closed subsemigroup of
$\Gamma$,

(ii) $0\in F(\alpha)\subset\Gamma(\alpha)andF(\alpha)$ isaclosed subsemigroup ofI’.
For a subset $H$ of $\Gamma$ we denote by $S(H)$ the largest closed subsemigroup satisfy-

ing $H+S(H)\subset H$, i.e.

$S(H)=\bigcap_{p\in H}H-p$

when $H$ is closed (c.f. [6]). We characterize $F(\alpha)$ by using covariant representations
$(\pi, u)$ of $(\mathfrak{a}, G, \alpha)$ :

Proposition 2.2.
$ F(\alpha)=\cap$ $\cap$ $S(Spue_{n\langle B)})$

$(\pi.u)BeX^{\alpha}(a).\pi\langle B)\neq(0)$
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where $e_{\pi\langle B)}$ is the identity of the weak closure $\overline{\pi(B})^{1\nu}$ of $\pi(B)$ .
Proof. A hereditary $C^{*}$-subalgebra $B$ of $a$ is of the form $e\mathfrak{a}e\cap a$ by using an

open projectione in $\mathfrak{a}^{**}andsatisfiesB^{**}=e\mathfrak{a}^{**}e$ . $e_{\pi(B)}$ is the image ofe under the
extension $\overline{\pi}$ of $\pi$ to $\mathfrak{a}^{**}$ , and commutes with $u(G)$ if $B$ is $\alpha$-invariant. From now on
we denote $e_{\pi\langle B)}$ by $e$ .

If $p\in\tilde{S}p(\alpha|B)$ , then $\pi(B^{\alpha}(p+\Omega))\psi\neq(O)$ for any non-zero $\psi\in e\ovalbox{\tt\small REJECT}_{\pi}$ and for any
compact neighbourhood $\Omega$ of $0$ . This implies that Sp $ue+p\subset Spue$, i.e. Sp $ue+$

$\tilde{S}p(\alpha|B)\subset$ Sp $ue$ .
Conversely let $p\not\in\tilde{S}p(\alpha|B)$ with $B\in\ovalbox{\tt\small REJECT}^{\alpha}(a)$ and let $\Omega$ be a compact neighbour-

hood ofp such that B$(\Omega)\neq B$ . SinceB and B$(\Omega)$ are $\alpha$-invariant, $weregardB\times_{\alpha}G$

and $B(\Omega)\times_{\alpha}G$ as $C^{*}$-subalgebras of $\mathfrak{a}\times_{\alpha}G$ and we have that $ B(\Omega)\times_{\alpha}G\subsetneqq B\times_{\alpha}G\subseteq$

$\mathfrak{a}\times_{\alpha}G$ (Lemma 2.10 in [7]). Let $\phi$ be apure state of $B\times_{\alpha}G$ such that $\phi|B(\Omega)\times_{\alpha}G$

$=0$ and let di be its (unique) extension to a state of $\mathfrak{a}\times_{\alpha}G$ . We now have the $-$

variant representation $(\pi, u)$ of $(\mathfrak{a}, G, \alpha)$ associated with $\phi$ , e.g., $u(t)=\overline{\pi}_{\overline{\phi}}(\lambda(t))t\in G$

where $\lambda(\cdot)$ is the natural unitary group which implements $\alpha$ in the multiplier algebra
$M(\mathfrak{a}\times_{\alpha}G)ofa\times_{\alpha}G$ . Lete $(resp. e_{1})$ be the identity of $\overline{\pi(B}$), the same as the one of
$\pi_{\overline{\phi}}(B\times_{\alpha}G)^{w}$ , (resp. the identity of $\overline{\pi(B(\Omega))}^{1\nu}$). Then $e,$ $e_{1}\in u(G)^{\prime}$ and $e>\neq e_{1}$ . Let
$q\in Spu(e-e_{1})$ and let $\Omega_{1}$ be a compact neighbourhood of $q$ . With $e(\Omega_{1})$ being the
spectral projection of $u(e-e_{1})$ corresponding to $\Omega_{1}$ , we have

$[\pi(\mathfrak{a})e(\Omega_{1})\ovalbox{\tt\small REJECT}_{\pi}]=\ovalbox{\tt\small REJECT}_{\pi}$

sinoe the projection onto the left hand side is in $\pi(\mathfrak{a})^{\prime}\cap u(G)^{\prime}$ . Since

$e[\pi(\mathfrak{a})e(\Omega_{1})\ovalbox{\tt\small REJECT}_{\pi}]=[\pi(B)e(\Omega_{1})\ovalbox{\tt\small REJECT}_{\pi}]$

$[\pi(B^{\alpha}(\Omega))e(\Omega_{1})\ovalbox{\tt\small REJECT}_{\pi}]=(0)$

for any compact neighbourhood $\Omega_{1}$ of $q$ , we can easily conclude that Sp ue$$p+q$ .
$q.e.d$ .

Remark 2.3. The intersection over the covariant representations can be re-
stricted to the irreducible covariant representations $(\pi, u)$ , i.e. the ones with $\pi(a)^{\prime}\cap$

$u(G)^{\prime}=C\cdot 1$ , in the above proposition.

Remark 2.4. If $ F(\alpha)\neq\Gamma$, it follows easily that $\mathfrak{a}\times_{\alpha}G$ is not simple (c.f. [9]).
We may consider the invariant in von Neumann algebra case corresponding

to $F$, but it turns out to be the Connes spectrum. Hence $F$ can be considered as
another version of the Connes spectrum (originally defined for von Neumann
algebras).
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\S 3. Simple crossed products

Let $(\mathfrak{a}, G, \alpha)$ be a $C^{*}$-dynamical system with a locally compact abelian group
$G$ . Let $K\equiv C(L^{2}(G))$ be the algebra of all compact operators on $L^{2}(G)$ and $\lambda$ the
regular representation of $G$ on $L^{2}(G)$ . Let $\tilde{\mathfrak{a}}=\mathfrak{a}\otimes K$ and $\tilde{\alpha}=\alpha\otimes Ad\lambda$ an action of
$G$ on $\tilde{\mathfrak{a}}$ .

Lemma 3.1. $F(\tilde{\alpha})=\tilde{\Gamma}(\alpha)$ .

Proof. Suppose $p\not\in F(\alpha)$ . Then there are a covariant representation $(\pi, u)$

and $B\in\ovalbox{\tt\small REJECT}^{\alpha}(\mathfrak{a})$ such that Sp $ue\ni O$ and Sp $ue\Rightarrow p$ where $e$ is the identity of $\overline{\pi(B})^{w}$ (the
assumption Sp $ue\ni O$ is always achieved by multiplying $u$ by some character of $G$).

We construct a covariant representation $(\tilde{\pi},\tilde{u})$ of $(\tilde{\mathfrak{a}}, G,\tilde{\alpha})$ by simply tensoring
the identity representation of ($K,$ $G$, Ad $\lambda$), e.g.

$\tilde{u}(t)=u(t)\otimes\lambda(t)$ , $t\in G$ .
Let $\Omega$ be a compact neighbourhood of $0$ such that $p-\Omega\subset(Spue)^{c}$ and let $e_{1}$

be the spectral projection of $\lambda$ corresponding to $\Omega$ . Set $D=e_{1}Ke_{1}$ . Then $ D\in$

$\ovalbox{\tt\small REJECT}^{Ad\lambda}(K)$ and $B\otimes D\in\ovalbox{\tt\small REJECT}^{\delta}(\tilde{\mathfrak{a}})$ and $e\otimes e_{1}$ is the identity of $\overline{\tilde{\pi}(B\otimes D})^{w}$ . We have that
Sp $\tilde{u}\cdot(e\otimes e_{1})Sp$ since

Sp $\tilde{u}\cdot(e\otimes e_{1})\subset Spue+Sp\lambda e_{1}=Spue+\Omega$ .

Sinoe Sp $\tilde{u}\cdot(e\otimes e_{1})\ni 0$, we can conclude that $\tilde{\Gamma}(\tilde{\alpha})Sp$ .
Suppose $p\not\in F(\tilde{\alpha})$ . Then there are a covariant representation $(\pi, u)$ of $(\tilde{\mathfrak{a}}, G,\tilde{\alpha})$

and $B\in\ovalbox{\tt\small REJECT}^{\partial}(\tilde{a})$ such that Sp $ue\ni O$ and Sp $ue\Rightarrow p$ where $e$ is the identity of $\overline{\pi(B})^{w}$ .
First we assert that $B$ can be chosen to satisfy that $B\supset C^{*}(G)BC^{*}(G)$ , where

$C^{*}(G)$ is identified with $1\otimes C^{*}(G)$ in $M(\tilde{\mathfrak{a}})$ . Set

$L=$ {$x\in\tilde{\mathfrak{a}}:\pi(x)u(f)=0;\forall f\in L^{1}(G)$ , supp $ f\cap Spue=\phi$ },

where $u(f)=\int f(t)u(t)dt$ . Then $L$ is an $\tilde{\alpha}$-invariant closed left ideal of $\tilde{\mathfrak{a}}$ containing
$B$ . Since $\overline{\pi}(C^{*}(G))\subset u(G)^{\prime}$ , we have that $LC^{*}(G)\subset L$ . Set $B_{1}=L\cap L^{*}$ . Then
$B_{1}\in\ovalbox{\tt\small REJECT}^{\partial}(\tilde{\mathfrak{a}})$ and $B_{1}$ satisfies the above assertion.

Now we assume that $B\supset C^{*}(G)BC^{*}(G)$ . Hence $e\in\overline{\pi}(C^{*}(G))^{\prime}$ . Let $\Omega$ be a
compact neighbourhood of $0$ such that $p+\Omega-\Omega\subset(Spue)^{c}$ . Let $e(q)$ be the spectral
projection of $\lambdarresponding$ to $ q-\Omega$ , in particular $e(q)\in M(\tilde{\mathfrak{a}})$ . Since the su-
premum of e$(q),$ $q\in\Gamma,$ $inM(\tilde{\mathfrak{a}})$ is l, $thereisq_{0}\in\Gamma satisfyingSpue\overline{\pi}(e(q_{0}))\ni 0$ . Let
$D=e(q_{0})Ke(q_{0})\in\ovalbox{\tt\small REJECT}^{Ad\lambda}(K)$ and now we restrict the representation to $ e(q_{0})\tilde{\mathfrak{a}}e(q_{0})\simeq$

$\mathfrak{a}\otimes D\in\ovalbox{\tt\small REJECT}^{\partial}(\tilde{\mathfrak{a}})$ with the representation space $\mathcal{K}\equiv\overline{\pi}(e(q_{0}))\ovalbox{\tt\small REJECT}_{\pi}$ .
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We define the following unitary representation \^u on $\mathcal{K}$ :

\^u(t)=u $(t)\overline{\pi}(\lambda(-t))\langle t, q_{0}\rangle$ , $t\in G$ .

Then \^u commutes with $\overline{\pi}(D)$ , Ad $\hat{\text{{\it \^{u}}}}(t)(\overline{\pi}(a))=\overline{\pi}\circ\alpha_{t}(a)$ for $a\in \mathfrak{a}$ , and

Sp $\hat{\text{{\it \^{u}}}}e\cap\Omega\neq\phi$ ,

Sp $\theta e\subset Spue-Sp\lambda e(q_{0})+q_{0}\subset Spue+\Omega\subset(p+\Omega)^{c}$ .
Set

$L=$ { $x\in \mathfrak{a}\otimes D:$ \mbox{\boldmath $\pi$}(x)\^u(f)=0, $\forall f\in L^{1}$ , supp $ f\subset p+\Omega$}

Then $L$ is an $\alpha\otimes id$ .-invariant closed left ideal of $\mathfrak{a}\otimes D$ containing $e(q_{0})Be(q_{0})$ .
Further $LD\subset L$ . Hence $L$ is of the form $L_{1}\otimes D$ where $L_{1}$ is an $\alpha$-invariant closed
left ideal of $\mathfrak{a}$ . Set $B_{1}=L_{1}\cap L_{1}^{*}$ , and let $e_{1}$ be the identity of $\overline{\pi}(B_{1})$ . Then Sp $ a_{e_{1}}\subset$

$(p+\Omega)^{c}$ and Sp $\text{{\it \^{u}}} e_{1}\cap\Omega\neq\phi$ . Thus $p\not\in Sp\text{{\it \^{u}}} e_{1}-q$ for $ q\in Sp\theta e_{1}\cap\Omega$ , i.e. $p\not\in F(\alpha)$ .
Now we consider the dual system $(\mathfrak{a}\times_{\alpha}G, \Gamma, \theta)$ and characterize $G(a)$ , similarly

to Lemma 3.2 in [7];

Lemma 3.2.

$G(\theta)=$ { $t\in G:\alpha_{t}(I)\subset I$ for any ideal $I$ of $\mathfrak{a}$ }.

Proof. Let $I$ be an ideal of $\mathfrak{a}$ and let $t\in G$ . Suppose that $\alpha_{t}(I)\zeta I$ .
Let $(\Omega_{\iota})$ be a net of compact neighbourhoods of $0$ such that $\cap\Omega_{\iota}=(0)$ . Let

$I_{\Omega}=\bigcap_{se\Omega}\alpha_{s}(I)$ .

We assert that $\bigcup_{\iota}I_{\Omega}$ is dense in $I$ . For let $x\in I$ be positive and find positive
elements $e_{n}$ and $x_{n}$ in the $C^{*}$-subalgebra generated by $x$ such that

$e_{n}x_{n}=x_{n}$ , $\Vert x-x_{n}\Vert\leq 1/n$ .

Then by Lemma 3.2 in [7] there is $\Omega_{\iota}$ such that $\alpha_{s}(x_{n})\in I$ for $s\in-\Omega_{\iota}$ . Thus $ x_{n}\in$

$I_{\Omega\iota}$ . Hence the closure of $\bigcup_{\iota}I_{\Omega}$ contains $x$ .
Suppose that $I_{\Omega-\Omega}\subset\alpha_{-t}(I_{\Omega})$ for any $\ell$ . Since $\cup I_{\Omega-\Omega}$ is also dense in $I$ ,

this would imply that $I\subset\alpha_{-t}(I)$ , a contradiction. Thus there is $t$ such that $I_{\Omega-\Omega}$

$\propto\alpha_{-t}(I_{\Omega})$ .
Let $J=I_{\Omega_{\ell}-\Omega}$ . Then since the ideal $V_{s\in\Omega\iota}\alpha_{s}(J)$ generated by $\alpha_{s}(J)$ , se $\Omega_{\iota}$ is

contained in $I_{\Omega}$ , we have that

$J\not\subset_{s\in}v_{\Omega}\alpha_{s-\ell}(J)$ .



74 AKITAKA KISHIMOTO

Let $B=\overline{J\cdot \mathfrak{a}\times_{\alpha}G\cdot J}\in\ovalbox{\tt\small REJECT}^{\hat{\alpha}}(\mathfrak{a}\times_{\alpha}G)$ and let $\Omega=\Omega_{\iota}$ . Then $B^{\theta}(t-\Omega)$ is the closed
linear span of

$x\lambda(f)y$ , $x,$ $y\in J$ , $f\in L^{1}\cap L^{2}$ with supp $ f\subset t-\Omega$ .
Hence the $hereditary*$ -algebra generated by elements of the form $y^{*}\lambda(f)^{*}x^{*}x\lambda(f)y$

is dense in $B(t-\Omega)$ .
$a\equiv y^{*}\lambda(f)^{*}x^{*}x\lambda(f)y$ is $\theta$-integrable, i.e. there is a positive $I(a)$ in $M(\mathfrak{a}\times_{\alpha}G)$

(in fact in $\mathfrak{a}\subset M(\mathfrak{a}\times_{\alpha}G)$) such that

$\phi(I(a))=\int_{\Gamma}\phi(\theta_{p}(a))dp$

for every $\phi\in(\mathfrak{a}\times_{\alpha}G)^{*}$ . Explicitly

$ I(a)=\int|f(s)|^{2}y^{*}\alpha_{-s}(x^{*}x)yds\in J\cdot V\alpha_{s-t}(J)\equiv J_{1}s\in\Omega$

Since $B(t-\Omega)$ is $\theta$-invariant, it follows that $I(a)\in B(t-\Omega)^{**}$ . Hence the hereditary
$*$-algebra generated by elements of the form $I(a)$ is contained in $B(t-\Omega)$ and of course
is dense in $B(t-\Omega)$ . Hence

$B(t-\Omega)\subset J_{1}\cdot \mathfrak{a}x_{\alpha}G\cdot J_{1}$ .
Since $J_{1}\subset\neq J,$ $B(t-\Omega)\neq B$ , i.e. $t\not\in G(\theta)$ .

Suppose that $t$ dg $G(a)$ . Then there are a covariant representation $(\pi, u)$ of
$(\mathfrak{a}\times_{\alpha}G, \Gamma, \theta)$ and $B\in\ovalbox{\tt\small REJECT}^{\theta}(\mathfrak{a}\times_{\alpha}G)$ such that Sp $ue\ni O$ and Sp $ue\geq t$ where $e$ is the
identity of $\overline{\pi(B)}^{w}$ . Let $\Omega$ be a compact neighbourhood of $O\in G$ such that $ t+\Omega-\Omega$

$\subset(Spue)^{c}$ . Then for any $x\in B$ and $ s\in\Omega$ ,

$\pi(x)\overline{\pi}(\lambda(s))u(f)=0$ , $f\in L^{1}(\Gamma)$ with $suppf\subset t+\Omega$ .
Let $L$ be the left ideal of $\mathfrak{a}\times_{\alpha}G$ with $B=L\cap L^{*}$ . Then from the above calcu-

lation, the left ideal $L_{1}$ generated by

$\cup L\lambda(f),$ $f\in L^{1}(G)$ with supp $ f\subset\Omega$ ,

satisfies that for $x\in L_{1}$ ,

$\pi(x)u(f)=0,$ $f\in L^{1}(\Gamma)$ with supp $ f\subset t+\Omega$ . $(*)$

Set $B_{1}=L_{1}\cap L_{1}^{*}\in\ovalbox{\tt\small REJECT}^{\theta}(\mathfrak{a}\times_{\alpha}G)$ and let $e_{1}$ be the identity of $\overline{\pi(B_{1})}^{w}$ . Then Sp $ue_{1}\ni 0$

and Sp $ue_{1}\ni t$ .
The positive cone of $B_{1}$ has a total set of $\theta$-integrable elements of the form

$a=\lambda(f)^{*}x^{*}x\lambda(f),$ $x\in B,$ $f\in L^{1}\cap L^{2}$ with supp $ f\subset\Omega$ . Let $J$ be the ideal of $\mathfrak{a}$ gener-
ated by elements $I(a)$ with all such $a$ . Then $B_{1}\subset\overline{J\cdot \mathfrak{a}\times_{\alpha}G\cdot J}$ . Sinoe $\overline{J\cdot \mathfrak{a}\times_{l}G\cdot J}$
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is generated by elements of the form $x_{1}I(a_{1})yI(a_{2})x_{2}$ with $x_{i}\in \mathfrak{a},$
$y\in \mathfrak{a}\times_{\alpha}G$ and

since $I(a_{1})yI(a_{2})\in B_{1}$ , we have that $\overline{J\cdot \mathfrak{a}\times_{\alpha}}$G. $J=\overline{JB_{1}J.}$

Set $B_{2}=\overline{J\cdot \mathfrak{a}\times_{\alpha}G\cdot J}\in\ovalbox{\tt\small REJECT}^{\&}(\mathfrak{a}\times_{\alpha}G)$ . Then $x\in B_{2}$ satisfies $(*)$ sinoe $\overline{\pi}(\mathfrak{a})$ com-
mutes with $u(\Gamma)$ . Henoe there is a compact neighbourhood $\Omega_{1}$ of $t$ such that $B_{2}(\Omega_{1})$

$\neq B_{2}$ .
Since $B_{1}^{\text{{\it \^{a}}}}(\Omega_{1})$ is the closed linear span of

$x\lambda(f)y,$ $x,$ $y\in J,$ $f\in L^{1}\cap L^{2}$ with supp $f\subset\Omega_{1}$ ,

similarly to the first part of the proof, $B_{2}(\Omega_{1})$ is the hereditary $C^{*}$-subalgebra gener-
ated by elements of the form

$I(y^{*}\lambda(f)^{*}x^{*}x\lambda(f)y)=\int|f(s)|^{2}y^{*}\alpha_{-s}(x^{*}x)yds$ .

Henoe $B_{2}(\Omega_{1})\supset\alpha_{-t}(J)J\cdot \mathfrak{a}\times_{a}$ G. $\alpha_{-t}(J)J$, which implies that $J\zeta\alpha_{-t}(J)$ . $q.e.d$ .
Here we give a comment. Our referenoe on $\theta$-integrability[2.4, 7] contains

an error in the definition of $I$ . The correct form should be the one given in the
above proof (otherwise Lemma 2.6 in [7] would fail), i.e. $a\in M(B)_{+}$ is $\beta$-integrable
if there is a (neoessarily unique) $I(a)\in M(B)$ such that

$\phi(I(a))=\int_{\Gamma}\phi\circ\beta_{p}(a)dp$

for every $\phi\in B^{*}$ , where $B=\mathfrak{a}\times_{\alpha}\backslash G$ and $\beta=a$ in this case. Here $p\rightarrow\phi\circ\beta_{p}(a)$ is con-
tinuous.

To prove that the $\beta$-integrable elements are hereditary, we adopt an argument
similar to the one in [2.4, 7] by using, e.g., Lemma 2.1 in [1], although this fact is
not quite necessary in the above proof, because we have considered only elements of
the form $\lambda(f)^{*}x^{*}x\lambda(f)$ (or $y^{*}\lambda(f)^{*}x^{*}x\lambda(f)y$ if $a_{p}(y)=y,$ $ p\in\Gamma$) as integrable ele-
ments, which is justified by Proposition 2.8 in [7].

Lemma 3.3 [10]. The $C^{*}$-dynamical system $(\mathfrak{a}\times_{\alpha}G\times a^{\Gamma}’ G,\hat{\theta})$ is covariantly
isomorphic to $(\tilde{\mathfrak{a}}, G,\tilde{\alpha})$ .

Lemma 3.4.
$F(\alpha)=$ { $p\in\Gamma:\theta_{p}(I)\subset I$ for any ideal $I$ of $\mathfrak{a}\times_{\alpha}G$ }

Proof. $ItfollowsfromLemmas3.2and3.3$ .
By the above lemma and Lemma 3.1 in [7] we have

Theorem3.5. Let $(\mathfrak{a}, G, \alpha)$ be as above. Thefollowing conditions are equiva-
lent:
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(i) $\mathfrak{a}\times_{\alpha}G$ is simple;
(ii) $\mathfrak{a}$ is $\alpha$-simple and $ F(\alpha)=\Gamma$ .
As a corollary to Lemma 3.4 we give

Proposition 3.6. Let $(\mathfrak{a}, G, \alpha)$ be as above. Suppose that there is another
$C^{*}- dynamic\dot{a}l$ system $(B, G, \beta)$ which is exteriorly equivalent to $(a, G, \alpha)$ . Then
$F(\alpha)=F(\beta)$ .

Proof. $(\mathfrak{a}\times_{\alpha}G, \Gamma, a)$ is covariantly isomorphic to $(B\times\beta G, \Gamma,\hat{\beta})$ . $q.e.d$ .
It seems more difficult to compute $F(\alpha)$ than $\Gamma(\alpha)$ in most of cases. But some-

times $F(\alpha)$ coincides with $\Gamma(\alpha)$ . We shall show some of these cases.
The following lemma can be found, e.g. in [11, Lemma 22]:

Lemma 3.7. Suppose that $a$ is $\alpha$-simple and that $G/G_{I}$ is compact for any
primitive ideal I of $\mathfrak{a}$ , where

$G_{I}=\{t\in G:\alpha_{t}(I)=I\}$ .
Then the primitive ideal space of $\mathfrak{a}$ with the transposed action of $G$ is isomorphic
to $G/G_{0}$ with the action of $G$ by translations, where $G_{0}=G_{I}$ for any primitive
ideal $I$ .

Proof. Let $I$ be a primitive ideal, and let $(\Omega_{\iota})$ be a net of compact neighbour-
hoods of $0\in G/G_{I}$ such that $\cap\Omega_{\iota}=(0)$ . Sinoe $\alpha_{t}(I)=\alpha_{s}(I)$ if $t$ and $s$ in $G$ have the
same image $f=\dot{s}$ in $G/G_{I}$ , we can define

$I(f+\Omega_{\iota})=\bigcap_{S\in\Omega}\alpha_{\ell+s}(I)$ .

There is a finite set $S_{\iota}$ of $G/G_{I}$ such that

$\bigcup_{S\in S}(\dot{s}+\Omega_{\iota})=G/G_{I}$ .
Sinoe $\mathfrak{a}$ is $\alpha$-simple, we have

$\bigcap_{\dot{s}\in S}I(\dot{s}+\Omega_{\iota})=(0)$ .

Let $J$ be a primitive ideal. Sinoe $\bigcap_{\dot{s}\in S_{\iota}}I(\dot{s}+\Omega_{\iota})\subset J$ , there is an $\dot{s}_{\iota}\in S_{\iota}$ such
that

$I(\dot{s}_{\iota}+\Omega_{\iota})\subset J$ .
Sinoe $G/G_{I}$ is compact, we may suppose that $\dot{s}_{\iota}$ converges, say to $\dot{s}$ . Then

$\dot{s}+\Omega_{\iota}\ni\dot{s}_{j}$ for sufficiently large $ j\geq\ell$ . Henoe $\dot{s}+\Omega_{\iota}+\Omega_{\iota}\supset\dot{s}_{j}+\Omega_{j}$ which implies

$I(\dot{s}+\Omega.+\Omega.)\subset J$ .
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We have that $\alpha_{s}(I)\subset J$ , sinoe $\cup I(\dot{s}+\Omega+\Omega_{\iota})$ is dense in $\alpha_{s}(I)$ , as shown from
the first part of the proof of Lemma 3.2 and the fact that the quotient map $G\rightarrow G/G_{I}$

is open. Similarly we get that $\alpha_{t}(J)\subset Iforsomet\in G$, i.e.

$\alpha_{s+t}(J)\subset\alpha_{s}(I)\subset J$ .
Sinoe $G/G_{J}$ is compact, we can conclude that $\alpha_{s+c}(J)=J$ . Thus $\alpha_{s}(I)=J$ .

Hence the set of primitive ideals is $\{\alpha_{t}(I):t\in G/G_{I}\}$ , i.e. there is a $one- 0\acute{n}e$

correspondenoe between the primitive ideal space and $G/G_{I}$ , by choosing one primi-
tive ideal $I$ of $\mathfrak{a}$ , which obviously preserves the actions of $G$ . For any subset $S$ of
$G/G_{I}$, we have

$\bigcap_{\dot{s}\in S}\alpha_{s}(I)=\bigcap_{\dot{s}\in S}\alpha_{s}(I)$ .

By the same argument as above,

$\bigcap_{l\in S}\alpha_{s}(I)\subset\alpha_{t}(I)$

implies that $i\in\overline{S}$ . Henoe the closure operations coincide through the correspond-
ence. $q.e.d$ .

Proposition 3.8. Let $(\mathfrak{a}, G, \alpha)$ be a $C^{*}$-dynamical system where $G$ is a discrete
$ abeliangroupand\mathfrak{a}is\alpha$-simple. Then $\Gamma(\alpha)=F(\alpha)$ .

Proof. We apply Lemma 3.7 to the dual system $(\mathfrak{a}\times_{\alpha}c, \tau, a)$, where now $\Gamma$

is compact, and use the formula for $ff(\alpha)$ in Lemma 3.4 and the one for $\Gamma(\alpha)$ in
Corollary 5.4 in [7].

Proposition 3.9. Let $(a, G, \alpha)$ be a separable $C^{*}$-dynamical system (i.e. both
$a$ and $G$ are separable). Suppose that $G_{l}$ is discrete for any primitive ideal I of a
where

$G_{I}=\{t\in G:\alpha_{t}(I)=I\}$ .
If $a$ is $\alpha$-simple, then the primitive ideal space of $\mathfrak{a}\times_{\alpha}G$ with the transposed action
of $a$ of $\Gamma$ is isomorphic to $\Gamma/H$ (with action of $\Gamma$) for some closed subgroup $H$ of $G$

such that $\Gamma/H$ is compact, in particular $F(\alpha)=\Gamma(\alpha)(=H)$ .
Proof. (c.f. [8, Theorem 3.1]) By [5, Corollary 3.2], for any primitive ideal

$I,$ $\Gamma/\Gamma_{I}$ is compact. Apply Lemma 3.7. For the last statement, see the proof of
Proposition 3.8.

For applications of the above proposition we refer the reader to [8].
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\S 4. Crossed products of $O_{n}$

Let $\ovalbox{\tt\small REJECT}_{n}$ be an n-dimensional Hilbert spaoe $(2\leq n\leq\infty)$ , and let $F(\ovalbox{\tt\small REJECT}_{n})$ be the
Fock Hilbert spaoe over $\ovalbox{\tt\small REJECT}_{n}$ . For each $f\in\ovalbox{\tt\small REJECT}_{n},$ $O(f)$ is a bounded operator defined
by

$O(f)g_{1}\otimes\cdots\otimes g_{n}=f\otimes g_{I}\otimes\cdots\otimes g_{n}$

$O(f)\Omega=f$

where $\Omega$ is the vacuum vector in $F(\ovalbox{\tt\small REJECT}_{n})$ . If $\Vert f\Vert=1,$ $O(f)$ is an isometry. We de-
note by $O(\ovalbox{\tt\small REJECT}_{n})$ the $C^{*}$-algebra generated by $O(f),$ $f\in\ovalbox{\tt\small REJECT}_{n}$ .

If $n$ is finite, the Cuntz algebra $O_{n}[3]$ is isomorphic to the quotient of $O(\ovalbox{\tt\small REJECT}_{n})$

by the compact operator algebra on $F(\ovalbox{\tt\small REJECT}_{n})$ and if $n=\infty,$ $O_{n}$ is isomorphic to $O(\ovalbox{\tt\small REJECT}_{n})$ .
Each unitary $u$ on $\ovalbox{\tt\small REJECT}_{n}$ induces an automorphism of $O_{n}$ through that of $O(\ovalbox{\tt\small REJECT}_{n})$ defined
by

$O(f)\rightarrow 0(uf)$ , $f\in\ovalbox{\tt\small REJECT}_{n}$ .

We call quasi-free those automorphisms of $O_{n}$ obtained in this way. See, for the
detail, Evanoe [4].

From now on we assume that $n$ is finite.
Let $G$ be a locally compact abelian group with its dual $\Gamma$, as before, and let $u$

be a continuous unitary representation of $G$ on $\ovalbox{\tt\small REJECT}_{n}$ . By thinking of elements of the
form

$O(f_{1})\cdots O(f_{n})O(g_{1})^{*}\cdots O(g_{m})^{*}$ ,

it is clear that Sp $\alpha$ is the closed subgroup of $\Gamma$ generated by Sp $u$ .

Lemma 4.1. Let $(O_{n}, G, \alpha)$ be as above. Then $\Gamma(\alpha)=Sp\alpha$ .

Proof. Let $(\phi_{i})_{i=1}^{n}$ be an orthonormal system in $X_{n}$ such that $u_{t}\phi_{i}=\langle t, p_{i}\rangle\phi_{i}$

$withp_{i}\in\Gamma$ . $LetS_{\ell}betheimageofO(\phi_{i})intoO_{n}$ .
Set for each $ k=1,2,\ldots$

$S_{i}^{1k)}=\sum_{\mu:\ell\langle\mu)=k}S_{\mu}S_{i}S_{\mu}^{*}$ ,

where the summation is taken over all the words $\mu$ of $\{$ 1, $\ldots$ , $n\}$ with length $l(\mu)=k$ ,
and $S_{\{\ell_{1},\ldots.i_{k}\}}=S_{i_{1}}\cdots S_{i_{k}}$ (c.f. [3]). All $S_{i^{k)}}^{t}$ are isometries and satisfy that $\lim\Vert[S_{\ell}^{tk)}$ ,
$x]\Vert=0$ for any $x\in F^{n}\subset O_{n}$ where $F^{n}$ is the algebra of fixed points under the gauge
automorphism group $\gamma$ , i.e. the quasi-free automorphism group induced by { $z\cdot 1$ ;
$|z|=1\}$ on $\ovalbox{\tt\small REJECT}_{n}$ .
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Let $v$ be an infinite aperiodic sequenoe of letters $\{$ 1, $\ldots$ , $n\}$ (c.f. Lemma 1.8 in
[3]) $andletv_{m}$ be the restriction ofv to the firstm letters. Set

$Q_{m}=\sum_{\mu,l\langle\mu)=m}S_{\mu}S_{v_{m}}S_{v_{m}}^{*}St$ .

Then $\{Q_{m}\}$ are $\gamma-$ and $\alpha$-invariant projections and satisfy

$\lim\Vert Q_{m}\epsilon(x)Q_{m}-Q_{m}xQ_{m}\Vert=0$

$\lim$ I $ Q_{m}xQ_{m}\Vert=\Vert\epsilon(x)\Vert$

where $\epsilon(x)=\int\gamma_{t}(x)dt$ is the projection of $0_{n}$ onto $F^{n}$ ($c.f$. Proposition 1.7 in [3]).
Then for any positive $x\in O_{n}$ ,

$\lim_{m}\lim_{k}\Vert Q_{m}xQ_{m}S_{i}^{1k)}x\Vert=\lim$ $\lim\Vert S_{i}^{(k)}Q_{m}\epsilon(x)Q_{m}x\Vert$

$=\lim_{m}\Vert Q_{m}\epsilon(x)Q_{m}x\Vert\geq\Vert\epsilon(x)\Vert^{2}$ .

Let $B\in\ovalbox{\tt\small REJECT}^{\alpha}(O_{n})$ and $\Omega$ a compact neighbourhood of $0$ . Then there is a non-
zero positive $x\in B$ with $Sp_{\alpha}(x)\subset\Omega$ . It follows from the above calculation that there
$aremandksuchthatxQ_{m}S_{i}^{(k)}x\neq 0$ . This implies that

Sp $\alpha|B\cap(p_{i}+\Omega+\Omega)\neq\phi$

Sinoe $\Omega$ and $B$ are arbitrary, we can conclude that $\Gamma(\alpha)\ni p_{i}$ . Thus $\Gamma(\alpha)=Sp\alpha$ sinoe
$\Gamma(\alpha)$ is a closed subgroup [6].

We denote by $\overline{\gamma}$ the extension of the gauge action $\gamma$ to an action on $O_{n}\times_{\alpha}G$ .
This is possible because $\gamma$ commutes with $\alpha$ . In the following we denote by $H$ the
intersection of the closed subsemigroups of $\Gamma$ generated by Sp $u$ and $-p$ , with
$p\in Spu$ .

Lemma4.2. Let $(O_{n}, G, \alpha)$ be as above. $ThenH\supset F(\alpha)$ .

Proof. We construct certain $\alpha$-invariant states of $O_{n}$ . For $i=1,\ldots,$ $n$ and
$ k=1,2,\ldots$ , set

$P_{i}^{(k)}=S_{\ell}^{k}S_{i}^{*k}$ .
Then $\{P_{i}^{1k)}\}_{k=1,2},\ldots$ is a decreasing sequenoe of $\gamma$-invariant projections. Let $\phi_{\ell}$ be a
$\gamma$-invariant state satisfying

$\phi_{i}(x)=\phi_{\ell}(P_{i}^{\langle k)}xP_{\ell}^{(k)})$ , $x\in O_{n}$ , $ k=1,2,\ldots$ .
Then it is shown that $\phi_{i}$ is $\alpha$-invariant (and in fact unique) and that the continuous
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functions on $G\ni t\rightarrow\phi(x\alpha_{t}(y))$ for $x,$ $y\in O_{n}$ are contained in the closed algebra gener-
ated by characters $p_{1},\ldots,$ $p_{n}$ and $-p_{\ell}$ , e.g.

$\phi_{i}(x\alpha_{t}(S_{\mu}S_{v}^{*}))=\langle t, p_{j_{1}}+\cdots+p_{j_{m}}-p_{k_{1}}-\cdots-p_{k_{n}}\rangle\phi_{i}(xS_{\mu}S_{v}^{*})$

is non-zero only if $v\equiv\{k_{1},\ldots, k_{n}\}=\{i,\ldots, i\}$ , where $\mu=\{j_{1},\ldots, j_{m}\}$ . This implies
that in the GNS representation associated with $\phi_{i}$ , the canonical representation $U$

of $G$ defined by

$U_{t}\pi_{\phi_{i}}(x)\Omega_{\phi_{\ell}}=\pi_{\phi_{i}}\circ\alpha_{t}(x)\Omega_{\phi_{i}}$ , $x\in O_{n}$

has spectrum in the closed subsemigroup $H_{i}$ generated by $p_{1},\ldots,$ $p_{m}$ and $-p_{i}$ . By
Proposition 2.2 we have that $\tilde{\Gamma}(\alpha)\subset H_{l}$ .

Lemma 4.3. Let $(O_{n}, G, \alpha)$ be as above. Then for any $\overline{\gamma}$-invariant ideal I of
$O_{n}\times_{\alpha}G$, it follows that $a_{p}(I)\subset I$ for $p\in H$ .

Proof. Let $\rho$ be a representation of $O_{n}\times_{\alpha}G$ whose kemel is $\overline{\gamma}$-invariant. Let
$x\in O_{n}^{\gamma}\times_{\alpha}G\equiv(O_{n}\times_{\alpha}G)^{\overline{\gamma}}$ or be of the form $\sum a_{\iota}\otimes f_{i}$ with $a_{i}\in O_{n}^{\gamma},$ $f_{i}\in C^{*}(G)$ . Then
sinoe $\lim\Vert S_{\ell}^{(k)*}xS_{i}^{(k)}-\theta_{p\ell}(x)\Vert=0$, we have

$\lim_{k}\Vert\rho(S_{i}^{(t)*}xS_{i}^{(k)})\Vert=\Vert\rho\circ\theta_{p\ell}(x)\Vert$ .

The left hand side equals

$\lim_{k}\Vert\rho(x)\rho(S_{i}^{1k)}S_{i}^{1k)*})\Vert$

sinoe $S_{i}^{(k)}S_{i}^{(k)*}$ asymptotically commutes with $x$ . Further sinoe $S_{i}^{(k)}S_{i}^{(k)*}$ are projec-
tions and $\sum_{i}S_{t^{k)}}^{t}S^{(k)*}=1$ , we have

$|1\rho(x)\Vert\geq\Vert\rho\circ a_{p\iota}(x)\Vert$

$\Vert\rho(x)\Vert=\max_{i}\Vert\rho\circ\theta_{p\ell}(x)\Vert$
$(*)$

For a fixed $x\in O_{n}^{\gamma}\times_{\alpha}G$ we can find an infinite sequence $\{i_{k}\}$ of $\{$ 1, $\ldots$ , $n\}$ such
that

$\Vert\rho(x)\Vert=\Vert\rho\circ a_{p\iota_{1}+\cdots+p\ell_{k}}(x)\Vert$ $(**)$

for all $ k=1,2,\ldots$ . There is an $i\in\{1,2,\ldots, n\}$ which infinitely often appears in
$\{i_{k}\}$ . For such an $i$ we have

$\Vert\rho(x)\Vert=\Vert\rho\circ a_{np\ell}(x)\Vert$

for $ n=1,2,\ldots$ , sinoe for any subset $J$ of $\{$ 1, $\ldots$ , $k\},$ $(**)$ is less than or equal to
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$\Vert\rho\circ\theta_{(\sum_{j\in J^{p\ell_{j}}})}(x)\Vert\leq\Vert\rho(x)\Vert$
.

Let $p\in H$ . By the assumption there is a sequenoe in the subsemigroup gener-
ated by $\{p_{1},\ldots, p_{n}, -p_{i}\}$ which converges to $p$ , i.e. there is a sequenoe

$q_{l}=\sum_{k}n_{k}^{1l)}p_{k}-m^{(l)}p_{i}-p,$
$n_{k}^{(l)}\geq 0,$ $m^{(\ell)}\geq 0$

which converges to zero in $\Gamma$ . Then

$\Vert x-a_{q_{i}}(x)\Vert\geq\Vert\rho\circ\theta_{m^{(i)}p\ell}(x)-\rho\circ\alpha_{(\Sigma n_{k}^{(l)}p\kappa^{-p)}}(x)\Vert$

$\geq\Vert\rho(x)\Vert-\Vert\rho\circ\theta_{-p}(x)\Vert$

which implies that $\Vert\rho\circ a_{-p}(x)\Vert\geq\Vert\rho(x)\Vert$ . Henoe

$\theta_{p}(I)\cap O_{n}^{\gamma}\times_{\alpha}G\subseteq I\cap O_{n}^{\gamma}\times_{\alpha}G$

where $I$ is the kernel of $\rho$ . Since $I$ is generated by $I\cap O_{n}^{\gamma}\times_{a}G$, we can conclude
that $a_{p}(I)\subset I$ . $q.e.d$ .

Theorem 4.4. Let $(O_{n}, G, \alpha)$ be as above. The crossed product $O_{n}\times_{\alpha}G$ is
simple if and only if the closed subsemigroup of $\Gamma$ generated by Sp $u$ and $-p$ is $\Gamma$

itselffor any $p\in Spu$ .
Proof. Sinoe $H\supset 5(\alpha)byLemma4.2,$ $ifH\neq\Gamma,$ $O_{n}\times_{a}$ Gisnot simple by Theo-

rem 3.5.
Suppose $ H=\Gamma$ . Then Lemma 4.3 implies that any $\overline{\gamma}$-invariant ideal is a-

invariant. Sinoe $O_{n}$ is simple [3], there are not any non-trivial $\theta$-invariant ideals of
$O_{n}\times_{\alpha}G$ . Thus $O_{n}\times_{\alpha}G$ is $\overline{\gamma}$-simple. Sinoe $O_{n}\times_{\alpha}G$ is prime by Lemma 4.1 and
[7, Theorem 5.8], it follows from [7, Lemma 6.4] (or Lemma 3.7) that $O_{n}\times_{a}G$ is
simple.

Proposition 4.5. Let $(O_{n}, G, \alpha)$ be as above and suppose that $\alpha(G)$ contains
the gauge automorphism group $\gamma$ . Then $\tilde{\Gamma}(\alpha)$ is the intersection of the closed sub-
semigroups of $\Gamma$ generated by Sp $u$ and $-p$ , with $p\in Spu$ .

Proof. Sinoe $\overline{\gamma}$ is inner under the above assumption, any ideal of $O_{n}\times_{\alpha}G$ is
$\overline{\gamma}$-invariant. The rest of the proof follows from Lemmas 4.2, 4.3 and 3.4. $q.e.d$ .

\S 5. Crossed products of $O_{\infty}$

In this section we consider the case $ n=\infty$ . As in Section 4, let $u$ be a weakly
continuous unitary representation of a locally compact group $G$ on a separable
infinite-dimensional Hilbert spaoe $\ovalbox{\tt\small REJECT}$ and let $\alpha$ be the corresponding quasi-free
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action on $O_{\infty}=O(\ovalbox{\tt\small REJECT})$ . It is immediate that Sp $\alpha$ is the closed subgroup generated
by Sp $u$ .

Let $F=F(\ovalbox{\tt\small REJECT})=\sum_{0}^{\infty\ovalbox{\tt\small REJECT}\otimes n}$ be the Fock spaoe and $\pi_{F}$ the Fock representation of
$O_{\infty}$ on $F[4]$ . Let $U_{F}$ be the canonical representation of $G$ on the Fock spaoe, i.e.

$U_{F}(t)|\ovalbox{\tt\small REJECT}\otimes n=u_{t}\otimes\cdots\otimes u_{t}(n- tuples)\equiv u_{t}^{\otimes n}$ .
It is clear that Sp $U_{F}$ is the closed subsemigroup $H$ generated by Sp $u$ . The

pair $(\pi_{F}, U_{F})$ gives a representation $\pi_{F}\times U_{F}$ of $O_{\infty}\times_{\alpha}G$ in an obvious way. If
$H\neq\Gamma,$ $\pi_{F}\times U_{F}$ is not faithful, in particular $0_{\infty}\times_{\alpha}G$ is not simple (c.f. [9]).

Theorem 5.1. Let $(0_{\infty}, G, \alpha)$ be as above. The crossed product $O_{\infty}\times_{\alpha}G$ is
simple if and only if the closed subsemigroup $H$ generated by Sp $u$ is $\Gamma$ .

Proof. We have shown that if $ H\neq\Gamma$, then $O_{\infty}\times_{\alpha}G$ is not simple. Henoe we
now assume that $ H=\Gamma$ .

First we want to show that $\pi_{F}\times U_{F}$ is faithful. Sinoe $\pi_{F}\times U_{F}$ is irreducible,
this in particular implies that $0_{\infty}\times_{\alpha}G$ is prime.

For each $ n=1,2,\ldots$ , there is a natural unitary map $W$ from $F\otimes\ovalbox{\tt\small REJECT}^{\otimes n}$ onto
$\sum_{n}^{\infty}\ovalbox{\tt\small REJECT}^{\otimes k}cF$ , such that $ W_{n}(\psi\otimes\phi)=\sum$ if $\psi_{k}\otimes\phi$ where $\psi=\sum_{0}^{\infty}\psi_{k}$ with $\psi_{k}\in\ovalbox{\tt\small REJECT}\otimes k$ and
$\psi_{k}\otimes\phi\in\ovalbox{\tt\small REJECT}^{\otimes k+n}$ . Note that

$W_{n}\cdot U_{F}(t)\otimes u_{t}^{\otimes n}=U_{F}(t)W_{n}$ .
In the following, however, we omit $W$ .

Let $(\Omega_{\iota})$ be a decreasing sequenoe of compact neighbourhoods of $0$ in $\Gamma$ such. that
$\cap\Omega_{\iota}=(0)$ . There are $ p_{\iota}\in$ Sp $u$ and $\phi_{\iota}\in\ovalbox{\tt\small REJECT}$ with $\Vert\phi_{\iota}\Vert=1$ such that $Sp_{u}\phi_{\iota}\subset p_{\iota}+\Omega_{\iota}$

and $\phi_{\iota}$ tends to zero weakly.
Let $ p\in\Gamma$ . Then, sinoe Sp $ U_{F}=\Gamma$ due to the assumption, there are positive

integers $m$ . and $\psi_{\iota}\in\ovalbox{\tt\small REJECT}\otimes m$ with $\Vert\psi_{\iota}\Vert=1$ such that Sp $U_{F}\psi_{\iota}$ cp-p, $+\Omega_{\iota}$ .
Let $x=\sum a_{k}\otimes f_{k}\in O_{\infty}\times_{\alpha}G$ where $a_{k}$ are monomials (i.e. of the type $ O(f_{1})\cdots$

$O(f_{\ell})O^{*}(g_{1})\cdots O^{*}(g_{j}))$ and $f_{k}\in L^{1}(G)$ .
Note that for any $\psi\in F$,

$\lim\Vert\int f_{k}(t)U_{F}(t)(\psi\otimes\phi_{\iota}\otimes\psi_{\iota})dt-\int f_{k}(t)\langle t, p\rangle(U_{F}(t)\psi)\otimes\phi_{\iota}\otimes\psi_{\iota}dt\Vert=0$

$\lim\Vert\pi_{F}(a_{k})(\psi\otimes\phi_{\iota}\otimes\psi_{\iota})-(\pi_{F}(a_{k})\psi)\otimes\phi_{\iota}\otimes\psi_{\iota}\Vert=0$ .
Henoe we have that

$\lim\Vert(\pi_{F}\times U_{F})(x)(\psi\otimes\phi_{\iota}\otimes\psi_{\iota})-((\pi_{F}xU_{F})\circ(\theta_{p}(x)\psi))\otimes\phi_{\iota}\otimes\psi_{\iota}\Vert=0$ .
Since $\psi\in F$ is arbitrary, we have that $\Vert\pi_{F}\times U_{F}(x)\Vert\geqq\Vert(\pi_{F}\times U_{F})\circ\theta_{p}(x)\Vert$ , which in
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turn implies, since $p$ is arbitrary,

$\Vert(\pi_{F}\times U_{F})\circ a_{p}(x)\Vert=\Vert(\pi_{F}\times U_{F})(x)\Vert$ , $ p\in\Gamma$ .
Sinoe $O_{\infty}$ is simple [3], we can conclude that $\pi_{F}\times U_{F}$ is faithful.

Now let $\pi\times U$ be any irreducible representation of $0_{\infty}\times_{\alpha}G$ . By a similar
reason as given in the proof of Theorem 4.4 it suffioes to show that ker $(\pi\times U)\cap$

$O_{\infty}^{\gamma}\times_{\alpha}G=(0)$ .
Let $(f_{i})$ be a $mplete$ orthonormal system of M. Then $\pi(O(f_{i})O^{*}(f_{\ell}))$ are

mutually orthogonal projections. Let

$P=\sum_{i=1}^{\infty}\pi(O(f_{\ell})O^{*}(f_{i}))$ .
$P$ is a projection in $U(G)^{\prime}$ which is independent from choice of $(f_{\ell})$ .

First suppose that $P\neq 1$ . Let $e$ be a projection in $U(G)^{\prime}$ such that $0\neq e\leqq 1-P$ .
Then by the irreducibility, we have that $[\pi(O_{\infty})e\ovalbox{\tt\small REJECT}_{\pi}]=\ovalbox{\tt\small REJECT}_{\pi}$ . But $(1-P)[\pi(O_{\infty})e\ovalbox{\tt\small REJECT}_{n}]$

$=e\ovalbox{\tt\small REJECT}_{\pi}$ , i.e. $1-P=e$ . Hence $1-P$ is one-dimensional. Now it is easily shown that
$\pi$ is equivalent to $\pi_{F}$ and that $U=pU_{F}$ with some $ p\in\Gamma$ . Hence the faithfulness of
$\pi\times U\simeq\pi_{F}\times u_{F}\circ a_{p}$ follows from the above.

Suppose that $P=1$ . Let $p\in Spu+\cdots+Spu$ ( $k$ terms). There is a sequence of
unit vectors $\psi_{1\iota}\otimes\cdots\otimes\psi_{k\iota}\in\ovalbox{\tt\small REJECT}\otimes k$ such that Sp $U_{F}(\psi_{1\iota}\otimes\cdots\otimes\psi_{k\iota})cp+\Omega_{\iota}$ with $\Omega_{\iota}$

given before. Now we define a family of isometries:

$V_{\iota}^{t0)}=\pi(O(\psi_{1\iota})\cdots O(\psi_{k\iota}))$

$V_{\iota}^{tm})=\sum\pi(O(f_{i}))V^{(m-1)}\pi(O^{*}(f_{\ell}))$ .
Note that $V|^{m}$

) does not depend on $(f_{i})$ .
Let $x=\sum a_{k}\otimes f_{k}\in O_{\infty}^{\gamma}\times_{\alpha}G$ where $a_{k}$ are monomials, say, $a_{k}=O(g_{1})\cdots O(g_{m_{k}})$ .

$O^{*}(h_{1})\cdots O^{*}(h_{m_{k}})$ . For $m\geqq m_{k}$ we have that

$\pi(a_{k})V_{\iota}^{(m)}=V_{\iota}^{(m)}\pi(a_{k})$

$\lim\Vert U_{t}V_{\iota}^{(m)}-\langle t, p\rangle V_{l}^{(m)}U_{t}\Vert=0$ .
Thus, for $m\geq\max(m_{k})$

$\lim\Vert(\pi\times U)(x)V^{(m)}-V_{l}^{(m})(\pi\times U)\circ\theta_{p}(x)\Vert=0$ .

Sinoe $V_{\iota}^{1m}$
) are isometries, we have that $\Vert(\pi\times U)(x)\Vert\geq\Vert(\pi\times U)\circ\theta_{p}(x)\Vert$ . Sinoe such

$p$ is dense in $\Gamma$, we have

$\Vert(\pi\times U)(x)\Vert=\Vert(\pi\times U)\circ\theta_{p}(x)\Vert$ , $\forall p\in\Gamma$ .
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Sinoe $0_{\infty}$ is simple, we know that $(\pi\times U)|O_{\infty}^{\gamma}\times_{\alpha}G$ is faithful.

Remark 5.2. If the set of elements of Sp $U_{F}$ added by those of the essential
spectrum of $u$ is equal to Sp $U_{F}$ itself and if $\alpha(G)$ contains the gauge automorphism
group $\gamma$ , then it follows from the above proof that $\tilde{\Gamma}(\alpha)$ equals Sp $U_{F}$ . For example
$r_{(\gamma)=Z_{+}}$ .

In passing we give a remark on a quasi-free automorphism $\alpha_{u}$ of $O_{\infty}$ which is
induoed by a unitary $u$ on $\ovalbox{\tt\small REJECT}$ such that $u^{n}$ tends to zero weakly as $ n\rightarrow\infty$ . The
following proposition implies, in particular, that the Fock state is the only $\alpha_{u}$-invariant
state of $0_{\infty}$ .

Proposition5.3. $Let\alpha_{u}$ be as above. $Thenforanyx\in O_{\infty}$ ,

$M_{N}(x)\equiv(2N+1)^{-1}\sum_{n=-N}^{N}\alpha_{u}^{n}(x)$

converges in norm to a multiple of the identity.

Proof. Suppose $x=O(f_{1})\cdots O(f_{n})O^{*}(g_{1})\cdots O(g_{m})^{*}$ with $n+m\geq 1$ , and $\Vert f_{1}\Vert$

$=\cdots=\Vert g_{m}\Vert=1$ . Then if $n\geq 1$ ,

$\Vert M_{N}(x)\Vert^{2}=\Vert M_{N}(x)^{*}M_{N}(x)\Vert$

$\leq(2N+1)^{-}:_{m=-N}\sum^{N}|\langle u^{n}f_{1}u^{m}f_{1}\rangle|$

which implies that $\lim\Vert M_{N}(x)\Vert^{2}=0$ . Similarly we have the same in case $m\geqq 1$ .
The linear span of 1 and elements of the fom $O(f_{1})\cdots O^{*}(g_{m})$ is dense in $O_{\infty}$ , which
completes the proof.

With alittle more care we can conclude that the system $(0_{\infty}, Z, \alpha)$ with $\alpha_{n}\equiv\alpha_{u^{n}}$ is
weakly asymptotically abelian.
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