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Let $H$ be a complex Hilbert space. An operator (bounded linear) $T$ on $H$ is
said to be hyponormal if

$|1T^{*}x\Vert\leq\Vert Tx\Vert$

for all $x\in H[4]$ . $T$ is said to be M-hyponormal if there exists $M>0$ such that

$\Vert(T-zI)^{*}x\Vert\leq M\Vert(T-zI)x\Vert$

for all $x\in H$ and for all complex numbers $z$ . If in addition to this $T$ satisfies

$\Vert(T-zI)^{n}x\Vert^{2}\leq M\Vert(T-zI)^{2n}x\Vert\Vert x\Vert$

for all complex numbers $z$ , all integers $n$ and all $x$ in $H$ , then $T$ is said to be of M-
power class $(N)[2]$ . We write $\sigma(T)$ for the spectrum of $T;w(T)$ for the Weyl
spectrum of $T$ ; and $\pi_{00}(T)$ for the isolated points of $\sigma(T)$ that are eigenvalues of
finite multiplicity. $T$ satisfies Weyl’s theorem if

$\sigma(T)\sim w(T)=\pi_{00}(T)$ .
Cobum [1] proved that Weyl’s theorem holds for any hyponormal operator. The
purpose of this paper is generalize this result for any M-hyponormal operator. V.
Istratescu [2] has proved this result for an operator of M-power class $(N)$ . We also
prove a conjecture of [2] in this paper.

It is easily seen that if $T$ is an M-hyponormal operator then for each com-
plex number $z$ , T-zl and $zT$ are M-hyponormal. Also if $T$ is M-hyponormal on $H$

and $N$ is a subspace of $H$ invariant under $T$, then $T|_{N}$ is M-hyponormal. In our
work we use the following lemmas.

Lemma 1. If $T$ is an M-hyponormal operator on $H$ and if $N$ is a subspace of
$H$ invariant under $T$ such that $T|_{N}$ is normal, then $N$ reduces $T$.

Lemma 2. Every M-hyponormal quasinilpotent operator is zero.
For the proofs we refer to [5, Lemma 2] and [3, Corollary 5].
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Theorem 3. Any isolated point in the spectrum of an M-hyponormal operator
is its eigenvalue.

Proof. Since T-zl is M-hyponormal for each complex $z$ , therefore we can
assume the isolated point in the spectrum $\sigma(T)$ of $T$ to be zero. Choose $R>0$ such
that the only point of $\sigma(T)$ strictly within $\{z:|z|=R\}$ is zero and $\{z:|z|=R\}\cap\sigma(T)$

$=\emptyset$ . Set

$E=\int_{|z|=R}\frac{I}{T-zI}dz$ .

Then $E$ is a non-zero projection commuting with $T$ and hence its range space $N$ is
invariant under $T$. This implies that $T|_{N}$ is M-hyponormal. Also then

$\sigma(T|_{N})=\sigma(T)\cap\{z;|z|<R\}$

$=\{0\}$ .
Thus $T|_{N}$ is M-hyponormal quasinilpotent operator and hence by Lemma 2 is zero.
Let $0\neq x_{0}\in N$ . Then $Tx_{0}=0$ . This proves the theorem.

Theorem 4. If $T$ is an M-hyponormal operator then

$\omega(T)=\sigma(T)\sim\pi_{00}(T)$ .
Proof. It suffices to establish that $0\in\sigma(T)\sim\omega(T)$ if and only if $0\in\pi_{00}(T)$ .

Sinoe $T$ is M-hyponormal, therefore

$\Vert T^{*}x\Vert\leq M\Vert Tx\Vert$

for each $x\in H$ . Hence

$N(T)\subset N(T^{*})=(\overline{R(T)})^{\perp}$ .
Now, let $0\in\sigma(T)\sim\omega(T)$ . Then Tis a Fredholm operator of index zero. This gives

$N(T)\subset(\overline{R(T)})^{\perp}=R(T)^{\perp}$

and

dim $(N(T))=\dim(R(T)^{\perp})<\infty$ .
We obtain therefore $N(T)=R(T)^{\perp}$ . Hence the decomposition $H=N(T)\oplus N(T)^{\perp}$

gives $T=0\oplus S$, where $S$ is one-one and onto and hence invertible. This gives

$\sigma(T)=\{0\}\cup\sigma(S)$ .
Since $0\not\in\sigma(S)$ , it is isolated in $\sigma(T)$ and is an eigenvalue of finite multiplicity.
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Conversely, if $0\in\pi_{00}(T)$ , the decomposition $H=N(T)\oplus N(T)^{\perp}$ gives $T=0\oplus S$ ,

where $S$ is one-one and M-hyponormal. Once again

$\sigma(T)=\{0\}\cup\sigma(S)$ .
IfSisnot invertible, then0being an iso1ated point of $\sigma(S)$ is an eigenvalue ofS by

Theorem 3. This contradicts that $S$ is one to one. Hence $S$ is invertible and in
particular surjective. This would imply that Tis a Fredholm operator of index zero.
The result follows.

Corollary 5. Every M-hyponormal operator $T$ can be written as

$T=A\oplus S$

where $A$ is normal and $S$ is M-hyponormal with $\omega(S)=\sigma(S)$ .
Proof. By theorem 4, $\sigma(T)\sim\omega(T)=\pi_{00}(T)$ . Let $N$ be the closed linear

subspace of $H$ generated by $\cup$ $N(T-\lambda_{t})$ . Then $N$ is reduced by $T$. The
$\lambda_{i}\epsilon\pi oo(T)$

decompositon $H=N\oplus N^{\perp}$ gives $T=A\oplus S$ , where $A$ is normal and $S$ is M-hyponormal.
One can see that $\omega(S)=\sigma(S)$ .

Theorem 6. If $T$ is M-hyponormal operator with a single limit point of the
spectrum, then $T$ is normal.

Proof. We can assume the limit point to be zero. By hypothesis, every non-
zero point of the spectrum being isolated is an eigenvalue. M-hyponormality of $T$

implies that each eigenspace of $T$ is reducing and $T$ is normal on that eigenspace.
Let $N$ be the closed linear span of $H$ generated by $\cup N(T-\lambda_{i})$ , where $\lambda_{i}$ runs over
non-zero values in $\sigma(A)$ . $N$ is thus a closed linear subspace of $H$ reducing $T$ and
$T|_{N}$ is normal. But then by the decomposition $H=N\oplus N^{\perp}$ we get $T|_{N\perp}$ to be
M-hyponormal quasinilpotent operator and henoe is zero. Hence $T$ is normal.

Istratescu [2, Remark 1.11] conjectured that if $T$ is of M-power class $(N)$ and
$\sigma(T)$ has only finitely many limit points, then $T$ is normal. However we prove
the following

Theorem 7. If $T$ is M-hyponormal with only a finite number of limit points in
its spectrum, then $T$ is normal.

Proof. Let $z_{1}$ be a limit point of $\sigma(T)$ and choose a simple closed curve $G$ which
does not intersect $\sigma(T)$ and contains the only one limit point $z_{1}$ in its interior.

$E_{1}=\int_{G}\frac{l}{T-zI}dz$ .
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Then $E_{1}$ is a non-zero projection on $H$ such that $E_{1}H$ is invariant under $T$. Also then

$\sigma(T|_{E_{1}H})=\sigma(T)\cap$ [$interior$ of $G$].

Hence $T|_{E_{1}H}$ can have only one limit point and therefore is normal by Theorem 6.
Hence $T$ is reduced by $E_{1}H$ by Lemma 1. Now considering $T$ on $(E{}_{1}H)^{\perp}$ and
continuing the same process we conclude that $T$ being direct sum of normal operators
is normal.

The authors are extremely grateful to Dr. Bhushan L. Wadhwa for his kind
encouragement.
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