Yokohama Mathematical Journal Vol. 28, 1980

A NOTE ON WEAK CONVERGENCE OF EMPIRICAL PROCESSES FOR ϕ -MIXING RANDOM VARIABLES

By

Ryozo Yokoyama

(Received Aug. 1, 1979)

1. Introduction and result

Let $\{x_j, j \ge 1\}$ be a strictly stationary sequence of random variables satisfying a ϕ -mixing condition

(1)
$$\sup \{|P(B|A) - P(B)| \colon A \in \mathscr{M}_{1}^{k}, \quad B \in \mathscr{M}_{k+n}^{\infty}\} \leq \phi(n) \downarrow 0 \quad (n \to \infty),$$

here \mathcal{M}_a^b denotes the σ -field generated by $x_j \ (a \leq j \leq b)$.

Denote by $F_n(t)$ the empirical distribution function of the sequence $\{x_j, j \ge 1\}$ at stage *n*. Without loss of generality (see the proof of Theorem 22.1 of Billingsley [1]) we assume that x_j is uniformly distributed over [0, 1]. Let

(2)
$$Y_n(t) = n^{1/2} [F_n(t) - t], \quad 0 \le t \le 1$$

be the corresponding empirical process. Further set for $0 \leq s, t \leq 1$,

(3)
$$\sigma(s, t) = E\{g_s(x_1)g_t(x_1)\} + \sum_{k=2}^{\infty} E\{g_s(x_1)g_t(x_k)\} + \sum_{k=2}^{\infty} E\{g_s(x_k)g_t(x_1)\},$$

where $g_t(x) = I_{[0,t]}(x) - t$ and $I_A(\cdot)$ is the indicator function of A, and whenever $|\sigma(s, t)| < \infty$ (it holds if $\Sigma \phi(n) < \infty$), define a tied down Gaussian random function $Y(t), 0 \le t \le 1$, by

(4)
$$E{Y(t)}=0, E{Y(s)Y(t)}=\sigma(s, t).$$

The weak convergence of Y_n to Y has been established by Billingsley [1, Theorem 22.1] under the condition $\Sigma n^2 \phi^{1/2}(n) < \infty$. After this, Sen [3] and Yoshihara [5, 6] obtained further developments on this line (in the last paper, the above condition is relaxed to $\phi(n) = O(n^{-1-\delta})$ for some $\delta > 0$). We show here that the above result remains true under the less restrictive condition $\Sigma \phi(n) < \infty$ using the method introduced by Yoshihara [6].

Theorem. Let $\{x_j, j \ge 1\}$ be a strictly stationary sequence of random vari-

ables satisfying a ϕ -mixing condition (1) with

(5)
$$\sum_{n=1}^{\infty} \phi(n) < \infty .$$

Suppose that x_i is uniformly distributed over [0, 1]. Then

 $Y_n \xrightarrow{D} Y$

where Y_n and Y are defined by (2) and (4) respectively.

2. Proof

Throughout this section, K_i denote constants not depending on *n* and *l*. For fixed *s* and *t* with $0 \le s < t \le 1$, write

$$z_j = g_t(x_j) - g_s(x_j) = I_{(s,t]}(x_j) - l, \quad l = t - s.$$

Then $\{z_j, j \ge 1\}$ is ϕ -mixing with $Ez_j = 0$ and $P(|z_j| > 1) = 0$. Fix δ (0 < δ < 1). We now show that there exists a positive τ such that

(6)
$$P(|n^{-1/2}S_n| \ge \lambda) \le K_1 \lambda^{-(2+\delta)} [n^{-\tau}l + l^{(2+\delta)/2}]$$

for all positive λ and all *n* sufficiently large, where $S_n = z_1 + \cdots + z_n$ (cf. Yoshihara [6, Lemma]). Let *r* be the largest integer such that $2^{r+1} \leq n$. Put $p = 2^{[r\beta]}$ ($\beta = (8-3\delta)/16$) and $m = 2^{r-[r\beta]}$, where [s] denotes the largest integer contained in *s*. We write

$$\xi_i = \sum_{j=ip+1}^{(i+1)p} z_j \qquad (0 \le i \le 2m - 1)$$

and set

$$T_{k} = \sum_{i=0}^{k-1} \xi_{2i} \ (1 \le k \le m), \quad T'_{m} = \sum_{i=0}^{m-1} \xi_{2i+1}, \quad T''_{m} = S_{n} - T_{m} - T'_{m}.$$

Since x_1 is uniformly distributed over [0, 1], we have

(7) $E|z_1| \leq 2l, \quad Ez_1^2 \leq l.$

By the inequality (20.28) of Billingsley [1, p. 171] and (7),

(8)
$$E\xi_0^2 = pEz_1^2 + 2\sum_{j=1}^{p-1} (p-j)Ez_1z_{1+j}$$
$$\leq pl[1+8\sum_{j=1}^{\infty} \phi(j)] \leq K_2pl.$$

Since $|\xi_0| \leq p$ and $E|\xi_0| \leq pE|z_1| \leq 2pl$, using (20.28) of Billingsley [1] again,

(9)
$$|E\xi_0\xi_{2i}| \leq 2pE|\xi_0|\phi(pi) \leq 4p^2l\phi(pi).$$

Further since $\phi(n)$ is monotone,

(10)
$$\sum_{i=1}^{k-1} \phi(pi) \leq \sum_{i=1}^{k-1} p^{-1} \sum_{s=(i-1)p+1}^{ip} \phi(s) \leq p^{-1} \sum_{i=1}^{\infty} \phi(i).$$

Combining (8)–(10) we obtain

(11)
$$ET_{k}^{2} = kE\xi_{0}^{2} + 2\sum_{i=1}^{k-1} (k-i)E\xi_{0}\xi_{2i} \leq K_{3}kpl.$$

Therefore for some positive γ if n is chosen so large that

$$[\phi(p)]^{1/(2+\delta)} < \gamma/8$$
,

we have from the proof of Lemma 18.5.1 of Ibragimov-Linnik [2] and (11) that for $1 \le k \le m/2$

(12) $E|T_{2k}|^{2+\delta} \leq (2+\gamma)E|T_k|^{2+\delta} + 4(ET_k^2)^{(2+\delta)/2}$ $\leq (2+\gamma)E|T_k|^{2+\delta} + K_4(kpl)^{(2+\delta)/2}.$

Now (12) agrees with (2.12) of Yoshihara [6], and thus the inequality (6) follows directly from the proof of Lemma in [6].

The proof is then completed in the same way as that of Theorem 22.1 of Billingsley [1] by using our (6) instead of his Lemma 22.1.

Remark 1. The weak convergence of *p*-dimensional $(p \ge 2)$ empirical processes for ϕ -mixing random vectors to an appropriate Gaussian process can also be proved under the condition (5) (cf. Sen [4] and Yoshihara [6]).

Remark 2. The condition (5) is the best one expected at present time, because for general ϕ -mixing process there is no method to prove that $\sigma(s, t)$ defined by (3) converges under weaker condition than (5).

References

- [1] P. Billingsley: Convergence of probability measures. New York, Wiley 1968.
- [2] I. A. Ibragimov and Yu. V. Linnik: Independent and stationary sequences of random variables. Groningen, Wolters-Noordhoff 1971.
- [3] P. K. Sen: A note on weak convergence of empirical processes for sequences of φ-mixing random variables. Ann. Math. Statist., 42 (1971), 2131-2133.
- [4] P. K. Sen: Weak convergence of multidimensional empirical processes for stationary φ-mixing processes. Ann. Probability, 2 (1974), 147–154.
- [5] K. Yoshihara: Extensions of Billingsley's theorems on weak convergence of empirical processes.
 Z. Wahrscheinlichkeitstheorie verw. Gebiete, 29 (1974), 87-92.

RYOZO YOKOYAMA

[6] K. Yoshihara: Note on multidimensional empirical processes for ϕ -mixing random vectors. J. Multivariate Anal., 8 (1978), 584–588.

> Department of Mathematics Osaka Kyoiku University Ikeda, Osaka 563, Japan